1
|
Shaw SA, Vokits BP, Dilger AK, Viet A, Clark CG, Abell LM, Locke GA, Duke G, Kopcho LM, Dongre A, Gao J, Krishnakumar A, Jusuf S, Khan J, Spronk SA, Basso MD, Zhao L, Cantor GH, Onorato JM, Wexler RR, Duclos F, Kick EK. Discovery and structure activity relationships of 7-benzyl triazolopyridines as stable, selective, and reversible inhibitors of myeloperoxidase. Bioorg Med Chem 2020; 28:115723. [PMID: 33007547 DOI: 10.1016/j.bmc.2020.115723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023]
Abstract
Myeloperoxidase (MPO) is a heme peroxidase found in neutrophils, monocytes and macrophages that efficiently catalyzes the oxidation of endogenous chloride into hypochlorous acid for antimicrobial activity. Chronic MPO activation can lead to indiscriminate protein modification causing tissue damage, and has been associated with chronic inflammatory diseases, atherosclerosis, and acute cardiovascular events. Triazolopyrimidine 5 is a reversible MPO inhibitor; however it suffers from poor stability in acid, and is an irreversible inhibitor of the DNA repair protein methyl guanine methyl transferase (MGMT). Structure-based drug design was employed to discover benzyl triazolopyridines with improved MPO potency, as well as acid stability, no reactivity with MGMT, and selectivity against thyroid peroxidase (TPO). Structure-activity relationships, a crystal structure of the MPO-inhibitor complex, and acute in vivo pharmacodynamic data are described herein.
Collapse
Affiliation(s)
- Scott A Shaw
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States.
| | - Benjamin P Vokits
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Andrew K Dilger
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Andrew Viet
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Charles G Clark
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Lynn M Abell
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Gregory A Locke
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Gerald Duke
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Lisa M Kopcho
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Ashok Dongre
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Ji Gao
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Arathi Krishnakumar
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Sutjano Jusuf
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Javed Khan
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Steven A Spronk
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Michael D Basso
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Lei Zhao
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Glenn H Cantor
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Joelle M Onorato
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Ruth R Wexler
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Franck Duclos
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| | - Ellen K Kick
- Bristol Myers Squibb Company, P.O. Box 5400, Princeton, NJ 08543-5400, United States
| |
Collapse
|
3
|
Mishra OP, Popov AV, Pietrofesa RA, Nakamaru-Ogiso E, Andrake M, Christofidou-Solomidou M. Synthetic secoisolariciresinol diglucoside (LGM2605) inhibits myeloperoxidase activity in inflammatory cells. Biochim Biophys Acta Gen Subj 2018; 1862:1364-1375. [PMID: 29524540 PMCID: PMC5970065 DOI: 10.1016/j.bbagen.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Myeloperoxidase (MPO) generates hypochlorous acid (HOCl) during inflammation and infection. We showed that secoisolariciresinol diglucoside (SDG) scavenges radiation-induced HOCl in physiological solutions. However, the action of SDG and its synthetic version, LGM2605, on MPO-catalyzed generation of HOCl is unknown. The present study evaluated the effect of LGM2605 on human MPO, and murine MPO from macrophages and neutrophils. METHODS MPO activity was determined fluorometrically using hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF). The effect of LGM2605 on (a) the peroxidase cycle of MPO was determined using Amplex Red while the effect on (b) the chlorination cycle was determined using a taurine chloramine assay. Using electron paramagnetic resonance (EPR) spectroscopy we determined the effect of LGM2605 on the EPR signals of MPO. Finally, computational docking of SDG was used to identify energetically favorable docking poses to enzyme's active site. RESULTS LGM2605 inhibited human and murine MPO activity. MPO inhibition was observed in the absence and presence of Cl-. EPR confirmed that LGM2605 suppressed the formation of Compound I, an oxoiron (IV) intermediate [Fe(IV)O] containing a porphyrin π-radical of MPO's catalytic cycle. Computational docking revealed that SDG can act as an inhibitor by binding to the enzyme's active site. CONCLUSIONS We conclude that LGM2605 inhibits MPO activity by suppressing both the peroxidase and chlorination cycles. EPR analysis demonstrated that LGM2605 inhibits MPO by decreasing the formation of the highly oxidative Compound I. This study identifies a novel mechanism of LGM2605 action as an inhibitor of MPO and indicates that LGM2605 may be a promising attenuator of oxidant-dependent inflammatory tissue damage.
Collapse
Affiliation(s)
- Om P Mishra
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Anatoliy V Popov
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Ralph A Pietrofesa
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Mark Andrake
- Molecular Modeling Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, United States.
| | - Melpo Christofidou-Solomidou
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|