1
|
Miklau M, Burn SJ, Eckerstorfer M, Dolezel M, Greiter A, Heissenberger A, Hörtenhuber S, Zollitsch W, Hagen K. Horizon scanning of potential environmental applications of terrestrial animals, fish, algae and microorganisms produced by genetic modification, including the use of new genomic techniques. Front Genome Ed 2024; 6:1376927. [PMID: 38938511 PMCID: PMC11208717 DOI: 10.3389/fgeed.2024.1376927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
With scientific progress and the development of new genomic techniques (NGTs), the spectrum of organisms modified for various purposes is rapidly expanding and includes a wide range of taxonomic groups. An improved understanding of which newly developed products may be introduced into the market and released into the environment in the near and more distant future is of particular interest for policymakers, regulatory authorities, and risk assessors. To address this information need, we conducted a horizon scanning (HS) of potential environmental applications in four groups of organisms: terrestrial animals (excluding insects and applications with gene drives), fish, algae and microorganisms. We applied a formal scoping review methodology comprising a structured search of the scientific literature followed by eligibility screening, complemented by a survey of grey literature, and regulatory websites and databases. In all four groups of organisms we identified a broad range of potential applications in stages of basic as well as advanced research, and a limited number of applications which are on, or ready to be placed on, the market. Research on GM animals including fish is focused on farmed animals and primarily targets traits which increase performance, influence reproduction, or convey resistance against diseases. GM algae identified in the HS were all unicellular, with more than half of the articles concerning biofuel production. GM algae applications for use in the environment include biocontrol and bioremediation, which are also the main applications identified for GM microorganisms. From a risk assessor's perspective these potential applications entail a multitude of possible pathways to harm. The current limited level of experience and limited amount of available scientific information could constitute a significant challenge in the near future, for which risk assessors and competent authorities urgently need to prepare.
Collapse
Affiliation(s)
- Marianne Miklau
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Sarah-Joe Burn
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Eckerstorfer
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Marion Dolezel
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | - Anita Greiter
- Department of Landuse and Biosafety, Environment Agency Austria, Vienna, Austria
| | | | - Stefan Hörtenhuber
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Werner Zollitsch
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristin Hagen
- Federal Agency for Nature Conservation, Division Assessment Synthetic Biology/Enforcement Genetic Engineering Act, Bonn, Germany
| |
Collapse
|
2
|
Al-Huqail AA, Aref NMA, Khan F, Sobhy SE, Hafez EE, Khalifa AM, Saad-Allah KM. Azolla filiculoides extract improved salt tolerance in wheat (Triticum aestivum L.) is associated with prompting osmostasis, antioxidant potential and stress-interrelated genes. Sci Rep 2024; 14:11100. [PMID: 38750032 PMCID: PMC11096334 DOI: 10.1038/s41598-024-61155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.
Collapse
Affiliation(s)
- Asma A Al-Huqail
- Chair of Climate Change, Environmental Development, and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nagwa M A Aref
- Department of Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shubra 11241, Cairo, Egypt
| | - Faheema Khan
- Chair of Climate Change, Environmental Development, and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sherien E Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El‑Arab, 21934, Egypt
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El‑Arab, 21934, Egypt
| | - Asmaa M Khalifa
- Botany and Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Cairo, 71524, Egypt
| | - Khalil M Saad-Allah
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
Chanu NK, Mandal MK, Srivastava A, Mishra Y, Chaurasia N. Proteomics Reveals Damaging Effect of Alpha-Cypermethrin Exposure in a Non-Target Freshwater Microalga Chlorella sp. NC-MKM. Curr Microbiol 2023; 80:144. [PMID: 36943524 DOI: 10.1007/s00284-023-03179-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/02/2023] [Indexed: 03/23/2023]
Abstract
Alpha-cypermethrin, a pyrethroid pesticide, is frequently used on crops to prevent insect attacks. However, occasionally, due to drift, leaching, or with rainwater, it enters the aquatic environment and poses a serious threat to the growth of non-target aquatic organisms. In the current study, we were interested in investigating the damaging effect of alpha-cypermethrin on a local freshwater non-target green alga Chlorella sp. NC-MKM in terms of its protein levels. This was achieved by exposing Chlorella sp. NC-MKM to an EC50 concentration of alpha-cypermethrin for 1 day, followed by the two-dimensional (2-D) gel electrophoresis and MALDI-TOF MS. Fifty-three proteins, which had showed significant differential accumulation (> 1.5 fold, P < 0.05) after exposure to alpha-cypermethrin, were considered as differentially accumulated proteins (DAPs). These DAPs were further divided into several functional categories, and the expressions of each in control and treatment samples were compared. Comparison revealed that alpha-cypermethrin exposure affects the accumulation of proteins related with photosynthesis, stress response, carbohydrate metabolism, signal transduction and transporters, translation, transcription, cell division, lipid metabolism, amino acid and nucleotide biosynthesis, secondary metabolites production, and post-translational modification, and thus rendered the tested algal isolate sensitive toward this pesticide. The overall findings of this research thus offer a fundamental understanding of the possible mechanism of action of the insecticide alpha-cypermethrin on the microalga Chlorella sp. NC-MKM and also suggest potential biomarkers for the investigation of pesticide exposed microalgae.
Collapse
Affiliation(s)
- Ng Kunjarani Chanu
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Madan Kumar Mandal
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| |
Collapse
|
4
|
Rezasoltani S, Champagne P. An integrated approach for the phycoremediation of Pb(II) and the production of biofertilizer using nitrogen-fixing cyanobacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130448. [PMID: 36462239 DOI: 10.1016/j.jhazmat.2022.130448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
In recent years, growing attention has been directed toward the phycoremediation of heavy metals from bodies of water; however, many challenges remain. The nitrogen requirements for algal growth in nutrient-poor waters can lead to substantial costs. Moreover, proper management of the metal-loaded biomass is a concern. This study assessed the performance of two nitrogen-fixing cyanobacteria, Anabaena sp. and Nostoc muscorum, in treating Pb(II)-contaminated water without nitrogen under batch and fed-batch modes, as well as the subsequent utilization of the produced biomass as a biofertilizer. After 12 days of the batch mode with initial Pb(II) concentrations of 10, 20, 35, and 60 mg/L, Pb(II) removal efficiencies were 98.90%, 98.95%, 97.20%, and 84.98% by Anabaena sp. and 88.00%, 73.10%, 54.54%, and 26.83% by N. muscorum, respectively. Anabaena sp. sustained growth and Pb(II) removal under the fed-batch mode by adjusting hydraulic retention time based on the influent Pb(II) concentration. Decontamination of the metal-loaded Anabaena sp. biomass was performed and resulted in a Pb(II) desorption of 93%. The desorbed Anabaena sp. extract provided the nutrient requirements for Chlorella vulgaris. The proposed strategy provides simultaneous Pb(II) bioremediation and biofertilizer production in a system driven by light energy, atmospheric N2, and CO2.
Collapse
Affiliation(s)
- Samira Rezasoltani
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Pascale Champagne
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
5
|
Díaz S, Aguilera Á, de Figueras CG, de Francisco P, Olsson S, Puente-Sánchez F, González-Pastor JE. Heterologous Expression of the Phytochelatin Synthase CaPCS2 from Chlamydomonas acidophila and Its Effect on Different Stress Factors in Escherichia coli. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137692. [PMID: 35805349 PMCID: PMC9265389 DOI: 10.3390/ijerph19137692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Phytochelatins (PCs) are cysteine-rich small peptides, enzymatically synthesized from reduced glutathione (GSH) by cytosolic enzyme phytochelatin synthase (PCS). The open reading frame (ORF) of the phytochelatin synthase CaPCS2 gene from the microalgae Chlamydomonas acidophila was heterologously expressed in Escherichia coli strain DH5α, to analyze its role in protection against various abiotic agents that cause cellular stress. The transformed E. coli strain showed increased tolerance to exposure to different heavy metals (HMs) and arsenic (As), as well as to acidic pH and exposure to UVB, salt, or perchlorate. In addition to metal detoxification activity, new functions have also been reported for PCS and PCs. According to the results obtained in this work, the heterologous expression of CaPCS2 in E. coli provides protection against oxidative stress produced by metals and exposure to different ROS-inducing agents. However, the function of this PCS is not related to HM bioaccumulation.
Collapse
Affiliation(s)
- Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C. José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Correspondence:
| | - Ángeles Aguilera
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| | - Carolina G. de Figueras
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| | - Patricia de Francisco
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, Forest Research Centre (INIA, CSIC), Carretera de La Coruña, km 7.5, 28040 Madrid, Spain;
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 756 51 Uppsala, Sweden;
| | - José Eduardo González-Pastor
- Department of Molecular Biology, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain; (Á.A.); (C.G.d.F.); (P.d.F.); (J.E.G.-P.)
| |
Collapse
|
6
|
Chanu NK, Mandal MK, Srivastava A, Chaurasia N. Proteomics analysis reveals several metabolic alterations in cyanobacterium Anabaena sp. NC-K1 in response to alpha-cypermethrin exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19762-19777. [PMID: 34718975 DOI: 10.1007/s11356-021-16611-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
In the current study, the effect of the EC50 and LC90 concentrations of pyrethroid insecticide alpha-cypermethrin to cyanobacteria Anabaena sp. NC-K1 was investigated at different time exposures (1st day, 4th day and 7th day) with reference to growth, photosynthetic pigments, oxidative damage and antioxidant defence system. Superoxide dismutase (1.38-fold), peroxidase (5.04) and proline content (2.27-fold) were enhanced compared to the control. After performing 2D gel electrophoresis at 1st day EC50 exposure, where appropriate differences in the biochemical and physiological parameters were observed, 22 differentially accumulated proteins (20 upregulated and 2 downregulated) were selected for mass spectrometry. Out of 42 proteins identified, 20 upregulated protein spots were classified into twelve categories according to their metabolic functions. Proteins related to photosynthesis (phycobilisome rod-core linker polypeptide, rubisco), stress responses (Hsp70, Hsp40, catalase family peroxidase), translation (elongation factor Tu) and amino acid biosynthesis and metabolism (3-phosphoshikimate 1-carboxyvinyl transferase) were significantly upregulated. Additionally, proteins involved in transcription and DNA repair (Snf-2 histone linker phd ring helicase, RNA polymerase sigma factor RpoD and Holliday junction ATP-dependent DNA helicase RuvA) were considerably upregulated. Upregulation of these proteins against pesticide stress presumably maintained the photosynthesis, energy metabolism, carbohydrate metabolism, transport and signalling proteins, transcription, translation and DNA repair. Additionally, these proteins might involve in sufficient detoxification of ROS and play a crucial role in damage removal and repair of oxidized proteins, lipids and nucleic acids. Taken together, Anabaena sp. NC-K1 responded towards alpha-cypermethrin stress via modulating its proteome to maintain its cellular metabolism and homeostasis.
Collapse
Affiliation(s)
- Ng Kunjarani Chanu
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Madan Kumar Mandal
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
7
|
Pandey N, Rai KK, Rai SK, Pandey-Rai S. Heterologous expression of cyanobacterial PCS confers augmented arsenic and cadmium stress tolerance and higher artemisinin in Artemisia annua hairy roots. PLANT BIOTECHNOLOGY REPORTS 2021; 15:317-334. [PMID: 34122662 PMCID: PMC8180384 DOI: 10.1007/s11816-021-00682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/01/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED The present study provides the first report of heterologous expression of phytochelatin synthase from Anabaena PCC 7120 (anaPCS) into the hairy roots of Artemisia annua. Transformed hairy roots of A. annua expressing anaPCS gene showed better tolerance to heavy metals, viz., arsenic (As) and cadmium (Cd) owing to 143 and 191% more As- and Cd-accumulation, respectively, as compared to normal roots with a bioconcentration factor (BCF) of 9.7 and 21.1 for As and Cd, respectively. Under As and Cd stresses, transformed hairy roots possessed significantly higher amounts of phytochelatins and thiols probably due to the presence of both AaPCS (Artemisia annua PCS) and anaPCS. In addition, artemisinin synthesis was also induced in transformed hairy roots under heavy metals stresses. In-silico analysis revealed the presence of conserved motifs in both AaPCS and anaPCS sequences as well as structural modelling of PCS functional domain was conducted. Interaction of AaPCS and anaPCS proteins with CdCl2 and sodium arsenate gene ontology analysis gave insights to anaPCS functioning in transformed hairy roots of A. annua. The study provides transformed hairy roots of A. annua as an efficient tool for effective phytoremediation with added advantages of artemisinin extraction from hairy roots used for phytoremediation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11816-021-00682-5.
Collapse
Affiliation(s)
- Neha Pandey
- Department of Botany, CMP PG College (A Constituent PG College of University of Allahabad), Prayagraj, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sanjay Kumar Rai
- Department of Horticulture, Dr. Rajendra Prasad Agricultural University, Pusa, Samastipur, Bihar India
| | - Shashi Pandey-Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Srivastava A, Biswas S, Yadav S, Kumar S, Srivastava V, Mishra Y. Acute cadmium toxicity and post-stress recovery: Insights into coordinated and integrated response/recovery strategies of Anabaena sp. PCC 7120. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124822. [PMID: 33858073 DOI: 10.1016/j.jhazmat.2020.124822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria, the first photoautotrophs have remarkable adaptive capabilities against most abiotic stresses, including Cd. A model cyanobacterium, Anabaena sp. PCC 7120 has been commonly used to understand cyanobacterial plasticity under different environmental stresses. However, very few studies have focused on the acute Cd toxicity. In this context, Anabaena was subjected to 100 μM Cd for 48 h (acute Cd stress, ACdS) and then transferred into the fresh medium for post-stress recovery (PSR). We further investigated the dynamics of morpho-ultrastructure, physiology, cytosolic proteome, thylakoidal complexes, chelators, and transporters after ACdS, as well as during early (ER), mid (MR), and late (LR) phases of PSR. The findings revealed that ACdS induced intracellular Cd accumulation and ROS production, altered morpho-ultrastructure, reduced photosynthetic pigments, and affected the structural organization of PSII, which subsequently hindered photosynthetic efficiency. Anabaena responded to ACdS and recovered during PSR by reprogramming the expression pattern of proteins/genes involved in cellular defense and repair; CO2 access, Calvin-Benson cycle, glycolysis, and pentose phosphate pathway; protein biosynthesis, folding, and degradation; regulatory functions; PSI-based cyclic electron flow; Cd chelation; and efflux. These modulations occurred in an integrated and coordinated manner that facilitated Anabaena to detoxify Cd and repair ACdS-induced cellular damage.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sandhya Yadav
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sanjiv Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Cui J, Xie Y, Sun T, Chen L, Zhang W. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144111. [PMID: 33352345 DOI: 10.1016/j.scitotenv.2020.144111] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution caused by heavy metals has received worldwide attentions due to their ubiquity, poor degradability and easy bioaccumulation in host cells. As one potential solution, photosynthetic cyanobacteria have been considered as promising remediation chassis and widely applied in various bioremediation processes of heavy-metals. Meanwhile, deciphering resistant mechanisms and constructing tolerant chassis towards heavy metals could greatly contribute to the successful application of the cyanobacteria-based bioremediation in the future. In this review, first we summarized recent application of cyanobacteria in heavy metals bioremediation using either live or dead cells. Second, resistant mechanisms and strategies for enhancing cyanobacterial bioremediation of heavy metals were discussed. Finally, potential challenges and perspectives for improving bioremediation of heavy metals by cyanobacteria were presented.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
10
|
Chatterjee A, Singh S, Rai R, Rai S, Rai L. Functional Characterization of Alr0765, A Hypothetical Protein from Anabaena PCC 7120 Involved in Cellular Energy Status Sensing, Iron Acquisition and Abiotic Stress Management in E. coli Using Molecular, Biochemical and Computational Approaches. Curr Genomics 2020; 21:295-310. [PMID: 33071622 PMCID: PMC7521041 DOI: 10.2174/1389202921999200424181239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cyanobacteria are excellent model to understand the basic metabolic processes taking place in response to abiotic stress. The present study involves the characterization of a hypothetical protein Alr0765 of Anabaena PCC7120 comprising the CBS-CP12 domain and deciphering its role in abiotic stress tolerance. METHODS Molecular cloning, heterologous expression and protein purification using affinity chromatography were performed to obtain native purified protein Alr0765. The energy sensing property of Alr0765 was inferred from its binding affinity with different ligand molecules as analyzed by FTIR and TNP-ATP binding assay. AAS and real time-PCR were applied to evaluate the iron acquisition property and cyclic voltammetry was employed to check the redox sensitivity of the target protein. Transcript levels under different abiotic stresses, as well as spot assay, CFU count, ROS level and cellular H2O2 level, were used to show the potential role of Alr0765 in abiotic stress tolerance. In-silico analysis of Alr0765 included molecular function probability analysis, multiple sequence analysis, protein domain and motif finding, secondary structure analysis, protein-ligand interaction, homologous modeling, model refinement and verification and molecular docking was performed with COFACTOR, PROMALS-3D, InterProScan, MEME, TheaDomEx, COACH, Swiss modeller, Modrefiner, PROCHECK, ERRAT, MolProbity, ProSA, TM-align, and Discovery studio, respectively. RESULTS Transcript levels of alr0765 significantly increased by 20, 13, 15, 14.8, 12, 7, 6 and 2.5 fold when Anabaena PCC7120 treated with LC50 dose of heat, arsenic, cadmium, butachlor, salt, mannitol (drought), UV-B, and methyl viologen respectively, with respect to control (untreated). Heterologous expression resulted in 23KDa protein observed on the SDS-PAGE. Immunoblotting and MALDI-TOF-MS/MS, followed by MASCOT search analysis, confirmed the identity of the protein and ESI/MS revealed that the purified protein was a dimer. Binding possibility of Alr0765 with ATP was observed with an almost 6-fold increment in relative fluorescence during TNP-ATP binding assay with a λ max of 538 nm. FTIR spectra revealed modification in protein confirmation upon binding of Alr0765 with ATP, ADP, AMP and NADH. A 10-fold higher accumulation of iron was observed in digests of E. coli with recombinant vector after induction as compared to control, which affirms the iron acquisition property of the protein. Moreover, the generation of the redox potential of 146 mV by Alr0765 suggested its probable role in maintaining the redox status of the cell under environmental constraints. As per CFU count recombinant, E. coli BL21 cells showed about 14.7, 7.3, 6.9, 1.9, 3 and 4.9 fold higher number of colonies under heat, cadmium (CdCl2), arsenic (Na3AsO4), salt (NaCl), UV-B and drought (mannitol) respectively compared to pET21a harboring E. coli BL21 cells. Deterioration in the cellular ROS level and total cellular H2O2 concentration validated the stress tolerance ability of Alr0765. In-silico analysis unraveled novel findings and attested experimental findings in determining the role of Alr0765. CONCLUSION Alr0765 is a novel CBS-CP12 domain protein that maintains cellular energy level and iron homeostasis which provides tolerance against multiple abiotic stresses.
Collapse
Affiliation(s)
- Antra Chatterjee
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Shweta Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - L.C. Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
11
|
Kim YO, Kang H, Ahn SJ. Overexpression of phytochelatin synthase AtPCS2 enhances salt tolerance in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153011. [PMID: 31357099 DOI: 10.1016/j.jplph.2019.153011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 05/21/2023]
Abstract
Phytochelatin synthase (PCS) is an enzyme that synthesizes phytochelatins, which are metal-binding peptides. Despite the important role of PCS in heavy metal detoxification or tolerance, the functional role of PCS with respect to other abiotic stresses remains largely unknown. In this study, we determined the function of Arabidopsis thaliana phytochelatin synthase 2 (AtPCS2) in the salt stress response. Expression of AtPCS2 was significantly increased in response to 100 and 200 mM NaCl treatment. AtPCS2-overexpressing transgenic Arabidopsis and tobacco plants displayed increased seed germination rates and seedling growth under high salt stress. In addition, transgenic Arabidopsis subjected to salt stress exhibited enhanced proline accumulation and reduced Na+/K+ ratios compared to wild type plants. Furthermore, decreased levels of hydrogen peroxide (H2O2) and lipid peroxidation were observed in transgenic Arabidopsis compared to wild type specimens. Salt stress greatly reduced transcript levels of CuSOD2, FeSOD2, CAT2, and GR2 in wild type but not transgenic Arabidopsis. Notably, levels of CAT3 in transgenic Arabidopsis were markedly increased upon salt stress, suggesting that low accumulation of H2O2 in transgenic Arabidopsis is partially achieved through induction of CAT. Collectively, these results suggest that AtPCS2 plays a positive role in seed germination and seedling growth under salt stress through a series of indirect effects that are likely involved in H2O2 scavenging, regulation of osmotic adjustment and ion homeostasis.
Collapse
Affiliation(s)
- Yeon-Ok Kim
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Ju Ahn
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
12
|
T V D, Chandwadkar P, Acharya C. NmtA, a novel metallothionein of Anabaena sp. strain PCC 7120 imparts protection against cadmium stress but not oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:152-161. [PMID: 29626757 DOI: 10.1016/j.aquatox.2018.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Metallothioneins (MTs) are low molecular weight, sulfhydryl-containing, cysteine-rich, metal-binding proteins. Eukaryotes have multiple metallothionein genes; however, there is dearth of reports on prokaryotic metallothioneins. Bacterial MTs with SmtA from Synechococcus PCC 7942 as prototype have been studied in the context of cadmium detoxification. In this study, a smtA related ORF, namely nmtA, was identified in the heterocystous, nitrogen-fixing cyanobacterium, Anabaena PCC 7120. A recombinant N-terminal histidine-tagged Anabaena NmtA protein was overexpressed in Escherichia coli and purified. The protein was identified by peptide mass fingerprinting using MALDI-TOF Mass Spectrometry as putative metallothionein of Anabaena PCC 7120 with a calculated mass of ∼6.1 kDa. While the native metallated NmtA exhibited resistance against proteolysis, metal free apo-NmtA resulting from acid and dithiothreitol (DTT) treatment could be digested by proteinase K revealing a metal dependent proteolytic protection of NmtA. Expression of nmtA in Anabaena PCC 7120 was induced evidently by cadmium, zinc and copper but not by uranium or hydrogen peroxide. Recombinant Anabaena PCC 7120 overexpressing NmtA protein revealed superior cadmium tolerance but showed limited influence against oxidative stress tolerance as compared with the strain carrying vector alone. In contrast, a mutant of Synechococcus PCC 7942 deficient in MT locus was found to be highly susceptible to H2O2 indicating a likely involvement of cyanobacterial MT in protection against oxidative damage. Overall, the study improved our understanding of metal tolerance mechanisms in Anabaena PCC 7120 by demonstrating a key role of NmtA in cadmium tolerance.
Collapse
Affiliation(s)
- Divya T V
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Pallavi Chandwadkar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
13
|
Qian H, Xu J, Lu T, Zhang Q, Qu Q, Yang Z, Pan X. Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1415-1422. [PMID: 29996438 DOI: 10.1016/j.scitotenv.2018.01.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 06/08/2023]
Abstract
Linoleic acid (LA), is the product of secondary metabolism secreted from Microcystis aeruginosa, and it exhibits allelopathic activity against eukaryotic algae. However, information about on the mechanisms associated with the inhibition of algal activity by LA is limited. In this study, Chlorella pyrenoidosa was treated with LA (20-120 μg L-1) for 4 days, and its growth inhibition and physiological responses were examined for potential toxic mechanisms. The photosynthetic efficiency of C. pyrenoidosa was inhibited by LA treatments, and the Fv/Fm parameter decreased significantly compared to that of controls; however, the photosynthetic pigment content did not change significantly. Peroxidase activity was enhanced, relieving oxidative damage in algae after LA treatments. However, superoxide dismutase and catalase were suppressed, ultimately leading to the aggravation of lipid peroxidation. Transcriptome-based gene expression analysis revealed that the 120 μg L-1 LA treatment significantly inhibited the transcription of genes related to photosynthesis, carbon metabolism, and amino acid metabolism in C. pyrenoidosa, suggesting that these genes might be key LA targets in C. pyrenoidosa. Moreover, the expression of genes involved in vitamin, lipid, nitrogen cycling, terpenoid, and ascorbate metabolism was also affected, suggesting that LA inhibits algal cell growth through multiple pathways. The identification of LA-responsive genes in C. pyrenoidosa provides new insight into LA stress responses in eukaryotic algae.
Collapse
Affiliation(s)
- Haifeng Qian
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Jiahui Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhaopeng Yang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| |
Collapse
|