1
|
Wang M, Yu X, Zhao J, Tian Z, Chen B, Li Q, Zhang D, Zhang F, Zhang L, Guo X. Overexpression of SikPsaF can increase the biomass of Broussonetia papyrifera by improving its photosynthetic efficiency and cold tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112380. [PMID: 39756483 DOI: 10.1016/j.plantsci.2024.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/19/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Photosynthesis is essential for the accumulation of organic compounds in plant leaves. Study of photosynthesis in the leaves of Broussonetia papyrifera is crucial for enhancing its biomass production, growth, and development. Here, we cloned the SikPsaF gene associated with photosynthesis from Saussurea involucrata and constructed a vector that was introduced into B. papyrifera to generate a transgenic strain. We then assessed various photosynthesis-related parameters in the transgenic plants and examined the function of this gene and its expression patterns under cold stress. The results showed that SikPsaF was localized to chloroplasts. Its expression was induced by light, and its expression was higher in the leaves than in other tissues. Furthermore, SikPsaF expression increased significantly under cold stress. The biomass of transgenic lines was greater than that of wild-type plants. Overexpression of this gene led to increases in the chlorophyll content and photosynthetic indices, which mitigated cell membrane damage and reduced reactive oxygen species (ROS) accumulation. SikPsaF overexpression also helped maintain high antioxidant enzyme activity and a high content of osmoregulatory substances during stress; the increased enzyme activities were due to up-regulated gene expression. Overexpression of SikPsaF has a major effect on growth and development by enhancing photosynthetic efficiency, improving yield, conferring cold resistance, and reducing damage to the cell membrane and ROS accumulation at low temperatures. In summary, our findings indicate that these transgenic plants have enhanced photosynthetic efficiency and resilience against biotic stresses.
Collapse
Affiliation(s)
- Mei Wang
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Xiangxue Yu
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Jingyi Zhao
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Zhijia Tian
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Bo Chen
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | - Qian Li
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| | | | - Fanfan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, PR China.
| | - Li Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, PR China.
| | - Xinyong Guo
- College of Life Science, Shihezi University, Shihezi 832000, PR China.
| |
Collapse
|
2
|
Meng X, Chen D, Lv Y, Xu W, Wang Y, Wang L. Thriving in adversity: Understanding how maize seeds respond to the challenge of combined cold and high humidity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109445. [PMID: 39731983 DOI: 10.1016/j.plaphy.2024.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/27/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Extreme conditions, such as cold and high humidity in northeast China's high-latitude maize region, can hinder crop yield and stability during the vegetative stage. However, there is a paucity of research examining the effects of simultaneous cold and high humidity stress on plant responses. In this study, we characterized the acclimation of JD558 (cold- and high humidity-sensitive hybrid) and JD441 (cold- and high humidity-tolerant hybrid) to stress at sowing caused by cold (4 °C), high humidity (25%), and their combined stress for five days, using physiological measurements and metabolomics during the stress treatments and recovery stages. Cold, high humidity, and their combined stress prolonged seed development and restricted material transport, with high humidity harming seed survival more than cold. Combined stress exhibited a more significant inhibitory effect on growth than individual stress. Individual and combined stress reduced α-amylase activity, disrupted antioxidants levels, increased malondialdehyde content, disturbed the oxidative balance within seeds, and impeded seed growth and development. Most carboxylic acids and their derivatives were downregulated caused by combined stress. In JD558, sucrose, D-glucose, glucose-1-phosphate, and fructose-1,6-bisphosphate were downregulated, while these metabolites were upregulated in JD441, leading to a blockage of glycolysis in JD558. After eliminating stress, JD441 showed greater α-amylase activity and a smaller decrease in MDA levels, resulting in a smaller reduction in root growth and transport rate than JD558. In summary, the different responses of the cold and high humidity sensitive hybrid and the tolerant hybrid to combined stress are related to the recovery ability after stress elimination.
Collapse
Affiliation(s)
- Xiangzeng Meng
- College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China; Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China
| | - Denglong Chen
- College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China; Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China
| | - Yanjie Lv
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China
| | - Wenhua Xu
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China
| | - Yongjun Wang
- College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China; Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China.
| | - Lichun Wang
- College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China; Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China.
| |
Collapse
|
3
|
Meng X, Cao Y, Lv Y, Wang L, Wang Y. Integrating physiological, metabolome and transcriptome revealed the response of maize seeds to combined cold and high soil moisture stresses. PHYSIOLOGIA PLANTARUM 2025; 177:e70096. [PMID: 39887997 DOI: 10.1111/ppl.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Combined cold and high moisture stress (CHS) is a prevalent abiotic stress during maize sowing in northeast China, severely affecting the growth of seedlings and seed germination. However, the mechanism underlying seed growth responses to CHS remains unclear. We used Jidan441 (JD441, CHS-resistant) and Jidan558 (JD558, CHS-sensitive) as experimental materials. Treatments of 5-day cold (4°C, CS), high moisture (25%, gravimetric water content, HH), and CHS were initiated at sowing, followed by a return to normal growth conditions (20°C during light/ 15°C during dark, 15%) at 7 days after sowing (DAS). CS, HH, and CHS decreased seed root length and surface area. The reduction in root length and surface area in JD441 due to CHS was less severe than in JD558. We found that the difference between CHS and control in JD441was less than that in JD558 at transcriptional and metabolic levels at 7 DAS. After CHS removal, JD441 exhibited a greater increase in α-amylase activity and antioxidant content than JD558, which facilitated starch decomposition and the rapid removal of O2 - and H2O2 in seeds. The rapid recovery of soluble sugar and soluble protein in JD441 helped maintain osmotic balance. Amino acids and genes related to amino acid metabolism were upregulated in response to combined stress in JD441, whereas they were downregulated in JD558. In conclusion, the stress tolerance of JD441 was attributed to its efficient recovery ability from CHS. This study provides a scientific foundation for exploring seed stress tolerance pathways and developing cold and high-moisture-tolerant hybrids.
Collapse
Affiliation(s)
- Xiangzeng Meng
- College of Agronomy, Jilin Agricultural University, Jilin, P. R. China
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Yujun Cao
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Yanjie Lv
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Lichun Wang
- College of Agronomy, Jilin Agricultural University, Jilin, P. R. China
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Yongjun Wang
- College of Agronomy, Jilin Agricultural University, Jilin, P. R. China
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| |
Collapse
|
4
|
Gu K, Li X, Su J, Chen Y, Yang C, Li J, He C, Hu B, Zou C. Physiological and ecological responses of flue-cured tobacco to field chilling stress: insights from metabolomics and proteomics. FRONTIERS IN PLANT SCIENCE 2024; 15:1490633. [PMID: 39670264 PMCID: PMC11635995 DOI: 10.3389/fpls.2024.1490633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
Introduction Currently, research on tobacco's response to chilling stress is mostly limited to laboratory simulations, where temperature is controlled to study physiological and molecular responses. However, laboratory conditions cannot fully replicate the complex environment of field chilling stress, so conducting research under field conditions is crucial for understanding the multi-level adaptive mechanisms of tobacco to chilling stress in natural environments. Methods This study aims to use field trials, starting from physiological responses, combined with proteomics and untargeted metabolomics, to systematically reveal the physiological and biochemical characteristics and key molecular mechanisms of tobacco leaves under chilling stress. It provides new insights into tobacco's adaptation strategies under chilling stress. Results The results showed that (1) chilling stress damages the appearance of tobacco leaves, reduces the chlorophyll content, increases H2O2 and malondialdehyde (MDA) levels in cold-injured tobacco leaves, and damages the plasma membrane system. Although catalase (CAT) activity increases to cope with the accumulation of reactive oxygen species (ROS), the activities of key antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) significantly decrease, indicating that the antioxidant system of tobacco leaves fails in environments with sudden temperature drops. (2) Proteomics analysis indicated that 410 differentially expressed proteins were identified in cold-stressed tobacco leaves, with 176 upregulated and 234 downregulated. Tobacco leaves under chilling stress attempt to maintain energy supply and physiological stability by enhancing glycolysis, starch, and sucrose metabolism pathways. Concurrently, chilling stress triggers the expression of proteins related to cell wall reinforcement and antioxidant defense. However, due to impaired ribosomal function, protein synthesis is significantly inhibited, which aggravates damage to photosynthesis and cellular functions. (3) Metabolomics analysis revealed that the differential metabolites in cold-stressed tobacco leaves were mainly enriched in tyrosine metabolism, isoquinoline alkaloid biosynthesis, and fatty acid degradation pathways. This indicates that under chilling stress, tobacco leaves enhance adaptability by regulating energy metabolism, increasing antioxidant capacity, and stabilizing cell membrane structure. Conclusions Therefore, under chilling stress, tobacco leaves exhibit complex physiological adaptability through multiple regulatory mechanisms involving proteins and metabolites. The research results provide important insights into the metabolic regulatory mechanisms of tobacco in response to extreme environments and also enhance the theoretical foundation for addressing low-temperature stress in practical production.
Collapse
Affiliation(s)
- Kaiyuan Gu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xinkai Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Jiaen Su
- Yunnan Tobacco Company, Dali, Yunnan, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | | | - Juan Li
- Yunnan Tobacco Company, Dali, Yunnan, China
| | - Chenggang He
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Binbin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Congming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- Yunnan Tobacco Company, Chuxiong, Yunnan, China
| |
Collapse
|
5
|
Li J, Lou S, Gong J, Liang J, Zhang J, Zhou X, Li J, Wang L, Zhai M, Duan L, Lei B. Coronatine-treated seedlings increase the tolerance of cotton to low-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108832. [PMID: 38896915 DOI: 10.1016/j.plaphy.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Coronatine, an analog of Jasmonic acid (JA), has been shown to enhance crop tolerance to abiotic stresses, including chilling stress. However, the underlying molecular mechanism remains largely unknown. In this study, we investigated the effect of Coronatine on cotton seedlings under low temperature using transcriptomic and metabolomics analysis. Twelve cDNA libraries from cotton seedlings were constructed, and pairwise comparisons revealed a total of 48,322 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the involvement of these unigenes in various metabolic pathways, including Starch and sucrose metabolism, Sesquiterpenoid and triterpenoid biosynthesis, Phenylpropanoid biosynthesis, alpha-Linolenic acid metabolism, ABC transporters, and Plant hormone signal transduction. Additionally, substantial accumulations of jasmonates (JAs), abscisic acid and major cell wall metabolites were observed. Transcriptome analysis revealed differential expression of regulatory genes, and qRT-PCR analysis confirmed the expression patterns of 9 selected genes. Co-expression analysis showed that the JA-responsive genes might form a network module with ABA biosynthesis genes or cell wall biosynthesis genes, suggesting the existence of a COR-JA-cellulose and COR-JA-ABA-cellulose regulatory pathway in cotton seedlings. Collectively, our findings uncover new insights into the molecular basis of coronatine--associated cold tolerance in cotton seedlings.
Collapse
Affiliation(s)
- Jin Li
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Shanwei Lou
- Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; State Key Laboratory of Plant Physiology & Biochemistry, Engineering Research Center of PGR, Ministry of Education & College of Agronomy and Biotechnology, and China Agricultural University, Beijing, 100193, China
| | - Jingyun Gong
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jing Liang
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jungao Zhang
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Xiaoyun Zhou
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jie Li
- Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Li Wang
- College of Agricultural, Xinjiang Agricultural University, Urumqi, 830091, China
| | - Menghua Zhai
- College of Agricultural, Xinjiang Agricultural University, Urumqi, 830091, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology & Biochemistry, Engineering Research Center of PGR, Ministry of Education & College of Agronomy and Biotechnology, and China Agricultural University, Beijing, 100193, China.
| | - Bin Lei
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China.
| |
Collapse
|
6
|
Liu L, Si L, Zhang L, Guo R, Wang R, Dong H, Guo C. Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline-alkali stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1900-1919. [PMID: 38943631 DOI: 10.1111/tpj.16896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
Cold and saline-alkali stress are frequently encountered by plants, and they often occur simultaneously in saline-alkali soils at mid to high latitudes, constraining forage crop distribution and production. However, the mechanisms by which forage crops respond to the combination of cold and saline-alkali stress remain unknown. Alfalfa (Medicago sativa L.) is one of the most essential forage grasses in the world. In this study, we analyzed the complex response mechanisms of two alfalfa species (Zhaodong [ZD] and Blue Moon [BM]) to combined cold and saline-alkali stress using multi-omics. The results revealed that ZD had a greater ability to tolerate combined stress than BM. The tricarboxylic acid cycles of the two varieties responded positively to the combined stress, with ZD accumulating more sugars, amino acids, and jasmonic acid. The gene expression and flavonoid content of the flavonoid biosynthesis pathway were significantly different between the two varieties. Weighted gene co-expression network analysis and co-expression network analysis based on RNA-Seq data suggested that the MsMYB12 gene may respond to combined stress by regulating the flavonoid biosynthesis pathway. MsMYB12 can directly bind to the promoter of MsFLS13 and promote its expression. Moreover, MsFLS13 overexpression can enhance flavonol accumulation and antioxidant capacity, which can improve combined stress tolerance. These findings provide new insights into improving alfalfa resistance to combined cold and saline-alkali stress, showing that flavonoids are essential for plant resistance to combined stresses, and provide theoretical guidance for future breeding programs.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Liang Si
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Lishuang Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Rui Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Ruixin Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Haimei Dong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, Heilongjiang, 150025, People's Republic of China
| |
Collapse
|
7
|
Słupianek A, Myśkow E, Kasprowicz-Maluśki A, Dolzblasz A, Żytkowiak R, Turzańska M, Sokołowska K. Seasonal dynamics of cell-to-cell transport in angiosperm wood. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1331-1346. [PMID: 37996075 PMCID: PMC10901208 DOI: 10.1093/jxb/erad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
This study describes the seasonal changes in cell-to-cell transport in three selected angiosperm tree species, Acer pseudoplatanus (maple), Fraxinus excelsior (ash), and Populus tremula × tremuloides (poplar), with an emphasis on the living wood component, xylem parenchyma cells (XPCs). We performed anatomical studies, dye loading through the vascular system, measurements of non-structural carbohydrate content, immunocytochemistry, inhibitory assays and quantitative real-time PCR to analyse the transport mechanisms and seasonal variations in wood. The abundance of membrane dye in wood varied seasonally along with seasonally changing tree phenology, cambial activity, and non-structural carbohydrate content. Moreover, dyes internalized in vessel-associated cells and 'trapped' in the endomembrane system are transported farther between other XPCs via plasmodesmata. Finally, various transport mechanisms based on clathrin-mediated and clathrin-independent endocytosis, and membrane transporters, operate in wood, and their involvement is species and/or season dependent. Our study highlights the importance of XPCs in seasonally changing cell-to-cell transport in both ring-porous (ash) and diffuse-porous (maple, poplar) tree species, and demonstrates the involvement of both endocytosis and plasmodesmata in intercellular communication in angiosperm wood.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Elżbieta Myśkow
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Magdalena Turzańska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| |
Collapse
|
8
|
Yin Q, Qin W, Zhou Z, Wu A, Deng W, Li Z, Shan W, Chen J, Kuang J, Lu W. Banana MaNAC1 activates secondary cell wall cellulose biosynthesis to enhance chilling resistance in fruit. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:413-426. [PMID: 37816143 PMCID: PMC10826994 DOI: 10.1111/pbi.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023]
Abstract
Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.
Collapse
Affiliation(s)
- Qi Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Zibin Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Ai‐Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life SciencesChongqing UniversityChongqingChina
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| | - Wang‐jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
9
|
Zhang C, Wang F, Jiao P, Liu J, Zhang H, Liu S, Guan S, Ma Y. The Overexpression of Zea mays Strigolactone Receptor Gene D14 Enhances Drought Resistance in Arabidopsis thaliana L. Int J Mol Sci 2024; 25:1327. [PMID: 38279328 PMCID: PMC10816222 DOI: 10.3390/ijms25021327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Strigolactones (SLs) represent a recently identified class of plant hormones that are crucial for plant tillering and mycorrhizal symbiosis. The D14 gene, an essential receptor within the SLs signaling pathway, has been well-examined in crops, like rice (Oryza sativa L.) and Arabidopsis (Arabidopsis thaliana L.), yet the research on its influence in maize (Zea mays L.) remains scarce. This study successfully clones and establishes Arabidopsis D14 gene overexpression lines (OE lines). When compared with the wild type (WT), the OE lines exhibited significantly longer primary roots during germination. By seven weeks of age, these lines showed reductions in plant height and tillering, alongside slight decreases in rosette and leaf sizes, coupled with early aging symptoms. Fluorescence-based quantitative assays indicated notable hormonal fluctuations in OE lines versus the WT, implying that D14 overexpression disrupts plant hormonal homeostasis. The OE lines, exposed to cold, drought, and sodium chloride stressors during germination, displayed an especially pronounced resistance to drought. The drought resistance of OE lines, as evident from dehydration-rehydration assays, outmatched that of the WT lines. Additionally, under drought conditions, the OE lines accumulated less reactive oxygen species (ROS) as revealed by the assessment of the related physiological and biochemical parameters. Upon confronting the pathogens Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), post-infection, fluorescence quantitative investigations showed a significant boost in the salicylic acid (SA)-related gene expression in OE lines compared to their WT counterparts. Overall, our findings designate the SL receptor D14 as a key upregulator of drought tolerance and a regulator in the biotic stress response, thereby advancing our understanding of the maize SL signaling pathway by elucidating the function of the pivotal D14 gene.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (C.Z.); (F.W.)
| | - Fanhao Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (C.Z.); (F.W.)
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiaqi Liu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Honglin Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Wu Y, Zhu H, Ling Z, Lu E, Peng X, Zheng Y. The metabolism of nonstructural carbohydrates, lipids, and energy in two Cycas species with differential tolerance to unexpected freezing stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1301560. [PMID: 38143575 PMCID: PMC10740210 DOI: 10.3389/fpls.2023.1301560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
Introduction With the climate warming, the occurrence of freezing events is projected to increase in late spring and early autumn in the Northern Hemisphere. Observation of morphological traits showed that Cycas panzhihuaensis was more tolerant to unexpected freezing stress than C. bifida. Energy balance is crucial for plant tolerance to stress. Here, we aimed to determine whether the different responses of the two species to the unpredicted freezing stress were associated with the metabolism of energy and related substances. Methods The effects of unexpected freezing temperatures on C. panzhihuaensis and C. bifida were studied by measuring chlorophyll fluorescence parameters, energy charge and the profile of nonstructural carbohydrates (NSC) and lipids. Results C. panzhihuaensis exhibited higher stability of photosynthetic machinery than C. bifida under unpredicted freezing events. Significant interaction between species and treatments were observed in the energy charge, the level of NSC and its most components and the amount of most lipid categories and lipid classes. The decrease of soluble sugar and the increase of neutral glycerolipids at the early freezing stage, the accumulation of membrane glycerolipids at the late freezing stage and the continuous decrease of energy charge during the freezing period were the characteristics of C. panzhihuaensis responding to unexpected freezing stress. The degradation of membrane glycerolipids and the continuous decrease of soluble sugar during the freezing period and the accumulation of neutral glycerolipids and energy charge at the late freezing stage represented the characteristics of C. bifida responses. Discussion The different freezing sensitivity between C. panzhihuaensis and C. bifida might be associated with the differential patterns of the metabolism of energy, NSC and lipids. C. panzhihuaensis possesses the potential to be introduced to the areas of higher latitudes and altitudes.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanling Zheng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Naziębło A, Merlak HM, Wierzbicka MH. The bundle sheath in Zea mays leaves functions as a protective barrier against the toxic effect of lead. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154104. [PMID: 37839393 DOI: 10.1016/j.jplph.2023.154104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Lead is a highly toxic metal. It impairs the metabolism of living organisms. Plants show different sensitivity to the action of this element. One of the plants with relatively high lead tolerance is Zea mays, where even in detached leaves treated with Pb2+ ions, the photosynthesis rate remains very high compared to other plant species. This study set out to determine the mechanism responsible for the high resistance of maize photosynthetic tissue to the toxic effect of this metal. For this purpose, the cut leaves of Z. mays were incubated in Pb(NO3)2 solutions at different concentrations. Regions of lead accumulation in tissues and cells were located using histochemical methods and transmission electron microscopy. The experiments showed a diverse distribution of lead ions in the leaf blade of Z. mays. Most of the accumulated Pb2+ ions were observed in the vascular bundle and the bundle sheath, while minimal traces of metal were transferred to the mesophyll. In Pisum sativum leaves, although Pb(NO3)2 concentration in the solution was two-fold lower, lead accumulated in all the leaf tissues - mainly in the vascular bundle, epidermis, sclerenchyma, and mesophyll. Thus, bundle sheath cells in maize leaves were able to inhibit the flow of Pb2+ ions to the ground tissue. Therefore, the influence of the toxic metal on photosynthesis in mesophyll cells remained minimal. These experiments show that the structure of Z. mays leaf, with a layer of bundle sheath cells (characteristic of C4 plants), contributes to the protecting photosynthetic tissue against the toxic effect of lead.
Collapse
Affiliation(s)
- Aleksandra Naziębło
- Department of Ecotoxicology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warszawa, Poland.
| | - Hanna M Merlak
- Department of Ecotoxicology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Małgorzata H Wierzbicka
- Department of Ecotoxicology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warszawa, Poland
| |
Collapse
|
12
|
Luo J, Huang S, Chang Y, Li H, Guo G. Physiological and transcriptomic analyses reveal tea plant (Camellia sinensis L.) adapts to extreme freezing stress during winter by regulating cell wall structure. BMC Genomics 2023; 24:558. [PMID: 37730559 PMCID: PMC10512626 DOI: 10.1186/s12864-023-09670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Tea plants grown in high-latitude areas are often damaged by extreme freezing temperatures in winter, leading to huge economic losses. Here, the physiological and gene expression characteristics of two tea cultivars (Xinyang No. 10 (XY10), a freezing-tolerant cultivar and Fudingdabaicha (FDDB), a freezing-sensitive cultivar) during overwintering in northern China were studied to better understand the regulation mechanisms of tea plants in response to natural freezing stress. Samples were collected at a chill (D1), freezing (D2) and recovery (D3) temperature in winter. TEM analysis of integrated leaf ultrastructure at D2 revealed lower malondialdehyde and relative electrical conductivity in XY10 than in FDDB, with serious cell structure damage in the latter, indicating XY10 was more resistant to freezing stress. Differential gene expression analysis among the different samples over winter time highlighted the following gene functions in cell wall metabolism (CesAs, COBLs, XTHs, PGs, PMEs), transcription factors (ERF1B and MYC2), and signal transduction (CDPKs and CMLs). The expression pattern of cellulose and pectin-related genes suggested higher accumulation of cellulosic and pectic materials in the cell wall of XY10, agreeing with the results of cell wall and its components. These results indicated that under the regulation of cell wall genes, the freezing-resistant tea cultivar can better maintain a well-knit cell wall structure with sufficient substances to survive natural freezing damage. This study demonstrated the crucial role of cell wall in tea plant resistance to natural freezing stress and provided important candidate genes for breeding of freezing-resistant tea cultivars.
Collapse
Affiliation(s)
- Jinlei Luo
- College of Tea Science, Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, 46400, Xinyang, Henan, PR China
| | - Shuangjie Huang
- College of Tea Science, Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, 46400, Xinyang, Henan, PR China
| | - Yali Chang
- College of Tea Science, Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, 46400, Xinyang, Henan, PR China
| | - Hui Li
- College of Tea Science, Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, 46400, Xinyang, Henan, PR China
| | - Guiyi Guo
- College of Tea Science, Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, 46400, Xinyang, Henan, PR China.
| |
Collapse
|
13
|
Wang S, Li R, Zhou Y, Fernie AR, Ding Z, Zhou Q, Che Y, Yao Y, Liu J, Wang Y, Hu X, Guo J. Integrated Characterization of Cassava ( Manihot esculenta) Pectin Methylesterase ( MePME) Genes to Filter Candidate Gene Responses to Multiple Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2529. [PMID: 37447090 DOI: 10.3390/plants12132529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Plant pectin methylesterases (PMEs) play crucial roles in regulating cell wall modification and response to various stresses. Members of the PME family have been found in several crops, but there is a lack of research into their presence in cassava (Manihot esculent), which is an important crop for world food security. In this research, 89 MePME genes were identified in cassava that were separated into two types (type-Ⅰ and type-Ⅱ) according to the existence or absence of a pro-region (PMEI domain). The MePME gene members were unevenly located on 17 chromosomes, with 19 gene pairs being identified that most likely arose via duplication events. The MePMEs could be divided into ten sub-groups in type-Ⅰ and five sub-groups in type-Ⅱ. The motif analysis revealed 11 conserved motifs in type-Ⅰ and 8 in type-Ⅱ MePMEs. The number of introns in the CDS region of type-Ⅰ MePMEs ranged between one and two, and the number of introns in type-Ⅱ MePMEs ranged between one and nine. There were 21 type-Ⅰ and 31 type-Ⅱ MePMEs that contained signal peptides. Most of the type-Ⅰ MePMEs had two conserved "RK/RLL" and one "FPSWVS" domain between the pro-region and the PME domain. Multiple stress-, hormone- and tissue-specific-related cis-acting regulatory elements were identified in the promoter regions of MePME genes. A total of five co-expressed genes (MePME1, MePME2, MePME27, MePME65 and MePME82) were filtered from different abiotic stresses via the use of UpSet Venn diagrams. The gene expression pattern analysis revealed that the expression of MePME1 was positively correlated with the degree of cassava postharvest physiological deterioration (PPD). The expression of this gene was also significantly upregulated by 7% PEG and 14 °C low-temperature stress, but slightly downregulated by ABA treatment. The tissue-specific expression analysis revealed that MePME1 and MePME65 generally displayed higher expression levels in most tissues than the other co-expressed genes. In this study, we obtain an in-depth understanding of the cassava PME gene family, suggesting that MePME1 could be a candidate gene associated with multiple abiotic tolerance.
Collapse
Affiliation(s)
- Shijia Wang
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ruimei Li
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yangjiao Zhou
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zhongping Ding
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qin Zhou
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yannian Che
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiao Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yajie Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xinwen Hu
- College of Life Sciences, Hainan University, Haikou 570228, China
- College of Chemical and Materials Engineering, Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Jianchun Guo
- College of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
14
|
Jing Y, Pei T, Li C, Wang D, Wang Q, Chen Y, Li P, Liu C, Ma F. Overexpression of the FERONIA receptor kinase MdMRLK2 enhances apple cold tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37006197 DOI: 10.1111/tpj.16226] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Cold is one of the main abiotic stresses in temperate fruit crops, affecting the yield and fruit quality of apple in China and European countries. The plant receptor-like kinase FERONIA is widely reported to be involved in abiotic stresses. However, its function in apple cold resistance remains unknown. Modification of cell wall components and accumulation of soluble sugars and amino acids are important strategies by which plants cope with cold. In this study, expression of the apple FERONIA receptor-like kinase gene MdMRLK2 was rapidly induced by cold. Apple plants overexpressing MdMRLK2 (35S:MdMRLK2) showed enhanced cold resistance relative to the wild type. Under cold conditions, 35S:MdMRLK2 apple plants had higher amounts of water insoluble pectin, lignin, cellulose, and hemicellulose, which may have resulted from reduced activities of polygalacturonase, pectinate lyase, pectinesterase, and cellulase. More soluble sugars and free amino acids and less photosystem damage were also observed in 35S:MdMRLK2 apple plants. Intriguingly, MdMRLK2 interacted with the transcription factor MdMYBPA1 and promoted its binding to MdANS and MdUFGT promoters, leading to more anthocyanin biosynthesis, particularly under cold conditions. These findings complemented the function of apple FERONIA MdMRLK2 responding to cold resistance.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Duanni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yijia Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
15
|
Han X, Li YH, Yao MH, Yao F, Wang ZL, Wang H, Li H. Transcriptomics Reveals the Effect of Short-Term Freezing on the Signal Transduction and Metabolism of Grapevine. Int J Mol Sci 2023; 24:ijms24043884. [PMID: 36835298 PMCID: PMC9965549 DOI: 10.3390/ijms24043884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Low temperature is an important factor limiting plant growth. Most cultivars of Vitis vinifera L. are sensitive to low temperatures and are at risk of freezing injury or even plant death during winter. In this study, we analyzed the transcriptome of branches of dormant cv. Cabernet Sauvignon exposed to several low-temperature conditions to identify differentially expressed genes and determine their function based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)enrichment analyses. Our results indicated that exposure to subzero low temperatures resulted in damage to plant cell membranes and extravasation of intracellular electrolytes, and that this damage increased with decreasing temperature or increasing duration. The number of differential genes increased as the duration of stress increased, but most of the common differentially expressed genes reached their highest expression at 6 h of stress, indicating that 6 h may be a turning point for vines to tolerate extreme low temperatures. Several pathways play key roles in the response of Cabernet Sauvignon to low-temperature injury, namely: (1) the role of calcium/calmodulin-mediated signaling; (2) carbohydrate metabolism, including the hydrolysis of cell wall pectin and cellulose, decomposition of sucrose, synthesis of raffinose, and inhibition of glycolytic processes; (3) the synthesis of unsaturated fatty acids and metabolism of linolenic acid; and (4) the synthesis of secondary metabolites, especially flavonoids. In addition, pathogenesis-related protein may also play a role in plant cold resistance, but the mechanism is not yet clear. This study reveals possible pathways for the freezing response and leads to new insights into the molecular basis of the tolerance to low temperature in grapevine.
Collapse
Affiliation(s)
- Xing Han
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Yi-Han Li
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Mo-Han Yao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Fei Yao
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Zhi-Lei Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Correspondence: (H.W.); (H.L.); Tel.: +86-029-8708-1099 (H.W.); +86-029-8708-2805 (H.L.)
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang 712100, China
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Correspondence: (H.W.); (H.L.); Tel.: +86-029-8708-1099 (H.W.); +86-029-8708-2805 (H.L.)
| |
Collapse
|
16
|
Yao D, Wang J, Peng W, Zhang B, Wen X, Wan X, Wang X, Li X, Ma J, Liu X, Fan Y, Sun G. Transcriptomic profiling of wheat stem during meiosis in response to freezing stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1099677. [PMID: 36714719 PMCID: PMC9878610 DOI: 10.3389/fpls.2022.1099677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Low temperature injury in spring has seriously destabilized the production and grain quality of common wheat. However, the molecular mechanisms underlying spring frost tolerance remain elusive. In this study, we investigated the response of a frost-tolerant wheat variety Zhongmai8444 to freezing stress at the meiotic stage. Transcriptome profiles over a time course were subsequently generated by high-throughput sequencing. Our results revealed that the prolonged freezing temperature led to the significant reductions in plant height and seed setting rate. Cell wall thickening in the vascular tissue was also observed in the stems. RNA-seq analyses demonstrated the identification of 1010 up-regulated and 230 down-regulated genes shared by all time points of freezing treatment. Enrichment analysis revealed that gene activity related to hormone signal transduction and cell wall biosynthesis was significantly modulated under freezing. In addition, among the identified differentially expressed genes, 111 transcription factors belonging to multiple gene families exhibited dynamic expression pattern. This study provided valuable gene resources beneficial for the breeding of wheat varieties with improved spring frost tolerance.
Collapse
Affiliation(s)
- Danyu Yao
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Wang
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Peng
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Bowen Zhang
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaolan Wen
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xiaoneng Wan
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuyuan Wang
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Xinchun Li
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaofen Liu
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yinglun Fan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Guozhong Sun
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Chen N, Fan X, Wang C, Jiao P, Jiang Z, Ma Y, Guan S, Liu S. Overexpression of ZmDHN15 Enhances Cold Tolerance in Yeast and Arabidopsis. Int J Mol Sci 2022; 24:480. [PMID: 36613921 PMCID: PMC9820458 DOI: 10.3390/ijms24010480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Maize (Zea mays L.) originates from the subtropical region and is a warm-loving crop affected by low-temperature stress. Dehydrin (DHN) protein, a member of the Group 2 LEA (late embryogenesis abundant proteins) family, plays an important role in plant abiotic stress. In this study, five maize DHN genes were screened based on the previous transcriptome sequencing data in our laboratory, and we performed sequence analysis and promoter analysis on these five DHN genes. The results showed that the promoter region has many cis-acting elements related to cold stress. The significantly upregulated ZmDHN15 gene has been further screened by expression pattern analysis. The subcellular localization results show that ZmDHN15 fusion protein is localized in the cytoplasm. To verify the role of ZmDHN15 in cold stress, we overexpressed ZmDHN15 in yeast and Arabidopsis. We found that the expression of ZmDHN15 can significantly improve the cold resistance of yeast. Under cold stress, ZmDHN15-overexpressing Arabidopsis showed lower MDA content, lower relative electrolyte leakage, and less ROS (reactive oxygen species) when compared to wild-type plants, as well as higher seed germination rate, seedling survival rate, and chlorophyll content. Furthermore, analysis of the expression patterns of ROS-associated marker genes and cold-response-related genes indicated that ZmDHN15 genes play an important role in the expression of these genes. In conclusion, the overexpression of the ZmDHN15 gene can effectively improve the tolerance to cold stress in yeast and Arabidopsis. This study is important for maize germplasm innovation and the genetic improvement of crops.
Collapse
Affiliation(s)
- Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences, Changchun 130118, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
18
|
Janas AB, Marciniuk J, Szeląg Z, Musiał K. New facts about callose events in the young ovules of some sexual and apomictic species of the Asteraceae family. PROTOPLASMA 2022; 259:1553-1565. [PMID: 35304670 DOI: 10.1007/s00709-022-01755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Callose (β-1,3-glucan) is one of the cell wall polymers that plays an important role in many biological processes in plants, including reproductive development. In angiosperms, timely deposition and degradation of callose during sporogenesis accompanies the transition of cells from somatic to generative identity. However, knowledge on the regulation of callose biosynthesis at specific sites of the megasporocyte wall remains limited and the data on its distribution are not conclusive. Establishing the callose deposition pattern in a large number of species can contribute to full understanding of its function in reproductive development. Previous studies focused on callose events in sexual species and only a few concerned apomicts. The main goal of our research was to establish and compare the pattern of callose deposition during early sexual and diplosporous processes in the ovules of some Hieracium, Pilosella and Taraxacum (Asteraceae) species; aniline blue staining technique was used for this purpose. Our findings indicate that callose deposition accompanies both meiotic and diplosporous development of the megaspore mother cell. This suggests that it has similar regulatory functions in intercellular communication regardless of the mode of reproduction. Interestingly, callose deposition followed a different pattern in the studied sexual and diplosporous species compared to most angiosperms as it usually began at the micropylar pole of the megasporocyte. Here, it was only in sexually reproducing H. transylvanicum that callose first appeared at the chalazal pole of the megasporocyte. The present paper additionally discusses the occurrence of aposporous initial cells with callose-rich walls in the ovules of diploid species.
Collapse
Affiliation(s)
- Agnieszka B Janas
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland.
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Cracow, Poland.
| | - Jolanta Marciniuk
- Faculty of Exact and Natural Science, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110, Siedlce, Poland
| | - Zbigniew Szeląg
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Cracow, Poland
| | - Krystyna Musiał
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Cracow, Poland
| |
Collapse
|
19
|
Chilling Tolerance in Maize: Insights into Advances—Toward Physio-Biochemical Responses’ and QTL/Genes’ Identification. PLANTS 2022; 11:plants11162082. [PMID: 36015386 PMCID: PMC9415788 DOI: 10.3390/plants11162082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022]
Abstract
Maize, a major staple cereal crop in global food supply, is a thermophilic and short-day C4 plant sensitive to low-temperature stress. A low temperature is among the most severe agro-meteorological hazards in maize-growing areas. This review covers the latest research and progress in the field of chilling tolerance in maize in the last 40 years. It mainly focuses on how low-temperature stress affects the maize membrane and antioxidant systems, photosynthetic physiology, osmoregulatory substances and hormone levels. In addition, the research progress in identifying cold-tolerance QTLs (quantitative trait loci) and genes to genetically improve maize chilling toleranceis comprehensively discussed. Based on previous research, this reviewprovides anoutlook on potential future research directions and offers a reference for researchers in the maize cold-tolerance-related field.
Collapse
|
20
|
Duran Garzon C, Lequart M, Charras Q, Fournet F, Bellenger L, Sellier-Richard H, Giauffret C, Vermerris W, Domon JM, Rayon C. The maize low-lignin brown midrib3 mutant shows pleiotropic effects on photosynthetic and cell wall metabolisms in response to chilling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:75-86. [PMID: 35636334 DOI: 10.1016/j.plaphy.2022.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 02/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Maize (Zea mays L.) is one of the major cereal crops in the world and is highly sensitive to low temperature. Here, changes in photosynthetic and cell wall metabolisms were investigated during a long chilling exposure in inbred line F2 and a low-lignin near-isogenic brown midrib3 mutant (F2bm3), which has a mutation in the caffeic acid O-methyltransferase (COMT) gene. Results revealed that the plant biomass was reduced, and this was more pronounced in F2bm3. Photosynthesis was altered in both lines with distinct changes in photosynthetic pigment content between F2bm3 and F2, indicating an alternative photoprotection mechanism between lines under chilling. Starch remobilization was observed in F2bm3 while concentrations of sucrose, fructose and starch increased in F2, suggesting a reduced sugar partitioning in F2. The cell wall was altered upon chilling, resulting in changes in the composition of glucuronorabinoxylan and a reduced cellulose level in F2. Chilling shifted lignin subunit composition in F2bm3 mutant to a higher proportion of p-hydroxyphenyl (H) units, whereas it resulted in lignin with a higher proportion of syringyl (S) residues in F2. On average, the total cell wall ferulic acid (FA) content increased in both genotypes, with an increase in ether-linked FA in F2bm3, suggesting a greater degree of cross-linking to lignin. The reinforcement of the cell wall with lignin enriched in H-units and a higher concentration in cell-wall-bound FA observed in F2bm3 as a response to chilling, could be a strategy to protect the photosystems.
Collapse
Affiliation(s)
- Catalina Duran Garzon
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039, Amiens, France
| | - Michelle Lequart
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039, Amiens, France
| | - Quentin Charras
- UMR 7265 Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, 13108, Saint Paul-Lez-Durance, France
| | - Françoise Fournet
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039, Amiens, France
| | - Léo Bellenger
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039, Amiens, France; EA2106 Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Parc de Grandmont, 37200, Tours, France
| | - Hélène Sellier-Richard
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, Unité Expérimentale Grandes Cultures Innovation et Environnement, Estrées-Mons, 80203, Péronne, France
| | - Catherine Giauffret
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, AgroImpact, Estrées-Mons, 80203, Péronne, France
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science, UF Genetics Institute, Florida Center for Renewable Chemicals and Fuels, University of Florida, Gainesville, FL, 32610, USA
| | - Jean-Marc Domon
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039, Amiens, France
| | - Catherine Rayon
- UMR-INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, 80039, Amiens, France.
| |
Collapse
|
21
|
Zou J, Yang L, Li Y, Piao M, Li Y, Yao N, Zhang X, Zhang Q, Hu G, Yang D, Zuo Z. Comparative Proteomics Combined with Morphophysiological Analysis Revealed Chilling Response Patterns in Two Contrasting Maize Genotypes. Cells 2022; 11:cells11081321. [PMID: 35456000 PMCID: PMC9024610 DOI: 10.3390/cells11081321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Maize yield is significantly influenced by low temperature, particularly chilling stress at the maize seedling stage. Various physiological approaches have been established to resist chilling stress; however, the detailed proteins change patterns underlying the maize chilling stress response at the seedling stage remain unknown, preventing the development of breeding-based methods to resist chilling stress in maize. Thus, we performed comprehensive physiological, comparative proteomics and specific phytohormone abscisic acid (ABA) assay on different maize inbred lines (tolerant-line KR701 and sensitive-line hei8834) at different seedling stages (the first leaf stage and third leaf stage) under chilling stress. The results revealed several signalling proteins and pathways in response to chilling stress at the maize seedling stage. Meanwhile, we found ABA pathway was important for chilling resistance of tolerant-line KR701 at the first leaf stage. Related chilling-responsive proteins were further catalogued and analysed, providing a resource for further investigation and maize breeding.
Collapse
Affiliation(s)
- Jinpeng Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (Q.Z.)
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Y.); (M.P.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Liang Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Y.); (M.P.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Yuhong Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Mingxin Piao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Y.); (M.P.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Nan Yao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Xiaohong Zhang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
| | - Qian Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (Q.Z.)
| | - Guanghui Hu
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150030, China;
| | - Deguang Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (Q.Z.)
- Correspondence: (D.Y.); (Z.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (L.Y.); (M.P.)
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.L.); (N.Y.); (X.Z.)
- Correspondence: (D.Y.); (Z.Z.)
| |
Collapse
|
22
|
The Influence of Delayed Sealing and Repeated Air Ingress during the Storage of Maize Silage on Fermentation Patterns, Yeast Development and Aerobic Stability. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study investigates the effects of delayed sealing and repeated air ingress on the formation of primary fermentation products and other volatile organic compounds (VOC), the development of yeasts and the aerobic stability (ASTA) of maize (26.8% dry matter, DM). After packing, the silos were sealed either promptly or with a delay of 24 h, with repeated air ingress after 27, 55 and 135 days of storage. Losses of DM, fermentation pattern, including VOC, yeast numbers and aerobic stability, were determined 6 times during storage for 142 days. Yeast numbers markedly increased during the first three fermentation days, with the effect being much stronger in silage sealed with a delay than in promptly sealed silage (log10 cfu/g FM 7.27 vs. 5.88, p < 0.002). Simultaneously, the concentrations of ethanol and ethyl esters and DM losses increased. The DM losses were closely correlated with the total concentrations of alcohols and acetic acid (delay: R2 = 0.71, p < 0.001; prompt: R2 = 0.91, p < 0.001, respectively). The repeated air ingress for 24 h during storage after completion of the main fermentation phase had only a minor effect on fermentation pattern, VOC formation and DM losses. The relationship between the counts of total yeasts and lactate-assimilating yeasts (LAY) was very strong (R2 = 0.995, p < 0.001), and LAY numbers were shown to be largely responsible for aerobic instability (R2 = 0.752, p < 0.001). This trial proved the detrimental effects of air on silage fermentation with delayed sealing to be much more deleterious than repeated short-term air ingress after about one month of storage.
Collapse
|
23
|
Domozych DS, Kozel L, Palacio-Lopez K. The effects of osmotic stress on the cell wall-plasma membrane domains of the unicellular streptophyte, Penium margaritaceum. PROTOPLASMA 2021; 258:1231-1249. [PMID: 33928433 DOI: 10.1007/s00709-021-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Penium margaritaceum is a unicellular zygnematophyte (basal Streptophyteor Charophyte) that has been used as a model organism for the study of cell walls of Streptophytes and for elucidating organismal adaptations that were key in the evolution of land plants.. When Penium is incubated in sorbitol-enhance medium, i.e., hyperosmotic medium, 1000-1500 Hechtian strands form within minutes and connect the plasma membrane to the cell wall. As cells acclimate to this osmotic stress over time, further significant changes occur at the cell wall and plasma membrane domains. The homogalacturonan lattice of the outer cell wall layer is significantly reduced and is accompanied by the formation of a highly elongate, "filamentous" phenotype. Distinct peripheral thickenings appear between the CW and plasma membrane and contain membranous components and a branched granular matrix. Monoclonal antibody labeling of these thickenings indicates the presence of rhamnogalacturonan-I epitopes. Acclimatization also results in the proliferation of the cell's vacuolar networks and macroautophagy. Penium's ability to acclimatize to osmotic stress offers insight into the transition of ancient zygnematophytes from an aquatic to terrestrial existence.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA.
| | - Li Kozel
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Kattia Palacio-Lopez
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Thermal Stresses in Maize: Effects and Management Strategies. PLANTS 2021; 10:plants10020293. [PMID: 33557079 PMCID: PMC7913793 DOI: 10.3390/plants10020293] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023]
Abstract
Climate change can decrease the global maize productivity and grain quality. Maize crop requires an optimal temperature for better harvest productivity. A suboptimal temperature at any critical stage for a prolonged duration can negatively affect the growth and yield formation processes. This review discusses the negative impact of temperature extremes (high and low temperatures) on the morpho-physiological, biochemical, and nutritional traits of the maize crop. High temperature stress limits pollen viability and silks receptivity, leading to a significant reduction in seed setting and grain yield. Likewise, severe alterations in growth rate, photosynthesis, dry matter accumulation, cellular membranes, and antioxidant enzyme activities under low temperature collectively limit maize productivity. We also discussed various strategies with practical examples to cope with temperature stresses, including cultural practices, exogenous protectants, breeding climate-smart crops, and molecular genomics approaches. We reviewed that identified quantitative trait loci (QTLs) and genes controlling high- and low temperature stress tolerance in maize could be introgressed into otherwise elite cultivars to develop stress-tolerant cultivars. Genome editing has become a key tool for developing climate-resilient crops. Moreover, challenges to maize crop improvement such as lack of adequate resources for breeding in poor countries, poor communication among the scientists of developing and developed countries, problems in germplasm exchange, and high cost of advanced high-throughput phenotyping systems are discussed. In the end, future perspectives for maize improvement are discussed, which briefly include new breeding technologies such as transgene-free clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas)-mediated genome editing for thermo-stress tolerance in maize.
Collapse
|
25
|
Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Genes (Basel) 2020; 11:genes11080881. [PMID: 32756433 PMCID: PMC7464670 DOI: 10.3390/genes11080881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Temperature stresses (TS), including cold and heat stress, adversely affect the growth, development, and yield of maize (Zea mays L.). To clarify the molecular mechanisms of the tolerance of maize seedling leaves to TS, we applied transcriptomic sequencing of an inbred maize line, B73, with seedlings exposed to various temperature conditions, including normal temperature (NT, 25 °C), cold (4, 10, and 16 °C), and heat (37, 42, and 48 °C) stresses. Differentially expressed genes (DEGs) were detected in different comparison between the NT sample and each temperature-stressed sample, with 5358, 5485, 5312, 1095, 2006, and 4760 DEGs responding to TS of 4, 10, 16, 37, 42, and 48 °C, respectively. For cold and heat stresses, 189 DEGs enriched in the hydrogen peroxidase metabolic process, cellular modified amino acid metabolic process, and sulfur compound metabolic process were common. The DEGs encoding calcium signaling and reactive oxygen species scavenging enzymes demonstrated similar expression characterizations, whereas the DEGs encoding transcription factors, such as ERF, ARF, and HSF, hormone signaling, and heat shock proteins, displayed divergent expression models, implying both common and divergent responses to cold and heat stresses in maize seedling leaves. Co-expression network analysis showed that functional DEGs associated with the core regulators in response to cold and heat stresses were significantly correlated with TS, indicating their vital roles in cold and heat adaptation, respectively. Our investigation focused on the response to gradient TS, and the results presented a relatively comprehensive category of genes involved in differential TS responses. These will contribute a better understanding of the molecular mechanisms of maize seedling leaf responses to TS and provide valuable genetic resources for breeding TS tolerant varieties of maize.
Collapse
|
26
|
Bilska-Kos A, Mytych J, Suski S, Magoń J, Ochodzki P, Zebrowski J. Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and their products in the leaves of Miscanthus × giganteus and Zea mays at low temperature. PLANTA 2020; 252:23. [PMID: 32676847 PMCID: PMC7366575 DOI: 10.1007/s00425-020-03421-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/08/2020] [Indexed: 05/05/2023]
Abstract
The changes in the expression of key sugar metabolism enzymes (SPS and SUS), sucrose content and arrangement of chloroplast starch may play a significant role in the cold response in M. giganteus and maize plants. To understand the mechanism of the chilling-response of two closely-related C4 plants, we investigated the changes in the expression of sucrose phosphate synthase (SPS) and sucrose synthase (SUS) as well as changes in their potential products: sucrose, cellulose and starch in the leaves of Miscanthus × giganteus and Zea mays. Low temperature (12-14 °C) increased SPS content in Miscanthus (MG) and chilling-sensitive maize line (Zm-S), but not in chilling-tolerant one (Zm-T). In Zm-S line, chilling also caused the higher intensity of labelling of SPS in the cytoplasm of mesophyll cells, as demonstrated by electron microscopy. SUS labelling was also increased by cold stress only in MG plants what was observed in the secondary wall between mesophyll and bundle sheath cells, as well as in the vacuoles of companion cells. Cold led to a marked increase in total starch grain area in the chloroplasts of Zm-S line. In turn, Fourier transform infrared spectroscopy (FTIR) showed a slight shift in the cellulose band position, which may indicate the formation of more compact cellulose arrangement in Zm-T maize line. In conclusion, this work presents new findings supporting diversified cold-response, not only between two C4 plant species but also within one species of maize.
Collapse
Affiliation(s)
- Anna Bilska-Kos
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, 05-870, Błonie, Poland.
- Department of Plant Physiology and Ecology, Institute of Biology and Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland.
| | - Jennifer Mytych
- Department of Animal Physiology and Reproduction, Institute of Biology and Biotechnology, University of Rzeszow, Werynia 2, 36-100, Kolbuszowa, Poland
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, 02-093, Warsaw, Poland
| | - Justyna Magoń
- Department of Plant Physiology and Ecology, Institute of Biology and Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Piotr Ochodzki
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology and Ecology, Institute of Biology and Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| |
Collapse
|
27
|
Luo X, Zhang Y, Wu H, Bai J. Drought stress-induced autophagy gene expression is correlated with carbohydrate concentrations in Caragana korshinskii. PROTOPLASMA 2020; 257:1211-1220. [PMID: 32318821 DOI: 10.1007/s00709-020-01507-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Autophagy has been reported to be an adapt function of plant cells under various stresses. In this report, autophagy-related gene expressions and carbohydrate concentrations in Caragana korshinskii leaf cells under drought stress were investigated. Leaf samples of C. korshinskii plants of an estimated 15-year-old were collected from three sites with different drought stress (annual precipitation range, 325.8 to 440.8 mm) at the Loess Plateau in northwestern China. Autophagy was observed in C. korshinskii samples from all three sites and was revealed by autophagosomes in the cytoplasm of mesophyll cells and increased chloroplasts degradation observed by transmission electron microscopy. Furthermore, with the drought stress increase, autophagy-related gene expressions were upregulated and leaf concentration of sucrose was increased, while concentrations of monosaccharide sugars such as glucose, fructose and galactose were decreased. The results suggested that drought stress induced autophagy gene expression, which may serve as a survival mechanism for nutrient remobilisation.
Collapse
Affiliation(s)
- Xinjuan Luo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanyu Zhang
- College of Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Hongdou Wu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Juan Bai
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
28
|
Shu Y, Zhou Y, Mu K, Hu H, Chen M, He Q, Huang S, Ma H, Yu X. A transcriptomic analysis reveals soybean seed pre-harvest deterioration resistance pathways under high temperature and humidity stress. Genome 2020; 63:115-124. [PMID: 31774699 DOI: 10.1139/gen-2019-0094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Pre-harvest soybean seeds in the field are susceptible to high temperature and humidity (HTH) stress, leading to pre-harvest seed deterioration, which will result in a reduction in grain quality, yield, and seed vigor. To understand the gene expression involved in seed deterioration response under HTH stress, in this study, we conducted an RNA-Seq analysis using two previously screened soybean cultivars with contrasting seed deterioration resistance. HTH stress induced 1081 and 357 differentially expressed genes (DEGs) in the sensitive cultivar Ningzhen No. 1 and resistant cultivar Xiangdou No. 3, respectively. The majority of DEGs in the resistant cultivar were up-regulated, while down-regulated DEGs were predominant in the sensitive cultivar. KEGG pathway analysis revealed that metabolic pathways, biosynthesis of secondary metabolites, and protein processing in endoplasmic reticulum were the predominant pathways in both cultivars during seed deterioration under HTH stress. The genes involved in photosynthesis, carbohydrate metabolism, lipid metabolism, and heat shock proteins pathways might contribute to the different response to seed deterioration under HTH treatment in the two soybean cultivars. Our study extends the knowledge of gene expression in soybean seed under HTH stress and further provides insight into the molecular mechanism of seed deterioration as well as new strategies for breeding soybean with improved seed deterioration resistance.
Collapse
Affiliation(s)
- Yingjie Shu
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuli Zhou
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Kebin Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyuan He
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Shoucheng Huang
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingwang Yu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
29
|
Duran Garzon C, Lequart M, Rautengarten C, Bassard S, Sellier-Richard H, Baldet P, Heazlewood JL, Gibon Y, Domon JM, Giauffret C, Rayon C. Regulation of carbon metabolism in two maize sister lines contrasted for chilling tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:356-369. [PMID: 31557299 DOI: 10.1093/jxb/erz421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/16/2019] [Indexed: 05/16/2023]
Abstract
Maize can grow in cool temperate climates but is often exposed to spring chilling temperatures that can affect early seedling growth. Here, we used two sister double-haploid lines displaying a contrasted tolerance to chilling to identify major determinants of long-term chilling tolerance. The chilling-sensitive (CS) and the chilling-tolerant (CT) lines were grown at 14 °C day/10 °C night for 60 d. CS plants displayed a strong reduction in growth and aerial biomass compared with CT plants. Photosynthetic efficiency was affected with an increase in energy dissipation in both lines. Chilling tolerance in CT plants was associated with higher chlorophyll content, glucose-6-phosphate dehydrogenase activity, and higher sucrose to starch ratio. Few changes in cell wall composition were observed in both genotypes. There was no obvious correlation between nucleotide sugar content and cell wall polysaccharide composition. Our findings suggest that the central starch-sucrose metabolism is one major determinant of the response to low temperature, and its modulation accounts for the ability of CT plants to cope with low temperature. This modulation seemed to be linked to a strong alteration in the biosynthesis of nucleotide sugars that, at a high level, could reflect the remobilization of carbon in response to chilling.
Collapse
Affiliation(s)
- Catalina Duran Garzon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Michelle Lequart
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Solène Bassard
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Hélène Sellier-Richard
- Unité Expérimentale Grandes Cultures Innovation et Environnement, INRA-Estrées-Mons, Péronne, France
| | - Pierre Baldet
- UMR1332, Biologie du Fruit et Pathologie, Bordeaux Métabolome, INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Yves Gibon
- UMR1332, Biologie du Fruit et Pathologie, Bordeaux Métabolome, INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Jean-Marc Domon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
30
|
Sowiński P, Fronk J, Jończyk M, Grzybowski M, Kowalec P, Sobkowiak A. Maize Response to Low Temperatures at the Gene Expression Level: A Critical Survey of Transcriptomic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:576941. [PMID: 33133117 PMCID: PMC7550719 DOI: 10.3389/fpls.2020.576941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/09/2020] [Indexed: 05/19/2023]
Abstract
Maize is a cold-sensitive plant whose physiological reactions to sub-optimal temperatures are well understood, but their molecular foundations are only beginning to be deciphered. In an attempt to identify key genes involved in these reactions, we surveyed several independent transcriptomic studies addressing the response of juvenile maize to moderate or severe cold. Among the tens of thousands of genes found to change expression upon cold treatment less than 500 were reported in more than one study, indicating an astonishing variability of the expression changes, likely depending on the experimental design and plant material used. Nearly all these "common" genes were specific to either moderate or to severe cold and formed distinct interaction networks, indicating fundamentally different responses. Moreover, down-regulation of gene expression dominated strongly in moderate cold and up-regulation prevailed in severe cold. Very few of these genes have ever been mentioned in the literature as cold-stress-related, indicating that most response pathways remain poorly known at the molecular level. We posit that the genes identified by the present analysis are attractive candidates for further functional studies and their arrangement in complex interaction networks indicates that a re-interpretation of the present state of knowledge on the maize cold-response is justified.
Collapse
Affiliation(s)
- Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
- *Correspondence: Paweł Sowiński,
| | - Jan Fronk
- Department of Molecular Biology, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warszawa, Poland
| | - Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| | - Marcin Grzybowski
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| | - Piotr Kowalec
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| | - Alicja Sobkowiak
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
31
|
Steiner P, Obwegeser S, Wanner G, Buchner O, Lütz-Meindl U, Holzinger A. Cell Wall Reinforcements Accompany Chilling and Freezing Stress in the Streptophyte Green Alga Klebsormidium crenulatum. FRONTIERS IN PLANT SCIENCE 2020; 11:873. [PMID: 32714344 PMCID: PMC7344194 DOI: 10.3389/fpls.2020.00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/28/2020] [Indexed: 05/15/2023]
Abstract
Adaptation strategies in freezing resistance were investigated in Klebsormidium crenulatum, an early branching streptophyte green alga related to higher plants. Klebsormidium grows naturally in unfavorable environments like alpine biological soil crusts, exposed to desiccation, high irradiation and cold stress. Here, chilling and freezing induced alterations of the ultrastructure were investigated. Control samples (kept at 20°C) were compared to chilled (4°C) as well as extracellularly frozen algae (-2 and -4°C). A software-controlled laboratory freezer (AFU, automatic freezing unit) was used for algal exposure to various temperatures and freezing was manually induced. Samples were then high pressure frozen and cryo-substituted for electron microscopy. Control cells had a similar appearance in size and ultrastructure as previously reported. While chilling stressed algae only showed minor ultrastructural alterations, such as small inward facing cell wall plugs and minor alterations of organelles, drastic changes of the cell wall and in organelle distribution were found in extracellularly frozen samples (-2°C and -4°C). In frozen samples, the cytoplasm was not retracted from the cell wall, but extensive three-dimensional cell wall layers were formed, most prominently in the corners of the cells, as determined by FIB-SEM and TEM tomography. Similar alterations/adaptations of the cell wall were not reported or visualized in Klebsormidium before, neither in controls, nor during other stress scenarios. This indicates that the cell wall is reinforced by these additional wall layers during freezing stress. Cells allowed to recover from freezing stress (-2°C) for 5 h at 20°C lost these additional cell wall layers, suggesting their dynamic formation. The composition of these cell wall reinforcement areas was investigated by immuno-TEM. In addition, alterations of structure and distribution of mitochondria, dictyosomes and a drastically increased endoplasmic reticulum were observed in frozen cells by TEM and TEM tomography. Measurements of the photosynthetic oxygen production showed an acclimation of Klebsormidium to chilling stress, which correlates with our findings on ultrastructural alterations of morphology and distribution of organelles. The cell wall reinforcement areas, together with the observed changes in organelle structure and distribution, are likely to contribute to maintenance of an undisturbed cell physiology and to adaptation to chilling and freezing stress.
Collapse
Affiliation(s)
- Philip Steiner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sabrina Obwegeser
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Ludwig-Maximilians-University, Munich, Germany
| | - Othmar Buchner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
- *Correspondence: Andreas Holzinger,
| |
Collapse
|
32
|
López-Malvar A, Butrón A, Samayoa LF, Figueroa-Garrido DJ, Malvar RA, Santiago R. Genome-wide association analysis for maize stem Cell Wall-bound Hydroxycinnamates. BMC PLANT BIOLOGY 2019; 19:519. [PMID: 31775632 PMCID: PMC6882159 DOI: 10.1186/s12870-019-2135-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/13/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND The structural reinforcement of cell walls by hydroxycinnamates has a significant role in defense against pests and pathogens, but it also interferes with forage digestibility and biofuel production. Elucidation of maize genetic variations that contribute to variation for stem hydroxycinnamate content could simplify breeding for cell wall strengthening by using markers linked to the most favorable genetic variants in marker-assisted selection or genomic selection approaches. RESULTS A genome-wide association study was conducted using a subset of 282 inbred lines from a maize diversity panel to identify single nucleotide polymorphisms (SNPs) associated with stem cell wall hydroxycinnamate content. A total of 5, 8, and 2 SNPs were identified as significantly associated to p-coumarate, ferulate, and total diferulate concentrations, respectively in the maize pith. Attending to particular diferulate isomers, 3, 6, 1 and 2 SNPs were related to 8-O-4 diferulate, 5-5 diferulate, 8-5 diferulate and 8-5 linear diferulate contents, respectively. This study has the advantage of being done with direct biochemical determinations instead of using estimates based on Near-infrared spectroscopy (NIRS) predictions. In addition, novel genomic regions involved in hydroxycinnamate content were found, such as those in bins 1.06 (for FA), 4.01 (for PCA and FA), 5.04 (for FA), 8.05 (for PCA), and 10.03 and 3.06 (for DFAT and some dimers). CONCLUSIONS The effect of individual SNPs significantly associated with stem hydroxycinnamate content was low, explaining a low percentage of total phenotypic variability (7 to 10%). Nevertheless, we spotlighted new genomic regions associated with the accumulation of cell-wall-bound hydroxycinnamic acids in the maize stem, and genes involved in cell wall modulation in response to biotic and abiotic stresses have been proposed as candidate genes for those quantitative trait loci (QTL). In addition, we cannot rule out that uncharacterized genes linked to significant SNPs could be implicated in dimer formation and arobinoxylan feruloylation because genes involved in those processes have been poorly characterized. Overall, genomic selection considering markers distributed throughout the whole genome seems to be a more appropriate breeding strategy than marker-assisted selection focused in markers linked to QTL.
Collapse
Affiliation(s)
- A López-Malvar
- Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310, Vigo, Spain.
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Vigo, Spain.
| | - A Butrón
- Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Carballeira 8, 36143, Pontevedra, Spain
| | - L F Samayoa
- Department of Crop and Soil Sciences, North Carolina State University Raleigh, Raleigh, NC, 27695-7620, USA
| | - D J Figueroa-Garrido
- Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310, Vigo, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Vigo, Spain
| | - R A Malvar
- Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Carballeira 8, 36143, Pontevedra, Spain
| | - R Santiago
- Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310, Vigo, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Vigo, Spain
| |
Collapse
|
33
|
Valitova J, Renkova A, Mukhitova F, Dmitrieva S, Beckett RP, Minibayeva FV. Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:452-459. [PMID: 31421442 DOI: 10.1016/j.plaphy.2019.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 05/18/2023]
Abstract
Cold stress can significantly alter the composition and functioning of the major membrane lipids in plants. However, the roles of the sterol component of plant membranes in stress tolerance remain unclear. In the work presented here we investigated the role of sterols in the response of wheat to cold stress. Initial experiments demonstrated that the roots and leaves of wheat seedlings are differentially sensitive to low positive temperatures. In the roots, cold stress induced disturbance of membrane integrity and accumulation of ROS followed by the induction of autophagy. The absence of such changes in leaves suggests that in wheat, the roots are more sensitive to cold than the leaves. The roots display a time-dependent parabolic pattern of cold stress response, characterized by raised levels of sterols and markers of oxidative stress during short-term treatment, and a decline of these parameters after prolonged treatment. MβCD-induced sterol depletion aggravated the negative effects of cold on the roots. In the leaves the changes also displayed parabolic patterns, with significant changes occurring in 24-ethyl sterols and major PLs. Constitutively high levels of sterols, glycolipids and PLs, and up-regulation of TaSMTs in the leaves may provide membrane stability and cold tolerance. Taken together, results suggest that sterols play important roles in the response of wheat seedlings to cold stress.
Collapse
Affiliation(s)
- Julia Valitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia.
| | - Albina Renkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia.
| | - Fakhima Mukhitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia.
| | - Svetlana Dmitrieva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia.
| | - Richard P Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.
| | - Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, Kazan, 420111, Russia; Kazan (Volga Region) Federal University, Kremlevskaya Str 18, Kazan, 420008, Russia.
| |
Collapse
|
34
|
Parrotta L, Faleri C, Guerriero G, Cai G. Cold stress affects cell wall deposition and growth pattern in tobacco pollen tubes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:329-342. [PMID: 31128704 DOI: 10.1016/j.plantsci.2019.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 03/15/2019] [Indexed: 05/08/2023]
Abstract
Cold is an abiotic stress seriously threatening crop productivity by decreasing biomass production. The pollen tube is a target of cold stress, but also a useful model to address questions on cell wall biosynthesis. We here provide (immuno)cytological data relative to the impact of cold on the pollen tube cell wall. We clearly show that the growth pattern is severely affected by the stress, since the typical pulsed-growth mechanism accompanied by the periodic deposition of pectin rings is absent/severely reduced. Additionally, pectins and cellulose accumulate in bulges provoked by the stress, while callose, which colocalizes with pectins in the periodic rings formed during pulsed growth, accumulates randomly in the stressed samples. The altered distribution of the cell wall components is accompanied by differences in the localization of glucan synthases: cellulose synthase shows a more diffuse localization, while callose synthase shows a more frequent cytoplasmic accumulation, thereby denoting a failure in plasma membrane insertion. The cell wall observations are complemented by the analysis of intracellular Ca2+, pH and reactive oxygen species (ROS): while in the case of pH no major differences are observed, a less focused Ca2+ and ROS gradients are present in the stressed samples. The standard oscillatory growth of pollen tubes is recovered by transient changes of turgor pressure induced by hypoosmotic media. Overall our data contribute to the understanding of the impact that cold stress has on the normal development of the pollen tube and unveil the cell wall-related aberrant features accompanying the observed alterations.
Collapse
Affiliation(s)
- Luigi Parrotta
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Via Irnerio 42, Bologna, Italy
| | - Claudia Faleri
- Università di Siena, Dipartimento di Scienze della Vita, via P.A. Mattioli 4, Siena, Italy
| | - Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Giampiero Cai
- Università di Siena, Dipartimento di Scienze della Vita, via P.A. Mattioli 4, Siena, Italy.
| |
Collapse
|
35
|
Lyu J, Bi J, Liu X, Zhou M, Chen Q. Characterization of water status and water soluble pectin from peaches under the combined drying processing. Int J Biol Macromol 2019; 123:1172-1179. [DOI: 10.1016/j.ijbiomac.2018.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
|
36
|
Wu HC, Bulgakov VP, Jinn TL. Pectin Methylesterases: Cell Wall Remodeling Proteins Are Required for Plant Response to Heat Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1612. [PMID: 30459794 PMCID: PMC6232315 DOI: 10.3389/fpls.2018.01612] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/17/2018] [Indexed: 05/21/2023]
Abstract
Heat stress (HS) is expected to be of increasing worldwide concern in the near future, especially with regard to crop yield and quality as a consequence of rising or varying temperatures as a result of global climate change. HS response (HSR) is a highly conserved mechanism among different organisms but shows remarkable complexity and unique features in plants. The transcriptional regulation of HSR is controlled by HS transcription factors (HSFs) which allow the activation of HS-responsive genes, among which HS proteins (HSPs) are best characterized. Cell wall remodeling constitutes an important component of plant responses to HS to maintain overall function and growth; however, little is known about the connection between cell wall remodeling and HSR. Pectin controls cell wall porosity and has been shown to exhibit structural variation during plant growth and in response to HS. Pectin methylesterases (PMEs) are present in multigene families and encode isoforms with different action patterns by removal of methyl esters to influencing the properties of cell wall. We aimed to elucidate how plant cell walls respond to certain environmental cues through cell wall-modifying proteins in connection with modifications in cell wall machinery. An overview of recent findings shed light on PMEs contribute to a change in cell-wall composition/structure. The fine-scale modulation of apoplastic calcium ions (Ca2+) content could be mediated by PMEs in response to abiotic stress for both the assembly and disassembly of the pectic network. In particular, this modulation is prevalent in guard cell walls for regulating cell wall plasticity as well as stromal aperture size, which comprise critical determinants of plant adaptation to HS. These insights provide a foundation for further research to reveal details of the cell wall machinery and stress-responsive factors to provide targets and strategies to facilitate plant adaptation.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Victor P. Bulgakov
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Tsung-Luo Jinn
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Hao X, Tang H, Wang B, Yue C, Wang L, Zeng J, Yang Y, Wang X. Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant. TREE PHYSIOLOGY 2018; 38:1655-1671. [PMID: 29688561 DOI: 10.1093/treephys/tpy038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Green tea has attracted an increasing number of consumers worldwide due to its multiple health benefits. With the increase in global warming, more frequent cold spells in the spring often cause more serious damage to green tea production because of the young leaves used. We recorded the changes in climatic conditions during a typical cold spell and the damage symptoms caused by the cold spell in different tea cultivars and breeding lines. By simulating the low temperature of a cold spell under controlled conditions, comparative transcriptome and metabolic analyses were performed with sprouting shoots. Many pathways and genes were regulated differentially by the cold spell conditions. Taking into account the metabolic analysis, the results suggested that the mitogen-activated protein kinase (MAPK)-dependent ethylene and calcium signalling pathways were two major early cold-responsive mechanisms involved in sprouting shoots and were followed by the induction of the Inducer of CBF Expressions (ICE)-C-repeat binding factors (CBF)-cold-responsive (COR) signalling pathway to augment cold tolerance. During the cold shock, growth, photosynthesis and secondary metabolism-mainly involving flavonoid biosynthesis-were remarkably affected. Notably, the increased starch metabolism, which might be dependent on the high expression of β-amylase3 (BAM3) induced by CBF, played crucial roles in protecting young shoots against freezing cold. A schematic diagram of cold spell response mechanisms specifically involved in the sprouting shoots of the tea plant is ultimately proposed. Some essential transcriptional and metabolic changes were further confirmed in the plant materials under natural cold spell conditions. Our results provide a global view of the reprograming of transcription and metabolism in sprouting tea shoots during a cold spell and meaningful information for future practices.
Collapse
Affiliation(s)
- Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Hu Tang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Bo Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chuan Yue
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
38
|
Bilska-Kos A, Panek P, Szulc-Głaz A, Ochodzki P, Cisło A, Zebrowski J. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.). JOURNAL OF PLANT PHYSIOLOGY 2018; 228:178-188. [PMID: 29945073 DOI: 10.1016/j.jplph.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/28/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
Miscanthus × giganteus and Zea mays, closely-related C4 grasses, originated from warm climates react differently to low temperature. To investigate the response to cold (12-14 °C) in these species, the photosynthetic and anatomical parameters as well as biochemical properties of the cell wall were studied. The research was performed using M. giganteus (MG) and two Z. mays lines differentiated for chilling-sensitivity: chilling-tolerant (Zm-T) and chilling-sensitive (Zm-S). The chilled plants of Zm-S line demonstrated strong inhibition of net CO2 assimilation and a clear decrease in F'v/F'm, Fv/Fm and ɸPSII, while in MG and Zm-T plants these parameters were almost unchanged. The anatomical studies revealed that MG plants had thinner leaves, epidermis and mesophyll cell layer as well as thicker cell walls in the comparison to both maize lines. Cold led to an increase in leaf thickness and mesophyll cell layer thickness in the Zm-T maize line, while the opposite response was observed in Zm-S. In turn, in chilled plants of MG and Zm-T lines, some anatomical parameters associated with bundle sheath cells were higher. In addition, Zm-S line showed the strong increase in the cell wall thickness at cold for mesophyll and bundle sheath cells. Chilling-treatment induced the changes in the cell wall biochemistry of tested species, mainly in the content of glucuronoarabinoxylan, uronic acid, β-glucan and phenolic compounds. This work presents a new approach in searching of mechanism(s) of tolerance/sensitivity to low temperature in two thermophilic plants: Miscanthus and maize.
Collapse
Affiliation(s)
- Anna Bilska-Kos
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland; Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland.
| | - Piotr Panek
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Anna Szulc-Głaz
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Piotr Ochodzki
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Aneta Cisło
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| |
Collapse
|
39
|
Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A. Identification of Genes Related to Cold Tolerance and a Functional Allele That Confers Cold Tolerance. PLANT PHYSIOLOGY 2018; 177:1108-1123. [PMID: 29764927 PMCID: PMC6052991 DOI: 10.1104/pp.18.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/05/2018] [Indexed: 05/22/2023]
Abstract
Cold stress is a major factor limiting rice (Oryza sativa) production worldwide, especially at the seedling and booting stages. The identification of genes associated with cold tolerance (CT) in rice is important for sustainable food production. Here, we report the results of a genome-wide association study to identify the genetic loci associated with CT by using a 1,033-accession diversity panel. We identified five CT-related genetic loci at the booting stage. Accessions carrying multiple cold-tolerant alleles displayed a higher seed-setting rate than did accessions that had no cold-tolerant alleles or carried a single allele. At the seedling stage, eight genetic loci related to CT have been identified. Among these, LOC_Os10g34840 was identified as the candidate gene for the qPSR10 genetic locus that is associated with CT in rice seedlings. A single-nucleotide polymorphism (SNP), SNP2G, at position 343 in LOC_Os10g34840 is responsible for conferring CT at the seedling stage in rice. Further analysis of the haplotype network revealed that SNP2G was present in 80.08% of the temperate japonica accessions but only 3.8% of the indica ones. We used marker-assisted selection to construct a series of BC4F3 near-isogenic lines possessing the cold-tolerant allele SNP2G When subjected to cold stress, plants carrying SNP2G survived better as seedlings and showed higher grain weight than plants carrying the SNP2A allele. The CT-related loci identified here and the functional verification of LOC_Os10g34840 will provide genetic resources for breeding cold-tolerant varieties and for studying the molecular basis of CT in rice.
Collapse
Affiliation(s)
- Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Yong Gao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou 225009, China
| | - Huangjun Qian
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou 225009, China
| | - Qiang Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunyu Wu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxiang Zhang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Ling Yu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Yuhong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Cunhong Pan
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Guangqing Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Changhai Zhou
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Min Jiang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Niansheng Huang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Zhengyuan Dai
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhou Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Chen
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou 225009, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| |
Collapse
|
40
|
Jończyk M, Sobkowiak A, Trzcinska-Danielewicz J, Skoneczny M, Solecka D, Fronk J, Sowiński P. Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm. PLANT MOLECULAR BIOLOGY 2017; 95:279-302. [PMID: 28828699 DOI: 10.1007/s11103-017-0651-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/06/2017] [Indexed: 05/27/2023]
Abstract
In maize seedlings, severe cold results in dysregulation of circadian pattern of gene expression causing profound modulation of transcription of genes related to photosynthesis and other key biological processes. Plants live highly cyclic life and their response to environmental stresses must allow for underlying biological rhythms. To study the interplay of a stress and a rhythmic cue we investigated transcriptomic response of maize seedlings to low temperature in the context of diurnal gene expression. Severe cold stress had pronounced effect on the circadian rhythm of a substantial proportion of genes. Their response was strikingly dual, comprising either flattening (partial or complete) of the diel amplitude or delay of expression maximum/minimum by several hours. Genes encoding central oscillator components behaved in the same dual manner, unlike their Arabidopsis counterparts reported earlier to cease cycling altogether upon cold treatment. Also numerous genes lacking circadian rhythm responded to the cold by undergoing up- or down-regulation. Notably, the transcriptome changes preceded major physiological manifestations of cold stress. In silico analysis of metabolic processes likely affected by observed gene expression changes indicated major down-regulation of photosynthesis, profound and multifarious modulation of plant hormone levels, and of chromatin structure, transcription, and translation. A role of trehalose and stachyose in cold stress signaling was also suggested. Meta-analysis of published transcriptomic data allowed discrimination between general stress response of maize and that unique to severe cold. Several cis- and trans-factors likely involved in the latter were predicted, albeit none of them seemed to have a major role. These results underscore a key role of modulation of diel gene expression in maize response to severe cold and the unique character of the cold-response of the maize circadian clock.
Collapse
Affiliation(s)
- M Jończyk
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - A Sobkowiak
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - J Trzcinska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - M Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warszawa, Poland
| | - D Solecka
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - J Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - P Sowiński
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland.
| |
Collapse
|