1
|
Qaderi MM, Evans CC, Spicer MD. Plant Nitrogen Assimilation: A Climate Change Perspective. PLANTS (BASEL, SWITZERLAND) 2025; 14:1025. [PMID: 40219093 PMCID: PMC11990535 DOI: 10.3390/plants14071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Of all the essential macronutrients necessary for plant growth and development, nitrogen is required in the greatest amounts. Nitrogen is a key component of important biomolecules like proteins and has high nutritive importance for humans and other animals. Climate change factors, such as increasing levels of carbon dioxide, increasing temperatures, and increasing watering regime, directly or indirectly influence plant nitrogen uptake and assimilation dynamics. The impacts of these stressors can directly threaten our primary source of nitrogen as obtained from the soil by plants. In this review, we discuss how climate change factors can influence nitrogen uptake and assimilation in cultivated plants. We examine the effects of these factors alone and in combination with species of both C3 and C4 plants. Elevated carbon dioxide, e[CO2], causes the dilution of nitrogen in tissues of non-leguminous C3 and C4 plants but can increase nitrogen in legumes. The impact of high-temperature (HT) stress varies depending on whether a species is leguminous or not. Water stress (WS) tends to result in a decrease in nitrogen assimilation. Under some, though not all, conditions, e[CO2] can have a buffering effect against the detrimental impacts of other climate change stressors, having an ameliorating effect on the adverse impacts of HT or WS. Together, HT and WS are seen to cause significant reductions in biomass production and nitrogen uptake in non-leguminous C3 and C4 crops. With a steadily rising population and rapidly changing climate, consideration must be given to the morphological and physiological effects that climate change will have on future crop health and nutritional quality of N.
Collapse
Affiliation(s)
- Mirwais M. Qaderi
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada; (C.C.E.); (M.D.S.)
| | | | | |
Collapse
|
2
|
Li CZ, Ullah A, Tian P, Kang Y, Yu XZ. Elevated CO 2 enhances growth and cyanide assimilation in nitrogen-deficient rice: A transcriptome and metabolomic perspective. N Biotechnol 2024; 84:115-127. [PMID: 39442870 DOI: 10.1016/j.nbt.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Plants face multiple challenges from environmental pollutants and higher emissions of atmospheric CO2. Therefore, a hydroponic-based experiment was used to explore the combined effects of elevated [CO2] (700 ppm) and exogenous cyanide (CN-) (3.0 mg CN/L) on rice seedlings under nitrogen deficiency, utilizing metabonomic and transcriptomic analysis. Elevated [CO2] significantly improved the growth of CN--treated rice seedlings compared to those with ambient [CO2] (350 ppm), and it also significantly affected CN- assimilation. Transcriptome analysis revealed distinct impacts on differentially expressed genes (DEGs) across treatments and tissues. KEGG analysis showed variability in DEGs enriched in amino acid (AA) and energy metabolism pathways due to elevated [CO2] and CN-. Metabonomic indicated that higher input of [CO2] and exogenous CN- more severely impacted energy metabolism elements than the individual species of AAs. Positive synergistic effects of elevated [CO2] and CN- were observed for glutamine and asparagine in shoots, and methionine in roots, wherein negative effects were noted for phenylalanine in shoots, and phenylalanine, valine, and alanine in roots. Meanwhile, positive effects on fumarate in shoots and α-ketoglutarate and succinate in roots were also found. Overall, elevated [CO2] enhanced growth in CN--treated rice seedlings under nitrogen deficiency by altering AA and energy metabolism. This is the first attempt to provide new evidence of [CO2]-based gaseous fertilization as an energy-saving strategy for rice plants fed with biodegradable N-containing pollutants as a supporting N source under N deficient conditions.
Collapse
Affiliation(s)
- Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Yi Kang
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
3
|
Duan W, Wang S, Zhang H, Xie B, Zhang L. Plant growth and nitrate absorption and assimilation of two sweet potato cultivars with different N tolerances in response to nitrate supply. Sci Rep 2024; 14:21286. [PMID: 39266741 PMCID: PMC11393465 DOI: 10.1038/s41598-024-72422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
In sweet potato, rational nitrogen (N) assimilation and distribution are conducive to inhibiting vine overgrowth. Nitrate (NO3-) is the main N form absorbed by roots, and cultivar is an important factor affecting N utilization. Herein, a hydroponic experiment was conducted that included four NO3- concentrations of 0 (N0), 4 (N1), 8 (N2) and 16 (N3) mmol L-1 with two cultivars of Jishu26 (J26, N-sensitive) and Xushu32 (X32, N-tolerant). For J26, with increasing NO3- concentrations, the root length and root surface area significantly decreased. However, no significant differences were observed in these parameters for X32. Higher NO3- concentrations upregulated the expression levels of the genes that encode nitrate reductase (NR2), nitrite reductase (NiR2) and nitrate transporter (NRT1.1) in roots for both cultivars. The trends in the activities of NR and NiR were subject to regulation of NR2 and NiR2 transcription, respectively. For both cultivars, N2 increased the N accumulated in leaves, growth points and roots. For J26, N3 further increased the N accumulation in these organs. Under higher NO3- nutrition, compared with X32, J26 exhibited higher expression levels of the NiR2, NR2 and NRT1.1 genes, a higher influx NO3- rate in roots, and higher activities of NR and NiR in leaves and roots. Conclusively, the regulated effects of NO3- supplies on root growth and NO3- utilization were more significant for J26. Under high NO3- conditions, J26 exhibited higher capacities of NO3- absorption and distributed more N in leaves and in growth points, which may contribute to higher growth potential in shoots and more easily cause vine overgrowth.
Collapse
Affiliation(s)
- Wenxue Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Shasha Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
| | - Haiyan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China.
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Liming Zhang
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
- Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, China.
| |
Collapse
|
4
|
Adavi SB, Sathee L. Calcium regulates primary nitrate response associated gene transcription in a time- and dose-dependent manner. PROTOPLASMA 2024; 261:257-269. [PMID: 37770644 DOI: 10.1007/s00709-023-01893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
Nitrate (NO3-) is the primary source of nitrogen preferred by most arable crops, including wheat. The pioneering experiment on primary nitrate response (PNR) was carried out three decades ago. Since then, much research has been carried out to understand the NO3- signaling. Nitrate is sensed by the dual affinity NO3- transceptor NPF6.3, which further relays the information to a master regulator NIN-like protein 7 (NLP7) through calcium-dependent protein kinases (CPK10, CPK30, CPK32), highlighting the importance of calcium ion (Ca2+) as one of the important secondary messengers in relaying the NO3- signaling in Arabidopsis. In a previous study, we found that Ca2+ regulates nitrogen starvation response in wheat. In this study, 10 days old NO3--starved wheat seedlings were exposed to various treatments. Our study on time course changes in expression of PNR sentinel genes; NPF6.1, NPF6.2, NRT2.1, NRT2.3, NR, and NIR in wheat manifest the highest level of expression at 30 min after NO3- exposure. The use of Ca2+ chelator EGTA confirmed the involvement of Ca2+ in the regulation of transcription of NPFs and NRTs as well the NO3- uptake. We also observed the NO3- dose-dependent and tissue-specific regulation of nitrate reductase activity involving Ca2+ as a mediator. The participation of Ca2+ in the PNR and NO3- signaling in wheat is confirmed by pharmacological analysis, physiological evidences, and protoplast-based Ca2+ localization.
Collapse
Affiliation(s)
- Sandeep B Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012.
| |
Collapse
|
5
|
Lei K, Hu H, Chang M, Sun C, Ullah A, Yu J, Dong C, Gao Q, Jiang D, Cao W, Tian Z, Dai T. A low red/far-red ratio restricts nitrogen assimilation by inhibiting nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:107850. [PMID: 38042099 DOI: 10.1016/j.plaphy.2023.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 12/04/2023]
Abstract
Understanding the physiological mechanism underlying nitrogen levels response to a low red/far-red ratio (R/FR) can provide new insights for optimizing wheat yield potential but has been not well documented. This study focused on the changes in nitrogen levels, nitrogen assimilation and nitrate uptake in wheat plants grown with and without additional far-red light. A low R/FR reduced wheat nitrogen accumulation and grain yield compared with the control. The levels of total nitrogen, free amino acid and ammonium were decreased in leaves but nitrate content was temporarily increased under a low R/FR. The nitrate reductase (NR) activity in leaves was more sensitive to a low R/FR than glutamine synthetase, glutamate synthase, glutamic oxalacetic transaminase and glutamic-pyruvic transaminase. Further analysis showed that a low R/FR had little effect on the NR activation state but reduced the level of NR protein and the expression of encoding gene TaNR1.2. Interestingly, a low R/FR rapidly induced TaPIL5 expression rather than TaHY5 and other members of TaPILs in wheat, suggesting that TaPIL5 was the key transcription factor response to a low R/FR in wheat and might be involved in the downregulation of TaNR1.2 expression. Besides, a low R/FR downregulated the expression of TaNR1.2 in leaves earlier than that of TaNRT1.1/1.2/1.5/1.8 in roots, which highlights the importance of NR and nitrogen assimilation in response to a low R/FR. Our results provide revelatory evidence that restricted nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 mediate the suppression of nitrogen assimilation under a low R/FR in wheat.
Collapse
Affiliation(s)
- Kangqi Lei
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hang Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengjie Chang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Attiq Ullah
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinhong Yu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chaofeng Dong
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiang Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weixing Cao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Gámez AL, Han X, Aranjuelo I. Differential Effect of Free-Air CO 2 Enrichment (FACE) in Different Organs and Growth Stages of Two Cultivars of Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:686. [PMID: 36771770 PMCID: PMC9920850 DOI: 10.3390/plants12030686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Wheat is a target crop within the food security context. The responses of wheat plants under elevated concentrations of CO2 (e[CO2]) have been previously studied; however, few of these studies have evaluated several organs at different phenological stages simultaneously under free-air CO2 enrichment (FACE) conditions. The main objective of this study was to evaluate the effect of e[CO2] in two cultivars of wheat (Triumph and Norin), analyzed at three phenological stages (elongation, anthesis, and maturation) and in different organs at each stage, under FACE conditions. Agronomic, biomass, physiological, and carbon (C) and nitrogen (N) dynamics were examined in both ambient CO2 (a[CO2]) fixed at 415 µmol mol-1 CO2 and e[CO2] at 550 µmol mol-1 CO2. We found minimal effect of e[CO2] compared to a[CO2] on agronomic and biomass parameters. Also, while exposure to 550 µmol mol-1 CO2 increased the photosynthetic rate of CO2 assimilation (An), the current study showed a diminishment in the maximum carboxylation (Vc,max) and maximum electron transport (Jmax) under e[CO2] conditions compared to a[CO2] at physiological level in both cultivars. However, even if no significant differences were detected between cultivars on photosynthetic machinery, differential responses between cultivars were detected in C and N dynamics at e[CO2]. Triumph showed starch accumulation in most organs during anthesis and maturation, but a decline in N content was observed. Contrastingly, in Norin, a decrease in starch content during the three stages and an increase in N content was observed. The amino acid content decreased in grain and shells at maturation in both cultivars, which might indicate a minimal translocation from source to sink organs. These results suggest a greater acclimation to e[CO2] enrichment in Triumph than Norin, because both the elongation stage and e[CO2] modified the source-sink relationship. According to the differences between cultivars, future studies should be performed to test genetic variation under FACE technology and explore the potential of cultivars to cope with projected climate scenarios.
Collapse
Affiliation(s)
- Angie L. Gámez
- Agrobiotechnology Institute (IdAB), CSIC—Government of Navarre, 31192 Mutilva Baja, Spain
- NAFOSA Company, 31350 Peralta, Spain
| | - Xue Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA, CAAS), Beijing 100081, China
| | - Iker Aranjuelo
- Agrobiotechnology Institute (IdAB), CSIC—Government of Navarre, 31192 Mutilva Baja, Spain
| |
Collapse
|
7
|
Shanker AK, Gunnapaneni D, Bhanu D, Vanaja M, Lakshmi NJ, Yadav SK, Prabhakar M, Singh VK. Elevated CO 2 and Water Stress in Combination in Plants: Brothers in Arms or Partners in Crime? BIOLOGY 2022; 11:biology11091330. [PMID: 36138809 PMCID: PMC9495351 DOI: 10.3390/biology11091330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 04/30/2023]
Abstract
The changing dynamics in the climate are the primary and important determinants of agriculture productivity. The effects of this changing climate on overall productivity in agriculture can be understood when we study the effects of individual components contributing to the changing climate on plants and crops. Elevated CO2 (eCO2) and drought due to high variability in rainfall is one of the important manifestations of the changing climate. There is a considerable amount of literature that addresses climate effects on plant systems from molecules to ecosystems. Of particular interest is the effect of increased CO2 on plants in relation to drought and water stress. As it is known that one of the consistent effects of increased CO2 in the atmosphere is increased photosynthesis, especially in C3 plants, it will be interesting to know the effect of drought in relation to elevated CO2. The potential of elevated CO2 ameliorating the effects of water deficit stress is evident from literature, which suggests that these two agents are brothers in arms protecting the plant from stress rather than partners in crime, specifically for water deficit when in isolation. The possible mechanisms by which this occurs will be discussed in this minireview. Interpreting the effects of short-term and long-term exposure of plants to elevated CO2 in the context of ameliorating the negative impacts of drought will show us the possible ways by which there can be effective adaption to crops in the changing climate scenario.
Collapse
|
8
|
Sathee L, Jain V. Interaction of elevated CO 2 and form of nitrogen nutrition alters leaf abaxial and adaxial epidermal and stomatal anatomy of wheat seedlings. PROTOPLASMA 2022; 259:703-716. [PMID: 34374877 DOI: 10.1007/s00709-021-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plant's stomatal physiology and anatomical features are highly plastic and are influenced by diverse environmental signals including the concentration of atmospheric CO2 and nutrient availability. Recent reports suggest that the form of nitrogen (N) is a determinant of plant growth and nutrient nitrogen use efficiency (NUE) under elevated CO2 (EC). Previously, we found that high nitrate availability resulted in early senescence, enhanced reactive oxygen species (ROS), and reactive nitrogen species (RNS) production and also that mixed nutrition of nitrate and ammonium ions were beneficial than sole nitrate nutrition in wheat. In this study, the interactive effects of different N forms (nitrate, ammonium, mixed nutrition of nitrate, and ammonium) and EC on epidermal and stomatal morphology were analyzed. Wheat seedlings were grown at two different CO2 levels and supplied with media devoid of N (N0) or with nitrate-N (NN), mixed nutrition of ammonium and nitrate (MN), or only ammonium-N (AN). The stoma length increased significantly in nitrate nutrition with a consistent reduction in stoma width. Guard cell length was higher in EC treatment as compared to AC. The guard cell width was maximum in AN-grown plants at EC. Epidermal cell density and stomatal density were lower at EC. Nitrate nutrition increased the stomatal area at EC while the reverse was true for MN and AN. Wheat plants fertilized with AN showed a higher accumulation of superoxide radical (SOR) at EC, while in NN treatment, the accumulation of hydrogen peroxide (H2O2) was higher at EC. Reactive oxygen species, particularly H2O2, can trigger mitogen-activated protein kinase (MAPK) mediated signaling and its crosstalk with abscisic acid (ABA) signaling to regulate stomatal anatomy in nitrate-fed plants. The SOR accumulation in ammonium- and ammonium nitrate-fed plants and H2O2 in NN-fed plants might finely regulate the sensitivity of stomata to alter water/nutrient use efficiency and productivity under EC. The data reveals that the variation in anatomical attributes viz. cell length, number of cells, etc. affected the leaf growth responses to EC and forms of N nutrition. These attributes are fine targets for effective manipulation of growth responses to EC.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Vanita Jain
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
- Agricultural Education Division, ICAR, KAB-II, New Delhi, India.
| |
Collapse
|
9
|
Fan J, Halpern M, Yu Y, Zuo Q, Shi J, Fan Y, Wu X, Yermiyahu U, Sheng J, Jiang P, Ben-Gal A. The Mechanisms Responsible for N Deficiency in Well-Watered Wheat Under Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2022; 13:801443. [PMID: 35251079 PMCID: PMC8888439 DOI: 10.3389/fpls.2022.801443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Elevated CO2 concentration [e(CO2)] often promotes plant growth with a decrease in tissue N concentration. In this study, three experiments, two under hydroponic and one in well-watered soil, including various levels or patterns of CO2, humidity, and N supply were conducted on wheat (Triticum aestivum L.) to explore the mechanisms of e[CO2]-induced N deficiency (ECIND). Under hydroponic conditions, N uptake remained constant even as transpiration was limited 40% by raising air relative humidity and only was reduced about 20% by supplying N during nighttime rather than daytime with a reduction of 85% in transpiration. Compared to ambient CO2 concentration, whether under hydroponic or well-watered soil conditions, and whether transpiration was kept stable or decreased to 12%, e[CO2] consistently led to more N uptake and higher biomass, while lower N concentration was observed in aboveground organs, especially leaves, as long as N supply was insufficient. These results show that, due to compensation caused by active uptake, N uptake can be uncoupled from water uptake under well-watered conditions, and changes in transpiration therefore do not account for ECIND. Similar or lower tissue NO 3 - -N concentration under e[CO2] indicated that NO 3 - assimilation was not limited and could therefore also be eliminated as a major cause of ECIND under our conditions. Active uptake has the potential to bridge the gap between N taken up passively and plant demand, but is limited by the energy required to drive it. Compared to ambient CO2 concentration, the increase in N uptake under e[CO2] failed to match the increase of carbohydrates, leading to N dilution in plant tissues, the apparent dominant mechanism explaining ECIND. Lower N concentration in leaves rather than roots under e[CO2] validated that ECIND was at least partially also related to changes in resource allocation, apparently to maintain root uptake activity and prevent more serious N deficiency.
Collapse
Affiliation(s)
- Jinjie Fan
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Moshe Halpern
- Soil, Water and Environmental Sciences, Agricultural Research Organization, Gilat Research Center, Mobile Post Negev, Israel
| | - Yangliu Yu
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Qiang Zuo
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Jianchu Shi
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, China
- College of Resources and Environment, Xinjiang Agricultural University, Ürümqi, China
| | - Yuchuan Fan
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Xun Wu
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Uri Yermiyahu
- Soil, Water and Environmental Sciences, Agricultural Research Organization, Gilat Research Center, Mobile Post Negev, Israel
| | - Jiandong Sheng
- College of Resources and Environment, Xinjiang Agricultural University, Ürümqi, China
| | - Pingan Jiang
- College of Resources and Environment, Xinjiang Agricultural University, Ürümqi, China
| | - Alon Ben-Gal
- Soil, Water and Environmental Sciences, Agricultural Research Organization, Gilat Research Center, Mobile Post Negev, Israel
| |
Collapse
|
10
|
Demmig-Adams B, Polutchko S, Zenir M, Fourounjian P, Stewart J, López-pozo M, Adams W. Intersections: photosynthesis, abiotic stress, and the plant microbiome. PHOTOSYNTHETICA 2022; 60:59-69. [PMID: 39649006 PMCID: PMC11559482 DOI: 10.32615/ps.2021.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 12/10/2024]
Abstract
Climate change impacts environmental conditions that affect photosynthesis. This review examines the effect of combinations of elevated atmospheric CO2, long photoperiods, and/or unfavorable nitrogen supply. Under moderate stress, perturbed plant source-sink ratio and redox state can be rebalanced but may result in reduced foliar protein content in C3 plants and a higher carbon-to-nitrogen ratio of plant biomass. More severe environmental conditions can trigger pronounced photosynthetic downregulation and impair growth. We comprehensively evaluate available evidence that microbial partners may be able to support plant productivity under challenging environmental conditions by providing (1) nutrients, (2) an additional carbohydrate sink, and (3) regulators of plant metabolism, especially plant redox state. In evaluating the latter mechanism, we note parallels to metabolic control in photosymbioses and microbial regulation of human redox biology.
Collapse
Affiliation(s)
- B. Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - S.K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - M.C. Zenir
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - P. Fourounjian
- International Lemna Association, Denville, NJ 07834, USA
| | - J.J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - M. López-pozo
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - W.W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
11
|
Demmig-Adams B, López-Pozo M, Polutchko SK, Fourounjian P, Stewart JJ, Zenir MC, Adams WW. Growth and Nutritional Quality of Lemnaceae Viewed Comparatively in an Ecological and Evolutionary Context. PLANTS (BASEL, SWITZERLAND) 2022; 11:145. [PMID: 35050033 PMCID: PMC8779320 DOI: 10.3390/plants11020145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
This review focuses on recently characterized traits of the aquatic floating plant Lemna with an emphasis on its capacity to combine rapid growth with the accumulation of high levels of the essential human micronutrient zeaxanthin due to an unusual pigment composition not seen in other fast-growing plants. In addition, Lemna's response to elevated CO2 was evaluated in the context of the source-sink balance between plant sugar production and consumption. These and other traits of Lemnaceae are compared with those of other floating aquatic plants as well as terrestrial plants adapted to different environments. It was concluded that the unique features of aquatic plants reflect adaptations to the freshwater environment, including rapid growth, high productivity, and exceptionally strong accumulation of high-quality vegetative storage protein and human antioxidant micronutrients. It was further concluded that the insensitivity of growth rate to environmental conditions and plant source-sink imbalance may allow duckweeds to take advantage of elevated atmospheric CO2 levels via particularly strong stimulation of biomass production and only minor declines in the growth of new tissue. It is proposed that declines in nutritional quality under elevated CO2 (due to regulatory adjustments in photosynthetic metabolism) may be mitigated by plant-microbe interaction, for which duckweeds have a high propensity.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48049 Bilbao, Spain;
| | - Stephanie K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Paul Fourounjian
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
- International Lemna Association, Denville, NJ 07832, USA
| | - Jared J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Madeleine C. Zenir
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| |
Collapse
|