1
|
Chu G, Gao C, Wang Q, Zhang W, Tian T, Chen W, Gao M. Effect of light intensity on nitrogen removal, enzymatic activity and metabolic pathway of algal-bacterial symbiosis in rotating biological contactor treating mariculture wastewater. BIORESOURCE TECHNOLOGY 2025; 417:131872. [PMID: 39581480 DOI: 10.1016/j.biortech.2024.131872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
An algal-bacterial symbiosis (ABS) system was developed on a rotating biological contactor treating mariculture wastewater, and its nitrogen removal, enzymatic activity and metabolic pathways were investigated under different light intensities. The nitrogen removal efficiency increased when light intensities ranged from 20 to 80 μE/(m2·s) but declined under 100 μE/(m2·s). Higher enzymatic activities under 80 μE/(m2·s) facilitated nitrogen conversion, light utilization, ATP supply and photosynthesis. Reactive oxygen species accumulation activated antioxidant pathways under 20 and 100 μE/(m2·s). Functional bacteria including Sedimentitalea, Thauera and Dechloromonas as well as Chlorella sorokinian, Dunaliella, Pleurosira laevis and Microcystis were enriched under 80 μE/(m2·s). Abundant photosynthesis-related genes (petC, Lca3/4 and atpH/A) supported energy supply and electron transport. Conversely, lower proportions of IDH3, gltB, and acnA/B under 20 and 100 μE/(m2·s) hindered tricarboxylic acid cycle, reducing NADPH and energy production. These results enhance the understanding on the effect of light intensity on ABS system treating mariculture wastewater.
Collapse
Affiliation(s)
- Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenchen Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Taotao Tian
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Navarro NP, Huovinen P, Jofre J, Gómez I. Temperature Dependence and the Effects of Ultraviolet Radiation on the Ultrastructure and Photosynthetic Activity of Carpospores in Sub-Antarctic Red Alga Iridaea cordata (Turner) Bory 1826. PLANTS (BASEL, SWITZERLAND) 2024; 13:2547. [PMID: 39339522 PMCID: PMC11435075 DOI: 10.3390/plants13182547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
The short-term effects of UV radiation and low temperature on ultrastructure, photosynthetic activity (measured as the maximal photochemical quantum yield of photosystem II: Fv/Fm), chlorophyll-a (Chl-a) contents, and UV-absorbing compounds on the carpospores of Iridaea cordata from a sub-Antarctic population were investigated. Exposure to both photosynthetically active radiation (PAR) and PAR + UV for 4 h caused ultrastructural modifications in all treatments. Under PAR + UV at 2 °C, a disruption of the chloroplast's internal organization was observed. Plastoglobuli were often found in carpospores exposed to 2 °C. 'Electron dense particles', resembling physodes of brown algae, were detected for the first time in cells exposed to PAR and PAR + UV at 8 °C. Fv/Fm decreased following 4 h exposure at 2 °C under PAR + UV (64%) and PAR (25%). At 8 °C, Fv/Fm declined by 21% only under PAR + UV. The photosynthesis of carpospores previously treated with UV partially recovered after a 4 h exposure under dim light. UV-absorbing compounds were degraded in all radiation and temperature treatments without recovery after a 4 h dim light period. Chl-a did not change, whereas total carotenoids increased under PAR at 8 °C The study indicates that although carpospores of I. cordata exhibit photoprotective mechanisms, UV radiation strongly damages their ultrastructure and physiology, which were exacerbated under low temperatures.
Collapse
Affiliation(s)
- Nelso P. Navarro
- Laboratory of Ecophysiology and Biotechnology of Algae (LEBA), Faculty of Sciences, University of Magallanes, Punta Arenas 6210427, Chile;
- Network for Extreme Environments Research—NEXER, University of Magallanes, Punta Arenas 6210427, Chile
- FONDAP Research Center Dynamic of High Latitude Marine Ecosystems (IDEAL), Valdivia 5110566, Chile; (P.H.); (I.G.)
| | - Pirjo Huovinen
- FONDAP Research Center Dynamic of High Latitude Marine Ecosystems (IDEAL), Valdivia 5110566, Chile; (P.H.); (I.G.)
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Jocelyn Jofre
- Laboratory of Ecophysiology and Biotechnology of Algae (LEBA), Faculty of Sciences, University of Magallanes, Punta Arenas 6210427, Chile;
| | - Iván Gómez
- FONDAP Research Center Dynamic of High Latitude Marine Ecosystems (IDEAL), Valdivia 5110566, Chile; (P.H.); (I.G.)
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| |
Collapse
|
3
|
Xu M, Chen Y, Chen L, Chen Y, Yin X, Ji N, Cai Y, Sun S, Shen X. Investigating the molecular mechanisms of Pseudalteromonas sp. LD-B1's algicidal effects on the harmful alga Heterosigma akashiwo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116690. [PMID: 38981394 DOI: 10.1016/j.ecoenv.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Heterosigma akashiwo is a harmful algal bloom species that causes significant detrimental effects on marine ecosystems worldwide. The algicidal bacterium Pseudalteromonas sp. LD-B1 has demonstrated potential effectiveness in mitigating these blooms. However, the molecular mechanisms underlying LD-B1's inhibitory effects on H. akashiwo remain poorly understood. In this study, we employed the comprehensive methodology, including morphological observation, assessment of photosynthetic efficiency (Fv/Fm), and transcriptomic analysis, to investigate the response of H. akashiwo to LD-B1. Exposure to LD-B1 resulted in a rapid decline of H. akashiwo's Fv/Fm ratio, with cells transitioning to a rounded shape within 2 hours, subsequently undergoing structural collapse and cytoplasmic leakage. Transcriptomic data revealed sustained downregulation of photosynthetic genes, indicating impaired functionality of the photosynthetic system. Additionally, genes related to the respiratory electron transfer chain and antioxidant defenses were consistently downregulated, suggesting prolonged oxidative stress beyond the cellular antioxidative capacity. Notably, upregulation of autophagy-related genes was observed, indicating autophagic responses in the algal cells. This study elucidates the molecular basis of LD-B1's algicidal effects on H. akashiwo, advancing our understanding of algicidal mechanisms and contributing to the development of effective strategies for controlling harmful algal blooms.
Collapse
Affiliation(s)
- Mingyang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005China
| | - Yujiao Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005China
| | - Lei Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005China
| | - Yifan Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005China
| | - Xueyao Yin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005China
| | - Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005China; Jiangsu Marine Resources Development Research Institute, Lianyungang 222005, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yuefeng Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005China.
| |
Collapse
|
4
|
Solovchenko A, Lobakova E, Semenov A, Gorelova O, Fedorenko T, Chivkunova O, Parshina E, Maksimov G, Sluchanko NN, Maksimov E. Multimodal non-invasive probing of stress-induced carotenogenesis in the cells of microalga Bracteacoccus aggregatus. PROTOPLASMA 2024; 261:1051-1071. [PMID: 38703269 DOI: 10.1007/s00709-024-01956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Microalgae are the richest source of natural carotenoids-accessory photosynthetic pigments used as natural antioxidants, safe colorants, and nutraceuticals. Microalga Bracteacoccus aggregatus IPPAS C-2045 responds to stresses, including high light, with carotenogenesis-gross accumulation of secondary carotenoids (the carotenoids structurally and energetically uncoupled from photosynthesis). Precise mechanisms of cytoplasmic transport and subcellular distribution of the secondary carotenoids under stress are still unknown. Using multimodal imaging combining micro-Raman imaging (MRI), fluorescent lifetime (τ) imaging (FLIM), and transmission electron microscopy (TEM), we monitored ultrastructural and biochemical rearrangements of B. aggregatus cells during the stress-induced carotenogenesis. MRI revealed a decline in the diversity of molecular surrounding of the carotenoids in the cells compatible with the relocation of the bulk of the carotenoids in the cell from functionally and structurally heterogeneous photosynthetic apparatus to the more homogenous lipid matrix of the oleosomes. Two-photon FLIM highlighted the pigment transformation in the cell during the stress-induced carotenogenesis. The structures co-localized with the carotenoids with shorter τ (mainly chloroplast) shrunk, whereas the structures harboring secondary carotenoids with longer τ (mainly oleosomes) expanded. These changes were in line with the ultrastructural data (TEM). Fluorescence of B. aggregatus carotenoids, either in situ or in acetone extracts, possessed a surprisingly long lifetime. We hypothesize that the extension of τ of the carotenoids is due to their aggregation and/or association with lipids and proteins. The propagation of the carotenoids with prolonged τ is considered to be a manifestation of the secondary carotenogenesis suitable for its non-invasive monitoring with multimodal imaging.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia.
| | - Elena Lobakova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia
| | - Alexey Semenov
- Laboratory of Physics and Chemistry of Biological Membranes, Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russia
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia
| | - Tatiana Fedorenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia
| | - Olga Chivkunova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, GSP-1, Moscow, 119234, Russia
| | - Evgenia Parshina
- Department of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russia
| | - Georgy Maksimov
- Department of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russia
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Av. 33, Moscow, 119071, Russia
| | - Eugene Maksimov
- Laboratory of Physics and Chemistry of Biological Membranes, Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119234, Russia
| |
Collapse
|
5
|
Lauritano C, Bazzani E, Montuori E, Bolinesi F, Mangoni O, Riccio G, Buondonno A, Saggiomo M. Salinity Stress Acclimation Strategies in Chlamydomonas sp. Revealed by Physiological, Morphological and Transcriptomic Approaches. Mar Drugs 2024; 22:351. [PMID: 39195467 DOI: 10.3390/md22080351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Climate changes may include variations in salinity concentrations at sea by changing ocean dynamics. These variations may be especially challenging for marine photosynthetic organisms, affecting their growth and distribution. Chlamydomonas spp. are ubiquitous and are often found in extreme salinity conditions. For this reason, they are considered good model species to study salinity adaptation strategies. In the current study, we used an integrated approach to study the Chlamydomonas sp. CCMP225 response to salinities of 20‱ and 70‱, by combining physiological, morphological, and transcriptomic analyses, and comparing differentially expressed genes in the exponential and stationary growth phases under the two salinity conditions. The results showed that the strain is able to grow under all tested salinity conditions and maintains a surprisingly high photosynthetic efficiency even under high salinities. However, at the highest salinity condition, the cells lose their flagella. The transcriptomic analysis highlighted the up- or down-regulation of specific gene categories, helping to identify key genes responding to salinity stress. Overall, the findings may be of interest to the marine biology, ecology, and biotechnology communities, to better understand species adaptation mechanisms under possible global change scenarios and the potential activation of enzymes involved in the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton, 80133 Naples, Italy
| | - Emma Bazzani
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, D02 VF25 Dublin, Ireland
| | - Eleonora Montuori
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton, 80133 Naples, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesco Bolinesi
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy
| | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy
| | - Gennaro Riccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Angela Buondonno
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Maria Saggiomo
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
6
|
Solovchenko A, Plouviez M, Khozin-Goldberg I. Getting Grip on Phosphorus: Potential of Microalgae as a Vehicle for Sustainable Usage of This Macronutrient. PLANTS (BASEL, SWITZERLAND) 2024; 13:1834. [PMID: 38999674 PMCID: PMC11243885 DOI: 10.3390/plants13131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Phosphorus (P) is an important and irreplaceable macronutrient. It is central to energy and information storage and exchange in living cells. P is an element with a "broken geochemical cycle" since it lacks abundant volatile compounds capable of closing the P cycle. P fertilizers are critical for global food security, but the reserves of minable P are scarce and non-evenly distributed between countries of the world. Accordingly, the risks of global crisis due to limited access to P reserves are expected to be graver than those entailed by competition for fossil hydrocarbons. Paradoxically, despite the scarcity and value of P reserves, its usage is extremely inefficient: the current waste rate reaches 80% giving rise to a plethora of unwanted consequences such as eutrophication leading to harmful algal blooms. Microalgal biotechnology is a promising solution to tackle this challenge. The proposed review briefly presents the relevant aspects of microalgal P metabolism such as cell P reserve composition and turnover, and the regulation of P uptake kinetics for maximization of P uptake efficiency with a focus on novel knowledge. The multifaceted role of polyPhosphates, the largest cell depot for P, is discussed with emphasis on the P toxicity mediated by short-chain polyPhosphates. Opportunities and hurdles of P bioremoval via P uptake from waste streams with microalgal cultures, either suspended or immobilized, are discussed. Possible avenues of P-rich microalgal biomass such as biofertilizer production or extraction of valuable polyPhosphates and other bioproducts are considered. The review concludes with a comprehensive assessment of the current potential of microalgal biotechnology for ensuring the sustainable usage of phosphorus.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | | | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sde-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
7
|
Eliason O, Malitsky S, Panizel I, Feldmesser E, Porat Z, Sperfeld M, Segev E. The photo-protective role of vitamin D in the microalga Emiliania huxleyi. iScience 2024; 27:109884. [PMID: 38799580 PMCID: PMC11126961 DOI: 10.1016/j.isci.2024.109884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
An essential interaction between sunlight and eukaryotes involves vitamin D production through exposure to ultraviolet (UV) radiation. While extensively studied in vertebrates, the role of vitamin D in non-animal eukaryotes like microalgae remains unclear. Here, we investigate the potential involvement of vitamin D in the UV-triggered response of Emiliania huxleyi, a microalga inhabiting shallow ocean depths that are exposed to UV. Our results show that E. huxleyi produces vitamin D2 and D3 in response to UV. We further demonstrate that E. huxleyi responds to external administration of vitamin D at the transcriptional level, regulating protective mechanisms that are also responsive to UV. Our data reveal that vitamin D addition enhances algal photosynthetic performance while reducing harmful reactive oxygen species buildup. This study contributes to understanding the function of vitamin D in E. huxleyi and its role in non-animal eukaryotes, as well as its potential importance in marine ecosystems.
Collapse
Affiliation(s)
- Or Eliason
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irina Panizel
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Porat
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martin Sperfeld
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Chen S, Li X, Ma X, Qing R, Chen Y, Zhou H, Yu Y, Li J, Tan Z. Lighting the way to sustainable development: Physiological response and light control strategy in microalgae-based wastewater treatment under illumination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166298. [PMID: 37591393 DOI: 10.1016/j.scitotenv.2023.166298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/29/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
The Sustainable Development Goals link pollutant control with carbon dioxide reduction. Toward the goal of pollutant and carbon reduction, microalgae-based wastewater treatment (MBWT), which can simultaneously remove pollutants and convert carbon dioxide into biomass with value-added metabolites, has attracted considerable attention. The photosynthetic organism microalgae and the photobioreactor are the functional body and the operational carrier of the MBWT system, respectively; thus, light conditions profoundly influence its performance. Therefore, this review takes the general rules of how light influences the performance of MBWT systems as a starting point to elaborate the light-influenced mechanisms in microalgae and the light control strategies for photobioreactors from the inside out. Wavelength, light intensity and photoperiod solely or interactively affect biomass accumulation, pollutant removal, and value-added metabolite production in MBWT. Physiological processes, including photosynthesis, photooxidative damage, light-regulated gene expression, and nutrient uptake, essentially explain the performance influence of MBWT and are instructive for specific microalgal strain improvement strategies. In addition, light causes unique reactions in MBWT systems as it interacts with components such as photooxidative damage enhancers present in types of wastewater. In order to provide guidance for photobioreactor design and light control in a large-scale MBWT system, wavelength transformation, light transmission, light source distribution, and light-dark cycle should be considered in addition to adjusting the light source characteristics. Finally, based on current research vacancies and challenges, future research orientation should focus on the improvement of microalgae and photobioreactor, as well as the integration of both.
Collapse
Affiliation(s)
- Shangxian Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xinlei Ma
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Renwei Qing
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yadan Yu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junjie Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
9
|
Kania K, Drożak A, Borkowski A, Działak P, Majcher K, Sawicka PD, Zienkiewicz M. Mechanisms of temperature acclimatisation in the psychrotolerant green alga Coccomyxa subellipsoidea C-169 (Trebouxiophyceae). PHYSIOLOGIA PLANTARUM 2023; 175:e14034. [PMID: 37882306 DOI: 10.1111/ppl.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
Despite the interest in different temperature acclimatisations of higher plants, few studies have considered the mechanisms that allow psychrotolerant microalgae to live in a cold environment. Although the analysis of the genomes of some algae revealed the presence of specific genes that encode enzymes that can be involved in the response to stress, this area has not been explored deeply. This work aims to clarify the acclimatisation mechanisms that enable the psychrotolerant green alga Coccomyxa subellipsoidea C-169 to grow in a broad temperature spectrum. The contents of various biochemical compounds in cells, the lipid composition of the biological membranes of entire cells, and the thylakoid fraction as well as the electron transport rate and PSII efficiency were investigated. The results demonstrate an acclimatisation mechanism that is specific for C. subellipsoidea and that allows the maintenance of appropriate membrane fluidity, for example, in thylakoid membranes. It is achieved almost exclusively by changes within the unsaturated fatty acid pool, like changes from C18:2 into C18:3 and C16:2 into C16:3 or vice versa. This ensures, for example, an effective transport rate through PSII and in consequence a maximum quantum yield of it in cells growing at different temperatures. Furthermore, reactions characteristic for both psychrotolerant and mesophilic microalgae, involving the accumulation of lipids and soluble sugars in cells at temperatures other than optimal, were observed. These findings add substantially to our understanding of the acclimatisation of psychrotolerant organisms to a wide range of temperatures and prove that this process could be accomplished in a species-specific manner.
Collapse
Affiliation(s)
- Kinga Kania
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Drożak
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Borkowski
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Paweł Działak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Katarzyna Majcher
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paulina D Sawicka
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maksymilian Zienkiewicz
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Yuorieva N, Sinetova M, Messineva E, Kulichenko I, Fomenkov A, Vysotskaya O, Osipova E, Baikalova A, Prudnikova O, Titova M, Nosov AV, Popova E. Plants, Cells, Algae, and Cyanobacteria In Vitro and Cryobank Collections at the Institute of Plant Physiology, Russian Academy of Sciences-A Platform for Research and Production Center. BIOLOGY 2023; 12:838. [PMID: 37372123 DOI: 10.3390/biology12060838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Ex situ collections of algae, cyanobacteria, and plant materials (cell cultures, hairy and adventitious root cultures, shoots, etc.) maintained in vitro or in liquid nitrogen (-196 °C, LN) are valuable sources of strains with unique ecological and biotechnological traits. Such collections play a vital role in bioresource conservation, science, and industry development but are rarely covered in publications. Here, we provide an overview of five genetic collections maintained at the Institute of Plant Physiology of the Russian Academy of Sciences (IPPRAS) since the 1950-1970s using in vitro and cryopreservation approaches. These collections represent different levels of plant organization, from individual cells (cell culture collection) to organs (hairy and adventitious root cultures, shoot apices) to in vitro plants. The total collection holdings comprise more than 430 strains of algae and cyanobacteria, over 200 potato clones, 117 cell cultures, and 50 strains of hairy and adventitious root cultures of medicinal and model plant species. The IPPRAS plant cryobank preserves in LN over 1000 specimens of in vitro cultures and seeds of wild and cultivated plants belonging to 457 species and 74 families. Several algae and plant cell culture strains have been adapted for cultivation in bioreactors from laboratory (5-20-L) to pilot (75-L) to semi-industrial (150-630-L) scale for the production of biomass with high nutritive or pharmacological value. Some of the strains with proven biological activities are currently used to produce cosmetics and food supplements. Here, we provide an overview of the current collections' composition and major activities, their use in research, biotechnology, and commercial application. We also highlight the most interesting studies performed with collection strains and discuss strategies for the collections' future development and exploitation in view of current trends in biotechnology and genetic resources conservation.
Collapse
Affiliation(s)
- Natalya Yuorieva
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Maria Sinetova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Ekaterina Messineva
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Irina Kulichenko
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Artem Fomenkov
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Olga Vysotskaya
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Ekaterina Osipova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Angela Baikalova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Olga Prudnikova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Maria Titova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Alexander V Nosov
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Elena Popova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
11
|
Lobakova E, Gorelova O, Selyakh I, Semenova L, Scherbakov P, Vasilieva S, Zaytsev P, Shibzukhova K, Chivkunova O, Baulina O, Solovchenko A. Failure of Micractinium simplicissimum Phosphate Resilience upon Abrupt Re-Feeding of Its Phosphorus-Starved Cultures. Int J Mol Sci 2023; 24:ijms24108484. [PMID: 37239835 DOI: 10.3390/ijms24108484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Microalgae are naturally adapted to the fluctuating availability of phosphorus (P) to opportunistically uptake large amounts of inorganic phosphate (Pi) and safely store it in the cell as polyphosphate. Hence, many microalgal species are remarkably resilient to high concentrations of external Pi. Here, we report on an exception from this pattern comprised by a failure of the high Pi-resilience in strain Micractinium simplicissimum IPPAS C-2056 normally coping with very high Pi concentrations. This phenomenon occurred after the abrupt re-supplementation of Pi to the M. simplicissimum culture pre-starved of P. This was the case even if Pi was re-supplemented in a concentration far below the level toxic to the P-sufficient culture. We hypothesize that this effect can be mediated by a rapid formation of the potentially toxic short-chain polyphosphate following the mass influx of Pi into the P-starved cell. A possible reason for this is that the preceding P starvation impairs the capacity of the cell to convert the newly absorbed Pi into a "safe" storage form of long-chain polyphosphate. We believe that the findings of this study can help to avoid sudden culture crashes, and they are also of potential significance for the development of algae-based technologies for the efficient bioremoval of P from P-rich waste streams.
Collapse
Affiliation(s)
- Elena Lobakova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Komsomolskaya Square 5, 392008 Tambov, Russia
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | - Irina Selyakh
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | - Larisa Semenova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | - Pavel Scherbakov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | - Svetlana Vasilieva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Komsomolskaya Square 5, 392008 Tambov, Russia
| | - Petr Zaytsev
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Komsomolskaya Square 5, 392008 Tambov, Russia
| | - Karina Shibzukhova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | - Olga Chivkunova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | - Olga Baulina
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Komsomolskaya Square 5, 392008 Tambov, Russia
| |
Collapse
|
12
|
Baldisserotto C, Demaria S, Arcidiacono M, Benà E, Giacò P, Marchesini R, Ferroni L, Benetti L, Zanella M, Benini A, Pancaldi S. Enhancing Urban Wastewater Treatment through Isolated Chlorella Strain-Based Phytoremediation in Centrate Stream: An Analysis of Algae Morpho-Physiology and Nutrients Removal Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:1027. [PMID: 36903888 PMCID: PMC10004828 DOI: 10.3390/plants12051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The release of inadequately treated urban wastewater is the main cause of environmental pollution of aquatic ecosystems. Among efficient and environmentally friendly technologies to improve the remediation process, those based on microalgae represent an attractive alternative due to the potential of microalgae to remove nitrogen (N) and phosphorus (P) from wastewaters. In this work, microalgae were isolated from the centrate stream of an urban wastewater treatment plant and a native Chlorella-like species was selected for studies on nutrient removal from centrate streams. Comparative experiments were set up using 100% centrate and BG11 synthetic medium, modified with the same N and P as the effluent. Since microalgal growth in 100% effluent was inhibited, cultivation of microalgae was performed by mixing tap-freshwater with centrate at increasing percentages (50%, 60%, 70%, and 80%). While algal biomass and nutrient removal was little affected by the differently diluted effluent, morpho-physiological parameters (FV/FM ratio, carotenoids, chloroplast ultrastructure) showed that cell stress increased with increasing amounts of centrate. However, the production of an algal biomass enriched in carotenoids and P, together with N and P abatement in the effluent, supports promising microalgae applications that combine centrate remediation with the production of compounds of biotechnological interest; for example, for organic agriculture.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Michela Arcidiacono
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Elisa Benà
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Pierluigi Giacò
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Roberta Marchesini
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Linda Benetti
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy
| | - Marcello Zanella
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy
| | - Alessio Benini
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
- Terra&Acqua Tech Laboratory, Technopole of the University of Ferrara, Via Saragat, 13, 44122 Ferrara, Italy
| |
Collapse
|
13
|
Baldisserotto C, Gentili V, Rizzo R, Di Donna C, Ardondi L, Maietti A, Pancaldi S. Characterization of Neochloris oleoabundans under Different Cultivation Modes and First Results on Bioactivity of Its Extracts against HCoV-229E Virus. PLANTS (BASEL, SWITZERLAND) 2022; 12:26. [PMID: 36616154 PMCID: PMC9823352 DOI: 10.3390/plants12010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Microalgae are proposed in several biotechnological fields because of their ability to produce biomass enriched in high-value compounds according to cultivation conditions. Regarding the health sector, an emerging area focuses on natural products exploitable against viruses. This work deals with the characterization of the green microalga Neochloris oleoabundans cultivated under autotrophic and mixotrophic conditions as a source of whole aqueous extracts, tested as antivirals against HCoV-229E (Coronaviridae family). Glucose was employed for mixotrophic cultures. Growth and maximum quantum yield of photosystem II were monitored for both cultivations. Algae extracts for antiviral tests were prepared using cultures harvested at the early stationary phase of growth. Biochemical and morphological analyses of algae indicated a different content of the most important classes of bioactive compounds with antiviral properties (lipids, exo-polysaccharides, and total phenolics, proteins and pigments). To clarify which phase of HCoV-229E infection on MRC-5 fibroblast cells was affected by N. oleoabundans extracts, four conditions were tested. Extracts gave excellent results, mainly against the first steps of virus infection. Notwithstanding the biochemical profile of algae/extracts deserves further investigation, the antiviral effect may have been mainly promoted by the combination of proteins/pigments/phenolics for the extract derived from autotrophic cultures and of proteins/acidic exo-polysaccharides/lipids in the case of mixotrophic ones.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Chiara Di Donna
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Luna Ardondi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Pandey S, Archana G, Bagchi D. Micro-Raman spectroscopy of the light-harvesting pigments in Chlamydomonas reinhardtii under salinity stress. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121613. [PMID: 35853253 DOI: 10.1016/j.saa.2022.121613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are a rich source of carotenoids with enhanced yields during biotic or abiotic stresses, which often impose survival challenges on the cells. Using a non-invasive pigment profiling approach with micro-Raman spectroscopy, we have analyzed the effect of salinity stress on carotenoids in autotrophic Chlamydomonas reinhardtii. Raman spectral analysis of ν(C = C) mode indicates an increase in the carotenoids with lower conjugation length (lutein and zeaxanthin) compared to β-carotene, as the function of culture age and salinity stress, but especially when salinity stress was imposed in two-stage mode (stress imposed on 2nd day, D2_100, and 4th day, D4_100, during exponential phase). Population-scale heterogeneities in carotenoid Raman mode peak center, quantified with heterogeneity index (HI), were highest during the stationary phase of the cultures and under salinity stress. Although the Raman signal was obtained from a randomly selected small focal volume in the cell, a decrease in chlorophyll Raman mode intensities with age and salinity stress was well corroborated by single-cell population fraction measurements by microscopy. Raman intensity fluctuations (If) were high for both chlorophyll and carotenoid modes under salinity stress, which can arise due to variations in chlorophyll/carotenoid content and composition, or conformational changes in the pigments in C. reinhardtii cells. Interestingly, in all growth conditions, chlorophyll a Raman mode intensity was found to show a high correlation to that of β-carotene, pointing out a high degree of cooperativity in the light-harvesting complex pigments even during salinity stress. Thus, we demonstrate the usefulness of non-invasive pigment profiling with micro-Raman spectroscopy for developing an optimization for salinity stress conditions for high biomass yield and proper harvest time to obtain carotenoids with desired chemical composition.
Collapse
Affiliation(s)
- Shubhangi Pandey
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - G Archana
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| | - Debjani Bagchi
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
15
|
Yesilay G, Hazeem L, Bououdina M, Cetin D, Suludere Z, Barras A, Boukherroub R. Influence of graphene oxide on the toxicity of polystyrene nanoplastics to the marine microalgae Picochlorum sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75870-75882. [PMID: 35661310 DOI: 10.1007/s11356-022-21195-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO) features distinctive physical and chemical characteristics; therefore, it has been intensively investigated in environmental remediation as a promising material for clean-up of soil contamination and water purification and used as immobilization material. Plastic is a widespread pollutant, and its breakdown products such as nanoplastics (NPs) should be evaluated for potential harmful effects. This study is aimed to evaluate the influence of GO on the toxicity of polystyrene (PS) NPs to the marine microalgae Picochlorum sp. over a period of 4 weeks. The capability of GO to reduce the toxic effects of PS NPs was assessed through investigating exposure sequence of GO in the presence of 20 nm diameter-sized polystyrene NPs. This was accomplished through five test groups: microalgae pre-exposed to GO prior to incubation with PS NPs, microalgae post-exposed to GO after incubation with PS NPs, microalgae simultaneously exposed to GO and PS NPs, and individual exposure of microalgae to either GO or PS NPs. Cytotoxicity assay results demonstrated that microalgae pre-exposed to GO prior to incubation with PS NPs showed an increased viability and chlorophyll a content. The pre-exposure to GO has reduced the growth inhibition rate (IR) from 50%, for microalgae simultaneously exposed to GO and PS NPs, to 26%, for microalgae pre-exposed to GO. Moreover, the lowest level of reactive oxygen species (ROS) was recorded for microalgae exposed to GO only and microalgae pre-exposed to GO. Fourier-transform infrared (FTIR) analysis, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) observations revealed some morphological changes of both algae and their extracellular polymeric substances (EPS) upon GO and PS NPs exposure combinations. The sequence of GO exposure to aquatic microorganisms might affect the level of harm caused by the PS NPs. Therefore, application of GO as part of an immobilization material and in the removal of pollutants from water should be carefully investigated using different pollutants and aquatic organisms.
Collapse
Affiliation(s)
- Gamze Yesilay
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences-Turkey, Istanbul, 34668, Turkey.
| | - Layla Hazeem
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq, 32038, Kingdom of Bahrain
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Demet Cetin
- Department of Mathematics and Science Education, Gazi Faculty of Education, Gazi University, 06500, Ankara, Turkey
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, 06500, Ankara, Turkey
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520- IEMN, 59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520- IEMN, 59000, Lille, France
| |
Collapse
|
16
|
Photosynthetic and ultrastructural responses of the chlorophyte Lobosphaera to the stress caused by a high exogenic phosphate concentration. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2035-2051. [PMID: 35918586 DOI: 10.1007/s43630-022-00277-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Biotechnology of microalgae holds promise for sustainable using of phosphorus, a finite non-renewable resource. Responses of the green microalga Lobosphaera sp. IPPAS C-2047 to elevated inorganic phosphate (Pi) concentrations were studied. Polyphosphate (PolyP) accumulation and ultrastructural rearrangements were followed in Lobosphaera using light and electron microscopy and linked to the responses of the photosynthetic apparatus probed with chlorophyll fluorescence. High tolerance of Lobosphaera to ≤ 50 g L-1 Pi was accompanied by a retention of photosynthetic activity and specific induction of non-photochemical quenching (NPQ up to 4; Fv/Fm around 0.7). Acclimation of the Lobosphaera to the high Pi was accompanied by expansion of the thylakoid lumen and accumulation of the carbon-rich compounds. The toxic effect of the extremely high (100 g L-1) Pi inhibited the growth by ca. 60%, induced a decline in photosynthetic activity and NPQ along with contraction of the lumen, destruction of the thylakoids, and depletion of starch reserves. The Lobosphaera retained viability at the Pi in the range of 25-100 g L-1 showing moderate an increase of intracellular P content (to 4.6% cell dry weight). During the initial high Pi exposure, the vacuolar PolyP biosynthesis in Lobosphaera was impaired but recovered upon acclimation. Synthesis of abundant non-vacuolar PolyP inclusions was likely a manifestation of the emergency acclimation of the cells converting the Pi excess to less metabolically active PolyP. We conclude that the remarkable Pi tolerance of Lobosphaera IPPAS C-2047 is determined by several mechanisms including rapid conversion of the exogenic Pi into metabolically safe PolyP, the acclamatory changes in the cell population structure. Possible involvement of NPQ in the high Pi resilience of the Lobosphaera is discussed.
Collapse
|
17
|
Zaytseva A, Chekanov K, Zaytsev P, Bakhareva D, Gorelova O, Kochkin D, Lobakova E. Sunscreen Effect Exerted by Secondary Carotenoids and Mycosporine-like Amino Acids in the Aeroterrestrial Chlorophyte Coelastrella rubescens under High Light and UV-A Irradiation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122601. [PMID: 34961072 PMCID: PMC8704241 DOI: 10.3390/plants10122601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
The microalga Coelastrella rubescens dwells in habitats with excessive solar irradiation; consequently, it must accumulate diverse compounds to protect itself. We characterized the array of photoprotective compounds in C. rubescens. Toward this goal, we exposed the cells to high fluxes of visible light and UV-A and analyzed the ability of hydrophilic and hydrophobic extracts from the cells to absorb radiation. Potential light-screening compounds were profiled by thin layer chromatography and UPLC-MS. Coelastrella accumulated diverse carotenoids that absorbed visible light in the blue-green part of the spectrum and mycosporine-like amino acids (MAA) that absorbed the UV-A. It is the first report on the occurrence of MAA in Coelastrella. Two new MAA, named coelastrin A and coelastrin B, were identified. Transmission electron microscopy revealed the development of hydrophobic subcompartments under the high light and UV-A exposition. We also evaluate and discuss sporopollenin-like compounds in the cell wall and autophagy-like processes as the possible reason for the decrease in sunlight absorption by cells, in addition to inducible sunscreen accumulation. The results suggested that C. rubescens NAMSU R1 accumulates a broad range of valuable photoprotective compounds in response to UV-A and visible light irradiation, which indicates this strain as a potential producer for biotechnology.
Collapse
Affiliation(s)
- Anna Zaytseva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
| | - Konstantin Chekanov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
- Centre for Humanities Research and Technology, National Research Nuclear University MEPhI, 31 Kashirskoye Highway, 115522 Moscow, Russia
- Correspondence:
| | - Petr Zaytsev
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
- N.N. Semyonov Federal Research Center for Chemical Physics, Russian Academy of Science, 4 Kosygina Street, Building 1, 119192 Moscow, Russia
| | - Daria Bakhareva
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
| | - Dmitry Kochkin
- Department of Plant Physiology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia;
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Elena Lobakova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119192 Moscow, Russia; (A.Z.); (P.Z.); (D.B.); (O.G.); (E.L.)
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
18
|
Kokabi K, Gorelova O, Zorin B, Didi-Cohen S, Itkin M, Malitsky S, Solovchenko A, Boussiba S, Khozin-Goldberg I. Lipidome Remodeling and Autophagic Respose in the Arachidonic-Acid-Rich Microalga Lobosphaera incisa Under Nitrogen and Phosphorous Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:614846. [PMID: 33329680 PMCID: PMC7728692 DOI: 10.3389/fpls.2020.614846] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
The green microalga Lobosphaera incisa accumulates triacylglycerols (TAGs) with exceptionally high levels of long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid (ARA) under nitrogen (N) deprivation. Phosphorous (P) deprivation induces milder changes in fatty acid composition, cell ultrastructure, and growth performance. We hypothesized that the resource-demanding biosynthesis and sequestration of ARA-rich TAG in lipid droplets (LDs) are associated with the enhancement of catabolic processes, including membrane lipid turnover and autophagic activity. Although this work focuses mainly on N deprivation, a comparative analysis of N and P deprivation responses is included. The results of lipidomic profiling showed a differential impact of N and P deprivation on the reorganization of glycerolipids. The formation of TAG under N deprivation was associated with the enhanced breakdown of chloroplast glycerolipids and the formation of lyso-lipids. N-deprived cells displayed a profound reorganization of cell ultrastructure, including internalization of cellular material into autophagic vacuoles, concomitant with the formation of LDs, while P-deprived cells showed better cellular ultrastructural integrity. The expression of the hallmark autophagy protein ATG8 and the major lipid droplet protein (MLDP) genes were coordinately upregulated, but to different extents under either N or P deprivation. The expression of the Δ5-desaturase gene, involved in the final step of ARA biosynthesis, was coordinated with ATG8 and MLDP, exclusively under N deprivation. Concanamycin A, the inhibitor of vacuolar proteolysis and autophagic flux, suppressed growth and enhanced levels of ATG8 and TAG in N-replete cells. The proportions of ARA in TAG decreased with a concomitant increase in oleic acid under both N-replete and N-deprived conditions. The photosynthetic apparatus's recovery from N deprivation was impaired in the presence of the inhibitor, along with the delayed LD degradation. The GFP-ATG8 processing assay showed the release of free GFP in N-replete and N-deprived cells, supporting the existence of autophagic flux. This study provides the first insight into the homeostatic role of autophagy in L. incisa and points to a possible metabolic link between autophagy and ARA-rich TAG biosynthesis.
Collapse
Affiliation(s)
- Kamilya Kokabi
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
| | - Boris Zorin
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Shoshana Didi-Cohen
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Tambov, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
19
|
Kokabi K, Gorelova O, Ismagulova T, Itkin M, Malitsky S, Boussiba S, Solovchenko A, Khozin-Goldberg I. Metabolomic foundation for differential responses of lipid metabolism to nitrogen and phosphorus deprivation in an arachidonic acid-producing green microalga. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:95-115. [PMID: 31128719 DOI: 10.1016/j.plantsci.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/05/2019] [Accepted: 02/11/2019] [Indexed: 05/08/2023]
Abstract
The green oleaginous microalga Lobosphaera incisa accumulates storage lipids triacylglycerols (TAG) enriched in the long-chain polyunsaturated fatty acid arachidonic acid under nitrogen (N) deprivation. In contrast, under phosphorous (P) deprivation, the production of the monounsaturated oleic acid prevails. We compared physiological responses, ultrastructural, and metabolic consequences of L. incisa acclimation to N and P deficiency to provide novel insights into the key determinants of ARA accumulation. Differential responses to nutrient deprivation on growth performance, carbon-to-nitrogen stoichiometry, membrane lipid composition and TAG accumulation were demonstrated. Ultrastructural analyses suggested a dynamic role for vacuoles in sustaining cell homeostasis under conditions of different nutrient availability and their involvement in autophagy in L. incisa. Paralleling ARA-rich TAG accumulation in lipid droplets, N deprivation triggered intensive chloroplast dismantling and promoted catabolic processes. Metabolome analysis revealed depletion of amino acids and pyrimidines, and repression of numerous biosynthetic hubs to favour TAG biosynthesis under N deprivation. Under P deprivation, despite the relatively low growth penalties, the presence of the endogenous P reserves and the characteristic lipid remodelling, metabolic signatures of energy deficiency were revealed. Metabolome adjustments to P deprivation included depletion in ATP and phosphorylated nucleotides, increased levels of TCA-cycle intermediates and osmoprotectants. We conclude that characteristic cellular and metabolome adjustments tailor the adaptive responses of L. incisa to N and P deprivation modulating its LC-PUFA production.
Collapse
Affiliation(s)
- Kamilya Kokabi
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Tatiana Ismagulova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia; Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel.
| |
Collapse
|
20
|
|