1
|
Yousefian Naeini Z, Esfandiari N, Hashemi M, Hushmandi K, Arbabian S, Entezari M. Introduced the ITGB1-DT as a novel biomarker associated with five potential drugs using bioinformatics analysis of breast cancer proteomics data and RT-PCR. Mol Cell Probes 2023; 71:101930. [PMID: 37690573 DOI: 10.1016/j.mcp.2023.101930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Breast cancer (BC) has been identified as a significant contributor to the rising number of female cancer deaths. As, it has become clear that breast cancer development depends on the interplay of several biological factors against a single molecule. This research aimed to use proteomics to gain a regulatory and metabolic understanding of BC pathophysiology. METHOD For the study, a breast cancer proteomics dataset was downloaded from ProteomeXchange and then analyzed by employing MaxQuant and Perseus. Functional enrichment analysis through Metascape and Cytoscape software showed DEPs related biomedical phenomena with potential abruption. The expression of selected lncRNA in terms of the highest connectivity parameters was then quantitatively assessed through RT-PCR in 30 tumor tissues of breast cancer patients, as compared to the adjacent healthy ones. RESULT The results indicated that among the 3048 identified proteins, 1149 were differentially expressed, which could be mainly enriched in several key terms. Furthermore, the obtained findings revealed that ITGB1-DT was significantly overexpressed in tumor tissues. Moreover, we found five potential compounds that could be attributed to ITGB1-DT targets (ATN-161, Firategrast, SB-683698, dabigatran-etexilate, and tranexamic-acid). CONCLUSION These analyses proposed that ITGB1-DT could be employed as a differentiated factor to identify breast tumor tissues in healthy samples. Besides this, Firategrast could be introduced as a potential remedial agent for breast cancer patients. Overall, from the analysis of a proteomics dataset, an integrative map was generated, and a novel biomarker that may have been implicated in the early detection of BC was introduced.
Collapse
Affiliation(s)
- Zahra Yousefian Naeini
- Department of Cellular and Molecular, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sedighe Arbabian
- Department of Cellular and Molecular, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Dumitru AV, Stoica EE, Covache-Busuioc RA, Bratu BG, Cirstoiu MM. Unraveling the Intricate Link: Deciphering the Role of the Golgi Apparatus in Breast Cancer Progression. Int J Mol Sci 2023; 24:14073. [PMID: 37762375 PMCID: PMC10531533 DOI: 10.3390/ijms241814073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer represents a paramount global health challenge, warranting intensified exploration of the molecular underpinnings influencing its progression to facilitate the development of precise diagnostic instruments and customized therapeutic regimens. Historically, the Golgi apparatus has been acknowledged for its primary role in protein sorting and trafficking within cellular contexts. However, recent findings suggest a potential link between modifications in Golgi apparatus function and organization and the pathogenesis of breast cancer. This review delivers an exhaustive analysis of this correlation. Specifically, we examine the consequences of disrupted protein glycosylation, compromised protein transport, and inappropriate oncoprotein processing on breast cancer cell dynamics. Furthermore, we delve into the impacts of Golgi-mediated secretory routes on the release of pro-tumorigenic factors during the course of breast cancer evolution. Elucidating the nuanced interplay between the Golgi apparatus and breast cancer can pave the way for innovative therapeutic interventions and the discovery of biomarkers, potentially enhancing the diagnostic, prognostic, and therapeutic paradigms for afflicted patients. The advancement of such research could substantially expedite the realization of these objectives.
Collapse
Affiliation(s)
- Adrian Vasile Dumitru
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Evelina-Elena Stoica
- Department of Obstetrics and Gynaecology, University Emergency Hospital, 050098 Bucharest, Romania;
| | | | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica-Mihaela Cirstoiu
- Department of Obstetrics and Gynaecology, University Emergency Hospital, 050098 Bucharest, Romania;
- Department of Obstetrics and Gynaecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Vlad DB, Dumitrascu DI, Dumitrascu AL. Golgi's Role in the Development of Possible New Therapies in Cancer. Cells 2023; 12:1499. [PMID: 37296620 PMCID: PMC10252985 DOI: 10.3390/cells12111499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The Golgi apparatus is an important organelle found in most eukaryotic cells. It plays a vital role in the processing and sorting of proteins, lipids and other cellular components for delivery to their appropriate destinations within the cell or for secretion outside of the cell. The Golgi complex also plays a role in the regulation of protein trafficking, secretion and post-translational modifications, which are significant in the development and progression of cancer. Abnormalities in this organelle have been observed in various types of cancer, although research into chemotherapies that target the Golgi apparatus is still in its early stages. There are a few promising approaches that are being investigated: (1) Targeting the stimulator of interferon genes protein: The STING pathway senses cytosolic DNA and activates several signaling events. It is regulated by numerous post-translational modifications and relies heavily on vesicular trafficking. Based on some observations which state that a decreased STING expression is present in some cancer cells, agonists for the STING pathway have been developed and are currently being tested in clinical trials, showing encouraging results. (2) Targeting glycosylation: Altered glycosylation, which refers to changes in the carbohydrate molecules that are attached to proteins and lipids in cells, is a common feature of cancer cells, and there are several methods that thwart this process. For example, some inhibitors of glycosylation enzymes have been shown to reduce tumor growth and metastasis in preclinical models of cancer. (3) Targeting Golgi trafficking: The Golgi apparatus is responsible for the sorting and trafficking of proteins within the cell, and disrupting this process may be a potential therapeutic approach for cancer. The unconventional protein secretion is a process that occurs in response to stress and does not require the involvement of the Golgi organelles. P53 is the most frequently altered gene in cancer, dysregulating the normal cellular response to DNA damage. The mutant p53 drives indirectly the upregulation of the Golgi reassembly-stacking protein 55kDa (GRASP55). Through the inhibition of this protein in preclinical models, the reduction of the tumoral growth and metastatic capacity have been obtained successfully. This review supports the hypothesis that the Golgi apparatus may be the target of cytostatic treatment, considering its role in the molecular mechanisms of the neoplastic cells.
Collapse
Affiliation(s)
- Dragos-Bogdan Vlad
- Emergency Clinical Hospital of Saint Pantelimon, 021659 Bucharest, Romania;
| | - David-Ioan Dumitrascu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alina-Laura Dumitrascu
- Emergency Clinical Hospital of Saint Pantelimon, 021659 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
4
|
Khan SU, Khan MU, Gao Y, Khan MI, Puswal SM, Zubair M, Khan MA, Farwa R, Gao S, Ali R, Hussain N. Unique therapeutic potentialities of exosomes based nanodrug carriers to target tumor microenvironment in cancer therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Bajaj R, Rodriguez BL, Russell WK, Warner AN, Diao L, Wang J, Raso MG, Lu W, Khan K, Solis LS, Batra H, Tang X, Fradette JF, Kundu ST, Gibbons DL. Impad1 and Syt11 work in an epistatic pathway that regulates EMT-mediated vesicular trafficking to drive lung cancer invasion and metastasis. Cell Rep 2022; 40:111429. [PMID: 36170810 PMCID: PMC9665355 DOI: 10.1016/j.celrep.2022.111429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is a highly aggressive and metastatic disease responsible for approximately 25% of all cancer-related deaths in the United States. Using high-throughput in vitro and in vivo screens, we have previously established Impad1 as a driver of lung cancer invasion and metastasis. Here we elucidate that Impad1 is a direct target of the epithelial microRNAs (miRNAs) miR-200 and miR∼96 and is de-repressed during epithelial-to-mesenchymal transition (EMT); thus, we establish a mode of regulation of the protein. Impad1 modulates Golgi apparatus morphology and vesicular trafficking through its interaction with a trafficking protein, Syt11. These changes in Golgi apparatus dynamics alter the extracellular matrix and the tumor microenvironment (TME) to promote invasion and metastasis. Inhibiting Impad1 or Syt11 disrupts the cancer cell secretome, regulates the TME, and reverses the invasive or metastatic phenotype. This work identifies Impad1 as a regulator of EMT and secretome-mediated changes during lung cancer progression.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amanda N Warner
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Khaja Khan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Luisa S Solis
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jared F Fradette
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Tang YC, Powell RT, Gottlieb A. Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts. Sci Rep 2022; 12:16109. [PMID: 36168036 PMCID: PMC9515168 DOI: 10.1038/s41598-022-20646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Computational models have been successful in predicting drug sensitivity in cancer cell line data, creating an opportunity to guide precision medicine. However, translating these models to tumors remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity predicting models from large-scale cancer cell lines to both tumors and patient derived xenografts based on molecular pathways derived from genomic features. We further compute feature importance to identify pathways most important to drug response prediction. We obtained good performance on tumors (AUROC = 0.77) and patient derived xenografts from triple negative breast cancers (RMSE = 0.11). Using feature importance, we highlight the association between ER-Golgi trafficking pathway in everolimus sensitivity within breast cancer patients and the role of class II histone deacetylases and interlukine-12 in response to drugs for triple-negative breast cancer. Pathway information support transfer of drug response prediction models from cell lines to tumors and can provide biological interpretation underlying the predictions, serving as a steppingstone towards usage in clinical setting.
Collapse
Affiliation(s)
- Yi-Ching Tang
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Reid T. Powell
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Texas A&M University, Houston, TX 77030 USA
| | - Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
8
|
Wang H, Xu H, Chen W, Cheng M, Zou L, Yang Q, Chan CB, Zhu H, Chen C, Nie JY, Jiao B. Rab13 sustains breast cancer stem cells by supporting tumor-stroma crosstalk. Cancer Res 2022; 82:2124-2140. [PMID: 35395074 DOI: 10.1158/0008-5472.can-21-4097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
Cancer stem cells (CSC) are supported by the tumor microenvironment, and non-CSCs can regain CSC phenotypes in certain niches, leading to limited clinical benefits of CSC-targeted therapy. A better understanding of the mechanisms governing the orchestration of the CSC niche could help improve the therapeutic targeting of CSCs. Here, we report that Rab13, a small GTPase, is highly expressed in breast CSCs (BCSCs). Rab13 depletion suppressed breast cancer cell stemness, tumorigenesis, and chemoresistance by reducing tumor-stroma crosstalk. Accordingly, Rab13 controlled the membrane translocation of CXCR1/2, allowing tumor cells to interact with tumor-associated macrophages and cancer-associated fibroblasts to establish a supportive BCSC niche. Targeting the Rab13-mediated BCSC niche with bardoxolone-methyl (CDDO-Me) prevented BCSC stemness in vitro and in vivo. These findings highlight the novel regulatory mechanism of Rab13 in BCSC, with important implications for the development of therapeutic strategies for disrupting the BCSC niche.
Collapse
Affiliation(s)
- Hui Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Haibo Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China., Shenzhen, Guangdong, China
| | - Wei Chen
- Kunming Institute of Zoology, Chinese Academy of Sciences, China
| | - Mei Cheng
- Kunming Institute of Zoology, Chinese Academy of Sciences, China
| | - Li Zou
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qin Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Hao Zhu
- Southern Medical University, Guangzhou, China
| | - Ceshi Chen
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jian-Yun Nie
- The Third Affiliated Hospital of Kunming Medical University, KUNMING, Yunnan, China
| | - Baowei Jiao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
9
|
Del Moral-Morales A, González-Orozco JC, Hernández-Vega AM, Hernández-Ortega K, Peña-Gutiérrez KM, Camacho-Arroyo I. EZH2 Mediates Proliferation, Migration, and Invasion Promoted by Estradiol in Human Glioblastoma Cells. Front Endocrinol (Lausanne) 2022; 13:703733. [PMID: 35197928 PMCID: PMC8859835 DOI: 10.3389/fendo.2022.703733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive brain tumors. 17β-estradiol (E2) increases proliferation, migration, and invasion of human GBM cells; however underlying mechanisms are no fully understood. Zeste 2 Enhancer Homologous enzyme (EZH2) is a methyltransferase part of Polycomb 2 repressor complex (PRC2). In GBM, EZH2 is overexpressed and involved in the cell cycle, migration, and invasion processes. We studied the role of EZH2 in the pro-oncogenic actions of E2 in human GBM cells. EZH2 gene silencing and pharmacological inhibition of EZH2 blocked proliferation, migration, and invasion of GBM cells induced by E2. We identified in silico additional putative estrogen response elements (EREs) at the EZH2 promoter, but E2 did not modify EZH2 expression. In silico analysis also revealed that among human GBM samples, EZH2 expression was homogeneous; in contrast, the heterogeneous expression of estrogen receptors (ERs) allowed the classification of the samples into groups. Even in the GBM cluster with high expression of ERs and those of their target genes, the expression of PCR2 target genes did not change. Overall, our data suggest that in GBM cells, pro-oncogenic actions of E2 are mediated by EZH2, without changes in EZH2 expression and by mechanisms that appear to be unrelated to the transcriptional activity of ERs.
Collapse
Affiliation(s)
- Aylin Del Moral-Morales
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Ana María Hernández-Vega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Karina Hernández-Ortega
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Karla Mariana Peña-Gutiérrez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
10
|
Liu J, Zhang W, Cai W, Chen Y, Cai X, Tang D, Tang M, Dai Y. Multi-Omics Analyses Revealed GOLT1B as a Potential Prognostic Gene in Breast Cancer Probably Regulating the Immune Microenvironment. Front Oncol 2022; 11:805273. [PMID: 35127514 PMCID: PMC8815109 DOI: 10.3389/fonc.2021.805273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
As recently reported by The International Agency for Research on Cancer (IARC), breast cancer has the highest incidence of all cancers in 2020. Many studies have revealed that golgi apparatus is closely associated with the development of breast cancer. However, the role of golgi apparatus in immune microenvironment is still not clear. In this study, using RNA-Seq datasets of breast cancer patients from the public database (n = 1080), we revealed that GOLT1B, encoding a golgi vesicle transporter protein, was significantly higher expressed in human breast cancer tissues versus normal tissues. Besides, we verified GOLT1B expression in five breast cancer cell line using our original data and found GOLT1B was significantly up-regulated in MDA-MB-231, MCF-7, SKBR3. Subsequently, we identified GOLT1B as a potential independent prognostic factor for breast cancer. After a multi-omics analysis, we uncovered that the higher expression of GOLT1B in breast cancer tissues versus normal tissues might be due to the amplification of GOLT1B and altered phosphorylation of its potential transcriptional factors, including JUN and SIN3A. Subsequently, we discovered that GOLT1B potentially regulated the immune microenvironment basing on the finding that its expression was closely related to the tumor microenvironment score and infiltration of immune cells. Moreover, we revealed that GOLT1B might affect the overall survival rates of breast cancer through regulating the immune cell infiltration. Finally, we disclosed the potential pathways involved in the functions of GOLT1B in breast cancer, including metabolism and ECM-receptor interaction pathways. To sum up, we identified GOLT1B as a potential prognostic gene for breast cancer and disclosed its role in regulating the immune microenvironment.
Collapse
Affiliation(s)
- Junping Liu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Yumei Chen
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaozhong Cai
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- *Correspondence: Donge Tang, ; Min Tang, ; Yong Dai, ;
| | - Min Tang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Donge Tang, ; Min Tang, ; Yong Dai, ;
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- *Correspondence: Donge Tang, ; Min Tang, ; Yong Dai, ;
| |
Collapse
|
11
|
Suprunenko EA, Sazonova EA, Vasiliev AV. Extracellular Vesicles of Pluripotent Stem Cells. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Nadeau R, Byvsheva A, Lavallée-Adam M. PIGNON: a protein-protein interaction-guided functional enrichment analysis for quantitative proteomics. BMC Bioinformatics 2021; 22:302. [PMID: 34088263 PMCID: PMC8178832 DOI: 10.1186/s12859-021-04042-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Quantitative proteomics studies are often used to detect proteins that are differentially expressed across different experimental conditions. Functional enrichment analyses are then typically used to detect annotations, such as biological processes that are significantly enriched among such differentially expressed proteins to provide insights into the molecular impacts of the studied conditions. While common, this analytical pipeline often heavily relies on arbitrary thresholds of significance. However, a functional annotation may be dysregulated in a given experimental condition, while none, or very few of its proteins may be individually considered to be significantly differentially expressed. Such an annotation would therefore be missed by standard approaches. Results Herein, we propose a novel graph theory-based method, PIGNON, for the detection of differentially expressed functional annotations in different conditions. PIGNON does not assess the statistical significance of the differential expression of individual proteins, but rather maps protein differential expression levels onto a protein–protein interaction network and measures the clustering of proteins from a given functional annotation within the network. This process allows the detection of functional annotations for which the proteins are differentially expressed and grouped in the network. A Monte-Carlo sampling approach is used to assess the clustering significance of proteins in an expression-weighted network. When applied to a quantitative proteomics analysis of different molecular subtypes of breast cancer, PIGNON detects Gene Ontology terms that are both significantly clustered in a protein–protein interaction network and differentially expressed across different breast cancer subtypes. PIGNON identified functional annotations that are dysregulated and clustered within the network between the HER2+, triple negative and hormone receptor positive subtypes. We show that PIGNON’s results are complementary to those of state-of-the-art functional enrichment analyses and that it highlights functional annotations missed by standard approaches. Furthermore, PIGNON detects functional annotations that have been previously associated with specific breast cancer subtypes. Conclusion PIGNON provides an alternative to functional enrichment analyses and a more comprehensive characterization of quantitative datasets. Hence, it contributes to yielding a better understanding of dysregulated functions and processes in biological samples under different experimental conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04042-6.
Collapse
Affiliation(s)
- Rachel Nadeau
- Department of Biochemistry, Microbiology and Immunology, and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4170, Ottawa, ON, K1H 8M5, Canada
| | - Anastasiia Byvsheva
- Department of Biochemistry, Microbiology and Immunology, and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4170, Ottawa, ON, K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4170, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
13
|
Peng X, Li X, Yang S, Huang M, Wei S, Ma Y, Li Y, Wu B, Jin H, Li B, Tang S, Fan Q, Liu J, Yang L, Li H. LINC00511 drives invasive behavior in hepatocellular carcinoma by regulating exosome secretion and invadopodia formation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:183. [PMID: 34088337 PMCID: PMC8176717 DOI: 10.1186/s13046-021-01990-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023]
Abstract
Background Tumor cells are known to release large numbers of exosomes containing active substances that participate in cancer progression. Abnormally expressed long noncoding RNAs (lncRNAs) have been confirmed to regulate multiple processes associated with tumor progression. However, the mechanism by which lncRNAs affect exosome secretion remains unclear. Methods The underlying mechanisms of long noncoding RNA LINC00511 (LINC00511) regulation of multivesicular body (MVB) trafficking, exosome secretion, invadopodia formation, and tumor invasion were determined through gene set enrichment analysis (GSEA), immunoblotting, nanoparticle tracking analysis, confocal colocalization analysis, electron microscopy, and invasion experiments. Results We revealed that the tumorigenesis process is associated with a significant increase in vesicle secretion in hepatocellular carcinoma (HCC). Additionally, LINC00511 was significantly more highly expressed in HCC tissues and is related to vesicle trafficking and MVB distribution. We also found that in addition to the formation of invadopodia in HCC progression, abnormal LINC00511 induces invadopodia formation in HCC cells by regulating the colocalization of vesicle associated membrane protein 7 (VAMP7) and synaptosome associated protein 23 (SNAP23) to induce the invadopodia formation, which are key secretion sites for MVBs and control exosome secretion. Finally, we revealed that LINC0051-induced invadopodia and exosome secretion were involved in tumor progression. Conclusions Our experiments revealed novel findings on the relationship between LINC00511 dysregulation in HCC and invadopodia production and exosome secretion. This is a novel mechanism by which LINC00511 regulates invadopodia biogenesis and exosome secretion to further promote cancer progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01990-y.
Collapse
Affiliation(s)
- Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.,Department of General Surgery, Liberation Army Air Force General Hospital, Beijing, 100142, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.,Department of Radiation Oncology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shilei Tang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
14
|
Ren B, Wang L, Nan Y, Liu T, Zhao L, Ma H, Li J, Zhang Y, Ren X. RAB1A regulates glioma cellular proliferation and invasion via the mTOR signaling pathway and epithelial-mesenchymal transition. Future Oncol 2021; 17:3203-3216. [PMID: 33947216 DOI: 10.2217/fon-2021-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: We aimed at investigating the mechanism of RAB1A proliferation and invasion in gliomas. Materials & methods: Genome-wide expression profile data and immunohistochemistry were analyzed to assess RAB1A expression in gliomas. The Transwell assay, wound healing assay, brain slice coculture model, cellular fluorescence and intracranial xenograft model of nude mice were used to determine the proliferation and invasion of glioma cells. Results & conclusion: RAB1A was highly expressed in gliomas compared with normal brain tissue. The overall survival time of glioma patients with high RAB1A expression was significantly shortened. RAB1A regulated the activity of RAC1 by inhibiting the mTOR signaling pathway, affecting actin polymerization, cell morphology and cell polarity. RAB1A downregulation inhibited the epithelial-mesenchymal transition, proliferation and invasion of glioma cells.
Collapse
Affiliation(s)
- Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Le Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Tong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Liwen Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Haiwen Ma
- Department of Neurosurgery, Tianjin Medical University General Hospital Airport Site, Tianjin, 300308, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yiming Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xiao Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| |
Collapse
|
15
|
Abstract
Breast cancer (BC) is one of the most common lethal diseases found in women; in which shortcomings of currently used treatment procedures and efficiency to target disease contribute to the increment in mortality. Despite other factors, exosomes, a major class of EVs (extracellular vesicles) also play a regulatory role in normal physiological processes and have a major function in proliferation, metastases, and resistance in BC. Interestingly, despite their role in the progression of BC, exosomes also showed their importance as a drug carrier in the targeted drug delivery. The present review aims to shed light on the role of exosomes as a potential nano-therapeutic vehicle in the targeted drug delivery for BC. Information for this review was searched from PubMed and Google Scholar mostly during the year 2019-2020 by using appropriate keywords. The exosomes have been efficiently used in cancer therapeutics where these nano vehicles having specific markers help in efficient targeted delivery of therapeutics including proteins, nucleic acid, and anti-cancer drugs to BC cells. The properties of exosomes as an efficient delivery system can be explored in the future and holds the potential to be used in other forms of cancer as well.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| | - Krishna Kumar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| |
Collapse
|