1
|
Dunn RA, Luk HY, Appell CR, Jiwan NC, Keefe MS, Rolloque JJS, Sekiguchi Y. Eccentric muscle-damaging exercise in the heat lowers cellular stress prior to and immediately following future exertional heat exposure. Cell Stress Chaperones 2024; 29:472-482. [PMID: 38735625 PMCID: PMC11131061 DOI: 10.1016/j.cstres.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024] Open
Abstract
Muscle-damaging exercise (e.g., downhill running [DHR]) or heat exposure bouts potentially reduce physiological and/or cellular stress during future exertional heat exposure; however, the true extent of their combined preconditioning effects is unknown. Therefore, this study investigated the effect of muscle-damaging exercise in the heat on reducing physiological and cellular stress during future exertional heat exposure. Ten healthy males (mean ± Standard Definition; age, 23 ± 3 years; body mass, 78.7 ± 11.5 kg; height, 176.9 ± 4.7 cm) completed this study. Participants were randomly assigned into two preconditioning groups: (a) DHR in the heat (ambient temperature [Tamb], 35 °C; relative humidity [RH], 40%) and (b) DHR in thermoneutral (Tamb, 20 °C; RH, 20%). Seven days following DHR, participants performed a 45-min flat run in the heat (FlatHEAT [Tamb, 35 °C; RH, 40%]). During exercise, heart rate and rectal temperature (Trec) were recorded at baseline and every 5-min. Peripheral blood mononuclear cells were isolated to assess heat shock protein 72 (Hsp72) concentration between conditions at baseline, immediately post-DHR, and immediately pre-FlatHEAT and post-FlatHEAT. Mean Trec during FlatHEAT between hot (38.23 ± 0.38 °C) and thermoneutral DHR (38.26 ± 0.38 °C) was not significantly different (P = 0.68), with no mean heart rate differences during FlatHEAT between hot (172 ± 15 beats min-1) and thermoneutral conditions (174 ± 8 beats min-1; P = 0.58). Hsp72 concentration change from baseline to immediately pre-FlatHEAT was significantly lower in hot (-51.4%) compared to thermoneutral (+24.2%; P = 0.025) DHR, with Hsp72 change from baseline to immediately post-FlatHEAT also lower in hot (-52.6%) compared to thermoneutral conditions (+26.3%; P = 0.047). A bout of muscle-damaging exercise in the heat reduces cellular stress levels prior to and immediately following future exertional heat exposure.
Collapse
Affiliation(s)
- Ryan A Dunn
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Hui-Ying Luk
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Casey R Appell
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Nigel C Jiwan
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Marcos S Keefe
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Jan-Joseph S Rolloque
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
2
|
Locke M, Bruccoleri G. Skeletal Muscle Heat Shock Protein Content and the Repeated Bout Effect. Int J Mol Sci 2024; 25:4017. [PMID: 38612826 PMCID: PMC11011896 DOI: 10.3390/ijms25074017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The "Repeated Bout Effect" (RBE) occurs when a skeletal muscle is preconditioned with a few lengthening contractions (LC) prior to exposing the muscle to a greater number of LC. The preconditioning (PC) results in significantly less damage and preservation of force. Since it takes only a few LC to increase muscle heat shock protein (HSP) content, it was of interest to examine the relationship between HSPs and the RBE. To do this, one tibialis anterior (TA) muscle from Sprague-Dawley rats (n = 5/group) was preconditioned with either 0, 5, or 15 lengthening contractions (LC) and exposed to a treatment of 60 LC 48 h later. Preconditioning TA muscles with 15 LC, but not 5 LC, significantly elevated muscle αB-crystallin (p < 0.05), HSP25 (p < 0.05), and HSP72 content (p < 0.001). These preconditioned TA muscles also showed a significantly (p < 0.05) reduced loss of active torque throughout the subsequent 60 LC. While there was a trend for all preconditioned muscles to maintain higher peak torque levels throughout the 60 LC, no significant differences were detected between the groups. Morphologically, preconditioned muscles appeared to show less discernible muscle fiber damage. In conclusion, an elevated skeletal muscle HSP content from preconditioning may contribute to the RBE.
Collapse
Affiliation(s)
- Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6, Canada;
| | | |
Collapse
|
3
|
Wang P, Lu H, Rong H, Wang Y, Wang L, He X, Yuan D, He Y, Jin T. The Association of Methylation Level in the CYP39A1 Gene with High Altitude Pulmonary Edema in the Chinese Population. Pharmgenomics Pers Med 2023; 16:617-628. [PMID: 37366513 PMCID: PMC10290841 DOI: 10.2147/pgpm.s397862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Background High altitude pulmonary edema (HAPE) is still the most common fatal disease at high altitudes. DNA methylation proceeds with an important role in HAPE progression. This study was designed to investigate the association between CYP39A1 methylation and HAPE. Methods Peripheral blood samples were enrolled from 106 participants (53 HAPE patients and 53 healthy subjects) to study the association of CYP39A1 methylation with HAPE. DNA methylation site in the promoter region of CYP39A1 was detected by Sequenom MassARRAY EpiTYPER platform. Results Probability analysis showed that the methylation probabilities of CYP39A1_1_CpG_5 and CYP39A1_3_CpG_21 are significant differences between the cases and controls (p< 0.05). The methylation level analysis indicated that CYP39A1_1_CpG_2.3.4, CYP39A1_5_CpG_6.7, and CYP39A1_5_CpG_9.10 were higher methylation in HAPE compared to the controls (p< 0.05). CYP39A1_3_CpG_21 and CYP39A1_4_CpG_3 exhibited a lower methylation level in HAPE than that in the controls (p< 0.05). The association analysis given that CYP39A1_1_CpG_2.3.4 (OR 2.56, p= 0.035), CYP39A1_5_CpG_6.7 (OR 3.99, p= 0.003), CYP39A1_5_CpG_9.10 (OR 3.99, p= 0.003), CYP39A1_5_CpG_16.17.18 (OR 2.53, p= 0.033), and CYP39A1_5_CpG_20 (OR 3.05, p= 0.031) are associated with an increased risk of HAPE. Whereas CYP39A1_1_CpG_5 (OR 0.33, p= 0.016) and CYP39A1_3_CpG_21 (OR 0.18, p= 0.005) have a protective role in HAPE. Besides, age-stratification analysis showed that CYP39A1_1_CpG_5 (OR 0.16, p= 0.014) and CYP39A1_3_CpG_21 (OR 0.08, p= 0.023) had a protective impact on HAPE in people aged ≤32 years. CYP39A1_5_CpG_6.7 (OR 6.70, p= 0.008) and CYP39A1_5_CpG_9.10 (OR 6.70, p= 0.008) were related to an increased susceptibility to HAPE aged >32 years. Moreover, the diagnostic value of CYP39A1_3_CpG_21 (AUC = 0.712, p< 0.001) was significantly better than other CpG sites. Conclusion The methylation level of CYP39A1 was associated with a risk of HAPE in the Chinese population, which provided new perspective for preventing and diagnosing of HAPE.
Collapse
Affiliation(s)
- Pingyi Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
| | - Hongyan Lu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
| | - Hao Rong
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
| | - Yuhe Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Department of Clinical Laboratory, the Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, People’s Republic of China
| |
Collapse
|
4
|
Shrikhande SS, Pedder H, Röösli M, Dalvie MA, Lakshmanasamy R, Gasparrini A, Utzinger J, Cissé G. Non-optimal apparent temperature and cardiovascular mortality: the association in Puducherry, India between 2011 and 2020. BMC Public Health 2023; 23:291. [PMID: 36755271 PMCID: PMC9909923 DOI: 10.1186/s12889-023-15128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs), the leading cause of death worldwide, are sensitive to temperature. In light of the reported climate change trends, it is important to understand the burden of CVDs attributable to temperature, both hot and cold. The association between CVDs and temperature is region-specific, with relatively few studies focusing on low-and middle-income countries. This study investigates this association in Puducherry, a district in southern India lying on the Bay of Bengal, for the first time. METHODS Using in-hospital CVD mortality data and climate data from the Indian Meteorological Department, we analyzed the association between apparent temperature (Tapp) and in-hospital CVD mortalities in Puducherry between 2011 and 2020. We used a case-crossover model with a binomial likelihood distribution combined with a distributed lag non-linear model to capture the delayed and non-linear trends over a 21-day lag period to identify the optimal temperature range for Puducherry. The results are expressed as the fraction of CVD mortalities attributable to heat and cold, defined relative to the optimal temperature. We also performed stratified analyses to explore the associations between Tapp and age-and-sex, grouped and considered together, and different types of CVDs. Sensitivity analyses were performed, including using a quasi-Poisson time-series approach. RESULTS We found that the optimal temperature range for Puducherry is between 30°C and 36°C with respect to CVDs. Both cold and hot non-optimal Tapp were associated with an increased risk of overall in-hospital CVD mortalities, resulting in a U-shaped association curve. Cumulatively, up to 17% of the CVD deaths could be attributable to non-optimal temperatures, with a slightly higher burden attributable to heat (9.1%) than cold (8.3%). We also found that males were more vulnerable to colder temperature; females above 60 years were more vulnerable to heat while females below 60 years were affected by both heat and cold. Mortality with cerebrovascular accidents was associated more with heat compared to cold, while ischemic heart diseases did not seem to be affected by temperature. CONCLUSION Both heat and cold contribute to the burden of CVDs attributable to non-optimal temperatures in the tropical Puducherry. Our study also identified the age-and-sex and CVD type differences in temperature attributable CVD mortalities. Further studies from India could identify regional associations, inform our understanding of the health implications of climate change in India and enhance the development of regional and contextual climate-health action-plans.
Collapse
Affiliation(s)
- Shreya S Shrikhande
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Hugo Pedder
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Mohamed Aqiel Dalvie
- School of Public Health and Family Medicine, Centre for Environmental and Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Ravivarman Lakshmanasamy
- State Surveillance Officer, Department of Health and Family Welfare Services, Govt. of Puducherry, Puducherry, India
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
- Centre On Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, London, UK
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Guéladio Cissé
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Muacevic A, Adler JR, Nigh G, McCullough PA. A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus 2023; 15:e34872. [PMID: 36788995 PMCID: PMC9922164 DOI: 10.7759/cureus.34872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Human prion protein and prion-like protein misfolding are widely recognized as playing a causal role in many neurodegenerative diseases. Based on in vitro and in vivo experimental evidence relating to prion and prion-like disease, we extrapolate from the compelling evidence that the spike glycoprotein of SARS-CoV-2 contains extended amino acid sequences characteristic of a prion-like protein to infer its potential to cause neurodegenerative disease. We propose that vaccine-induced spike protein synthesis can facilitate the accumulation of toxic prion-like fibrils in neurons. We outline various pathways through which these proteins could be expected to distribute throughout the body. We review both cellular pathologies and the expression of disease that could become more frequent in those who have undergone mRNA vaccination. Specifically, we describe the spike protein's contributions, via its prion-like properties, to neuroinflammation and neurodegenerative diseases; to clotting disorders within the vasculature; to further disease risk due to suppressed prion protein regulation in the context of widely prevalent insulin resistance; and to other health complications. We explain why these prion-like characteristics are more relevant to vaccine-related mRNA-induced spike proteins than natural infection with SARS-CoV-2. We note with an optimism an apparent loss of prion-like properties among the current Omicron variants. We acknowledge that the chain of pathological events described throughout this paper is only hypothetical and not yet verified. We also acknowledge that the evidence we usher in, while grounded in the research literature, is currently largely circumstantial, not direct. Finally, we describe the implications of our findings for the general public, and we briefly discuss public health recommendations we feel need urgent consideration. An earlier version of this article was previously posted to the Authorea preprint server on August 16, 2022.
Collapse
|
6
|
Salvermoser L, Flisikowski K, Dressel-Böhm S, Nytko KJ, Rohrer Bley C, Schnieke A, Samt AK, Thölke D, Lennartz P, Schwab M, Wang F, Bashiri Dezfouli A, Multhoff G. Elevated circulating Hsp70 levels are correlative for malignancies in different mammalian species. Cell Stress Chaperones 2023; 28:105-118. [PMID: 36399258 PMCID: PMC9877270 DOI: 10.1007/s12192-022-01311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Circulating Hsp70 levels were determined in feline and porcine cohorts using two different ELISA systems. These comparative animal models of larger organisms often reflect diseases, and especially malignant tumors, better than conventional rodent models. It is therefore essential to investigate the biology and utility of tumor biomarkers in animals such as cats and pigs. In this study, levels of free Hsp70 in the blood of cats with spontaneously occurring tumors were detected using a commercial Hsp70 ELISA (R&D Systems). Sub-analysis of different tumor groups revealed that animals with tumors of epithelial origin presented with significantly elevated circulating Hsp70 concentrations. In addition to free Hsp70 levels measured with the R&D Systems Hsp70 ELISA, levels of exosomal Hsp70 were determined using the compHsp70 ELISA in pigs. Both ELISA systems detected significantly elevated Hsp70 levels (R&D Systems: median 24.9 ng/mL; compHsp70: median 44.2 ng/mL) in the blood of a cohort of APC1311/+ pigs diagnosed with high-grade adenoma polyps, and the R&D Systems Hsp70 ELISA detected also elevated Hsp70 levels in animals with low-grade polyps. In contrast, in flTP53R167H pigs, suffering from malignant osteosarcoma, the compHsp70 ELISA (median 674.32 ng/mL), but not the R&D Systems Hsp70 ELISA (median 4.78 ng/mL), determined significantly elevated Hsp70 concentrations, indicating that in tumor-bearing animals, the dominant form of Hsp70 is of exosomal origin. Our data suggest that both ELISA systems are suitable for detecting free circulating Hsp70 levels in pigs with high-grade adenoma, but only the compHsp70 ELISA can measure elevated, tumor-derived exosomal Hsp70 levels in tumor-bearing animals.
Collapse
Affiliation(s)
- Lukas Salvermoser
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany.
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany.
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.
| | - Krzysztof Flisikowski
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Susann Dressel-Böhm
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Katarzyna J Nytko
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Carla Rohrer Bley
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Angelika Schnieke
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Ann-Kathrin Samt
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Dennis Thölke
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Philipp Lennartz
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Melissa Schwab
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Fei Wang
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| |
Collapse
|
7
|
Alvarez MR, Alarcon JM, Roman CA, Lazaro D, Bobrowski-Khoury N, Baena-Caldas GP, Esber GR. Can a basic solution activate the inflammatory reflex? A review of potential mechanisms, opportunities, and challenges. Pharmacol Res 2023; 187:106525. [PMID: 36441036 DOI: 10.1016/j.phrs.2022.106525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy to treat systemic inflammatory disorders. However, this strategy is hindered by the cost and side effects of traditional IR activators. Recently, oral intake of sodium bicarbonate (NaHCO3) has been suggested to activate the IR, providing a safe and inexpensive alternative. Critically, the mechanisms whereby NaHCO3 might achieve this effect and more broadly the pathways underlying the IR remain poorly understood. Here, we argue that the recognition of NaHCO3 as a potential IR activator presents exciting clinical and research opportunities. To aid this quest, we provide an integrative review of our current knowledge of the neural and cellular pathways mediating the IR and discuss the status of physiological models of IR activation. From this vantage point, we derive testable hypotheses on potential mechanisms whereby NaHCO3 might stimulate the IR and compare NaHCO3 with classic IR activators. Elucidation of these mechanisms will help determine the therapeutic value of NaHCO3 as an IR activator and provide new insights into the IR circuitry.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Juan Marcos Alarcon
- Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Christopher A Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Deana Lazaro
- Division of Rheumatology, Department of Internal Medicine, Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
8
|
Borges Russo MK, Kowalewski LS, da Natividade GR, de Lemos Muller CH, Schroeder HT, Bock PM, Ayres LR, Cardoso BU, Zanotto C, Schein JT, Rech TH, Crispim D, Canani LH, Friedman R, Leitão CB, Gerchman F, Krause M. Elevated Extracellular HSP72 and Blunted Heat Shock Response in Severe COVID-19 Patients. Biomolecules 2022; 12:biom12101374. [PMID: 36291584 PMCID: PMC9599720 DOI: 10.3390/biom12101374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aims: We hypothesized that critically ill patients with SARS-CoV-2 infection and insulin resistance would present a reduced Heat Shock Response (HSR), which is a pathway involved in proteostasis and anti-inflammation, subsequently leading to worse outcomes and higher inflammation. In this work we aimed: (i) to measure the concentration of extracellular HSP72 (eHSP72) in patients with severe COVID-19 and in comparison with noninfected patients; (ii) to compare the HSR between critically ill patients with COVID-19 (with and without diabetes); and (iii) to compare the HSR in these patients with noninfected individuals. Methods: Sixty critically ill adults with acute respiratory failure with SARS-CoV-2, with or without diabetes, were selected. Noninfected subjects were included for comparison (healthy, n = 19 and patients with diabetes, n = 22). Blood samples were collected to measure metabolism (glucose and HbA1c); oxidative stress (lypoperoxidation and carbonyls); cytokine profile (IL-10 and TNF); eHSP72; and the HSR (in vitro). Results: Patients with severe COVID-19 presented higher plasma eHSP72 compared with healthy individuals and noninfected patients with diabetes. Despite the high level of plasma cytokines, no differences were found between critically ill patients with COVID-19 with or without diabetes. Critically ill patients, when compared to noninfected, presented a blunted HSR. Oxidative stress markers followed the same pattern. No differences in the HSR (extracellular/intracellular level) were found between critically ill patients, with or without diabetes. Conclusions: We demonstrated that patients with severe COVID-19 have elevated plasma eHSP72 and that their HSR is blunted, regardless of the presence of diabetes. These results might explain the uncontrolled inflammation and also provide insights on the increased risk in developing type 2 diabetes after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mariana Kras Borges Russo
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Lucas Stahlhöfer Kowalewski
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Gabriella Richter da Natividade
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Helena Trevisan Schroeder
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Patrícia Martins Bock
- Faculdades Integradas de Taquara, Taquara 95612-150, RS, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Layane Ramos Ayres
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Bernardo Urbano Cardoso
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Caroline Zanotto
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Julia Tsao Schein
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Tatiana Helena Rech
- Intensive Care Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Daisy Crispim
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Luis Henrique Canani
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Rogério Friedman
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Fernando Gerchman
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
- Correspondence: ; Tel.: +55-(51)-33082065
| |
Collapse
|
9
|
Melatonin attenuates MPP+-induced apoptosis via heat shock protein in a Parkinson's disease model. Biochem Biophys Res Commun 2022; 621:59-66. [DOI: 10.1016/j.bbrc.2022.06.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022]
|
10
|
Khouchlaa A, El Menyiy N, Guaouguaou FE, El Baaboua A, Charfi S, Lakhdar F, El Omari N, Taha D, Shariati MA, Rebezov M, El-Shazly M, Bouyahya A. Ethnomedicinal use, phytochemistry, pharmacology, and toxicology of Daphne gnidium: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114124. [PMID: 33865924 DOI: 10.1016/j.jep.2021.114124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Daphne gnidium L., (Lazaz or Metnan) is a perennial plant that grows around the Mediterranean basin, in Southern Europe, North Africa and the Middle East. It is used in different countries for hair care and to treat several diseases including skin cancer, diabetes, nervous breakdowns, sinusitis, poisoning, rheumatic disorders, odontalgia, muscular pain, and gastrointestinal infections. It is also used as anti-inflammatory, insecticide, and anti-parasitic remedy. AIM OF THE REVIEW In this review, previous studies on D. gnidium including its botanical description, taxonomy, geographical distribution, medicinal use, phytochemistry, and pharmacological properties were critically highlighted and discussed for suggesting the exploration of this specie and its bioactive compounds in medical applications. MATERIALS AND METHODS Data on D. gnidium were gathered from Scientific search engines including PubMed, ScienceDirect, SpringerLink, Web of Science, Scopus, Wiley Online, SciFinder, and Google Scholar. Reports on D. gnidium written in English published before September 2020 were summarized. RESULTS In traditional medicine, D. gnidium is used to treat diabetes, gastrointestinal infections, skin cancer, nervous breakdowns, and sinusitis. The extracts and essential oil of D. gnidium exhibited several biological properties such as antibacterial, antifungal, antiviral, antigenotoxic, hemolytic, anti-inflammatory, immunomodulatory, neuroprotective, allelopathic, and insecticidal effects. Phytochemical investigations identified several chemical classes of secondary metabolites in D. gnidium essential oil and extracts including terpenoids, coumarins, flavonoids, fatty acids, and alkanes. CONCLUSIONS The findings presented in this study showed a link between the traditional medicinal use and scientific biological results about D. gnidium. However, further investigations should be carried out to support medical and cosmetic applications of this species. Indeed, D. gnidium and its main compounds should be confirmed concerning their safety and their bioavailability. Moreover, pharmacodynamic studies should be conducted to support their efficacy in medical applications.
Collapse
Affiliation(s)
- Aya Khouchlaa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Naoual El Menyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Saoulajan Charfi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Fatima Lakhdar
- Department of Biology, Laboratory of Marine Biotechnology and Environment, Faculty of Sciences, Chouaib Doukkali University, BP 20, El Jadida 24000, Morocco.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Université Mohammed V, Rabat, Morocco.
| | - Mohammad Ali Shariati
- Department of Technology of Food Production, K.G. Razumoysky Moscow State University of Technologies and Management (the First Cossack University) 109004, Moscow, Russian Federation.
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian, Academy of Sciences, 109029, Moscow, Russian Federation.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
11
|
Vogt ÉL, Von Dentz MC, Rocha DS, Argenta Model JF, Kowalewski LS, de Souza SK, Girelli VDO, de Bittencourt PIH, Friedman R, Krause M, Vinagre AS. Metabolic and Molecular Subacute Effects of a Single Moderate-Intensity Exercise Bout, Performed in the Fasted State, in Obese Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147543. [PMID: 34299993 PMCID: PMC8307452 DOI: 10.3390/ijerph18147543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023]
Abstract
Introduction and objectives: Obesity represents a major global public health problem. Its etiology is multifactorial and includes poor dietary habits, such as hypercaloric and hyperlipidic diets (HFDs), physical inactivity, and genetic factors. Regular exercise is, per se, a tool for the treatment and prevention of obesity, and recent studies suggest that the beneficial effects of exercise can be potentiated by the fasting state, thus potentially promoting additional effects. Despite the significant number of studies showing results that corroborate such hypothesis, very few have evaluated the effects of fasted-state exercise in overweight/obese populations. Therefore, the aim of this study was to evaluate the subacute effects (12 h after conclusion) of a single moderate-intensity exercise bout, performed in either a fed or an 8 h fasted state, on serum profile, substrate-content and heat shock pathway–related muscle protein immunocontent in obese male rats. Methods: Male Wistar rats received a modified high-fat diet for 12 weeks to induce obesity and insulin resistance. The animals were allocated to four groups: fed rest (FER), fed exercise (FEE), fasted rest (FAR) and fasted exercise (FAE). The exercise protocol was a 30 min session on a treadmill, with an intensity of 60% of VO2max. The duration of the fasting period was 8 h prior to the exercise session. After a 12 h recovery, the animals were killed and metabolic parameters of blood, liver, heart, gastrocnemius and soleus muscles were evaluated, as well as SIRT1 and HSP70 immunocontent in the muscles. Results: HFD induced obesity and insulin resistance. Soleus glycogen concentration decreased in the fasted groups and hepatic glycogen decreased in the fed exercise group. The combination of exercise and fasting promoted a decreased concentration of serum total cholesterol and triglycerides. In the heart, combination fasting plus exercise was able to decrease triglycerides to control levels. In the soleus muscle, both fasting and fasting plus exercise were able to decrease triglyceride concentrations. In addition, heat shock protein 70 and sirtuin 1 immunocontent increased after exercise in the gastrocnemius and soleus muscles. Conclusions: An acute bout of moderate intensity aerobic exercise, when realized in fasting, may induce, in obese rats with metabolic dysfunctions, beneficial adaptations to their health, such as better biochemical and molecular adaptations that last for at least 12 h. Considering the fact that overweight/obese populations present an increased risk of cardiovascular events/diseases, significant reductions in such plasma markers of lipid metabolism are an important achievement for these populations.
Collapse
Affiliation(s)
- Éverton Lopes Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Maiza Cristina Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Débora Santos Rocha
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Jorge Felipe Argenta Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Lucas Stahlhöfer Kowalewski
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil; (L.S.K.); (P.I.H.d.B.J.)
| | - Samir Khal de Souza
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Vitória de Oliveira Girelli
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil; (L.S.K.); (P.I.H.d.B.J.)
| | - Rogério Friedman
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, RS, Brazil;
- Graduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil; (L.S.K.); (P.I.H.d.B.J.)
- Correspondence: ; Tel.: +55-51-33083623
| | - Anapaula Sommer Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, RS, Brazil; (É.L.V.); (M.C.V.D.); (D.S.R.); (J.F.A.M.); (S.K.d.S.); (V.d.O.G.); (A.S.V.)
| |
Collapse
|
12
|
Galbinski S, Kowalewski LS, Grigolo GB, da Silva LR, Jiménez MF, Krause M, Frantz N, Bös-Mikich A. Comparison between two cryopreservation techniques of human ovarian cortex: morphological aspects and the heat shock response (HSR). Cell Stress Chaperones 2021; 27:97-106. [PMID: 35043289 PMCID: PMC8943117 DOI: 10.1007/s12192-022-01252-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/03/2022] Open
Abstract
This study was tailored to compare the cryopreservation of the human ovarian cortex using closed metal container vitrification or the slow-freezing technique. Superficial ovarian cortical tissue biopsies were collected from 12 participants who underwent gynaecological videolaparoscopy. The fragmented samples were allocated to three experimental conditions: (a) fresh ovarian tissue, (b) slow-freezing, and (c) vitrification with a metal closed container. After thawing or rewarming, cellular morphological analyses were performed to determine tissue viability. The cellular response to thermal stress was measured by a putative increase in the immune quantification of the heat shock protein 70 kDa (heat shock protein 70 kDa response - HSR) after a heat challenge (2 h exposure at 42 °C). Both the total number of intact follicles and the frequency of primordial follicles were higher in fresh ovarian tissue than in the preserved samples, regardless of the technique employed. There was a trend towards an increase in the absolute number of intact follicles in the tissue preserved by vitrification. After cryopreservation, a higher HSR was obtained after slow-freezing. These results indicate that both cryopreservation techniques present advantages and may be used as alternatives to ovarian tissue cryopreservation.
Collapse
Affiliation(s)
- Sérgio Galbinski
- Unidade de Reprodução Humana, Hospital Fêmina, Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Ginecologia e Obstetrícia da Universidade Federal do Rio Grande do Sull, Porto Alegre, RS, Brazil
| | - Lucas Stahlhöfer Kowalewski
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gisele Bettú Grigolo
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Ramos da Silva
- Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mirela Foresti Jiménez
- Unidade de Reprodução Humana, Hospital Fêmina, Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Ginecologia e Obstetrícia da Universidade Federal do Rio Grande do Sull, Porto Alegre, RS, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Nilo Frantz
- Nilo Frantz Medicina Reprodutiva, Porto Alegre, RS, Brazil
| | - Adriana Bös-Mikich
- Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Krause M, Gerchman F, Friedman R. Coronavirus infection (SARS-CoV-2) in obesity and diabetes comorbidities: is heat shock response determinant for the disease complications? Diabetol Metab Syndr 2020; 12:63. [PMID: 32690985 PMCID: PMC7364287 DOI: 10.1186/s13098-020-00572-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Chronic inflammation is involved in the pathogenesis of several metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM). With the recent worldwide outbreak of coronavirus disease (SARS-CoV-2), it has been observed that individuals with these metabolic diseases are more likely to develop complications, increasing the severity of the disease and a poorer outcome. Coronavirus infection leads to the activation of adaptive and innate immune responses, resulting in massive inflammation (to so called cytokine storm), which in turn can lead to damage to various tissues, septic shock and multiple organ failure. Recent evidence suggests that the common link between metabolic diseases and SARS-CoV-2 is the inflammatory response (chronic/low-grade for metabolic diseases and acute/intense in coronavirus infection). However, the ability of the infected individuals to resolve the inflammation has not yet been explored. The heat shock response (HSR), an important anti-inflammatory pathway, is reduced in patients with metabolic diseases and, consequently, may impair inflammation resolution and control in patients with SARS-CoV-2, thus enabling its amplification and propagation through all tissues. Herein, we present a new hypothesis that aims to explain the increased severity of SARS-CoV-2 infection in people with metabolic diseases, and the possible benefits of HSR-inducing therapies to improve the inflammatory profile in these patients.
Collapse
Affiliation(s)
- Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Fernando Gerchman
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS Brazil
- Graduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Porto Alegre, Brazil
| | - Rogério Friedman
- Endocrine and Metabolic Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS Brazil
- Graduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Porto Alegre, Brazil
| |
Collapse
|
14
|
Vince RV, Kirk RJ, Aye MM, Atkin SL, Madden LA. Impaired heat shock protein 72 expression in women with polycystic ovary syndrome following a supervised exercise programme. Cell Stress Chaperones 2020; 25:73-80. [PMID: 31734892 PMCID: PMC6985053 DOI: 10.1007/s12192-019-01048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022] Open
Abstract
Induction of heat shock protein expression and the heat shock (stress) response are seen in exercise. This exercise-induced response is thought protective against cellular stress through the expression of heat shock proteins. The highly inducible heat shock protein 72 (HSP72) has been shown to be expressed in a number of stress-related conditions, but not investigated in women with polycystic ovary syndrome (PCOS). Twenty-one women (10 controls, 11 with PCOS) concluded an 8-week supervised, moderate-intensity exercise programme. Monocytes and lymphocytes were analysed by flow cytometry for HSP72 expression from blood samples prior to, mid-way and at the completion of the programme. The monocyte HSP72 expression showed an increase from baseline values through mid-way (p = 0.025), and at the completion of the programme (p = 0.011) only in the control group, the PCOS group showed no significant change. This pattern was similar for lymphocyte HSP72 expression where a significant increase was found at the completion of the programme (p = 0.01) only in the control group. The magnitude of increased HSP72 expression following completion of the programme was linked to baseline values only in the control group. In conclusion, increased HSP72 expression to exercise over an 8-week period was seen in control but not in PCOS women, suggesting that there is an impairment of HSP72 expression in response to exercise in these women.
Collapse
Affiliation(s)
- Rebecca V Vince
- Sport, Health and Exercise Science, Faculty of Health Sciences, University of Hull, Hull, HU6 7RX, UK.
| | - Richard J Kirk
- Sport, Health and Exercise Science, Faculty of Health Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Myint M Aye
- Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
| | | | - Leigh A Madden
- Biomedical Science, Faculty of Health Sciences, University of Hull, Hull, UK
| |
Collapse
|
15
|
Sabbah NA, Rezk NA, Saad MS. Relationship Between Heat Shock Protein Expression and Obesity With and Without Metabolic Syndrome. Genet Test Mol Biomarkers 2019; 23:737-743. [DOI: 10.1089/gtmb.2019.0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Norhan Abdalla Sabbah
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Noha A. Rezk
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed S.S. Saad
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
16
|
de Lemos Muller CH, de Matos JR, Grigolo GB, Schroeder HT, Rodrigues-Krause J, Krause M. Exercise Training for the Elderly: Inflammaging and the Central Role for HSP70. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42978-019-0015-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Kirk RJ, Madden LA, Peart DJ, Aye MM, Atkin SL, Vince RV. Circulating Endothelial Microparticles Reduce in Concentration Following an Exercise Programme in Women With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2019; 10:200. [PMID: 30984117 PMCID: PMC6450458 DOI: 10.3389/fendo.2019.00200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/11/2019] [Indexed: 11/21/2022] Open
Abstract
Purpose: Endothelial dysfunction is a known comorbidity in women with polycystic ovary syndrome (PCOS). The aim was to assess if supervised, moderate intensity exercise could potentially impact markers of endothelial disruption; endothelial cell derived microparticles (EMP). Methods: The current study investigated the effects of a supervised 8-week moderate intensity exercise programme on EMP in women with PCOS (n = 11) and control women free from any known disease (n = 10). EMP were enumerated via specific antibody (CD105, CD106) labeling and flow cytometry. Results: CD105+MP significantly reduced in women with PCOS from pre to post-exercise programme, with CD105+ MP reducing from 2114 CD105+ MP per μl platelet free plasma (PFP) to 424 CD105+ MP per μl PFP (p = 0.025). Control women showed no significant change in CD105+ MP (p = 0.25) after completing the same exercise programme. CD106+ MP showed no change in either PCOS (p = 0.95) or control groups (p = 0.99). No significant correlations existed with the changes in EMP compared to body composition changes as a result of exercise. Conclusion: Supervised, moderate intensity exercise independent of substantial weight loss reduced circulating CD105+ MP, likely reflecting an improvement in endothelial function in women with PCOS compared to healthy control women. Additionally, EMP may be a useful marker for physical improvement in exercise programmes for clinical populations.
Collapse
Affiliation(s)
- Richard J. Kirk
- Sport, Health and Exercise Science, Faculty of Health Sciences, University of Hull, Kingston upon Hull, United Kingdom
| | - Leigh A. Madden
- Centre of Biomedical Research, Faculty of Health Sciences, University of Hull, Kingston upon Hull, United Kingdom
| | - Daniel J. Peart
- Sport, Health and Exercise Science, Faculty of Health Sciences, University of Hull, Kingston upon Hull, United Kingdom
- Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Myint M. Aye
- Faculty of Health Sciences, Hull York Medical School, University of Hull, Kingston upon Hull, United Kingdom
| | - Stephen L. Atkin
- Weill Cornell Medical College, Al Rayyan, Qatar
- Royal College of Surgeons Ireland, Al Sayh, Bahrain
| | - Rebecca V. Vince
- Sport, Health and Exercise Science, Faculty of Health Sciences, University of Hull, Kingston upon Hull, United Kingdom
| |
Collapse
|
18
|
Doberentz E, Madea B. Supravital expression of heat-shock proteins. Forensic Sci Int 2019; 294:10-14. [DOI: 10.1016/j.forsciint.2018.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
|
19
|
de Lemos Muller CH, Rech A, Botton CE, Schroeder HT, Bock PM, Farinha JB, Lopez P, Schöler CM, Grigolo GB, Coelho J, Kowalewski LS, Rodrigues MIL, de Azevedo MA, Quincozes-Santos A, Rodrigues-Krause J, Reischak-Oliveira A, Pinto RS, De Vito G, de Bittencourt Júnior PIH, Krause M. Heat-induced extracellular HSP72 release is blunted in elderly diabetic people compared with healthy middle-aged and older adults, but it is partially restored by resistance training. Exp Gerontol 2018; 111:180-187. [DOI: 10.1016/j.exger.2018.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
|
20
|
Trussardi Fayh AP, de Carvalho Gomes C, Schroeder HT, Henrique de Lemos Muller C, Maria de Araújo Moura Lemos T, Krause M. Induction chemotherapy reduces extracellular heat shock protein 72 levels, inflammation, lipoperoxidation and changes insulin sensitivity in children and adolescents newly diagnosed with acute lymphoblastic leukemia. Oncotarget 2018; 9:28784-28795. [PMID: 29983896 PMCID: PMC6033368 DOI: 10.18632/oncotarget.25609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/19/2018] [Indexed: 02/03/2023] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is associated with higher levels of pro-inflammatory cytokines and oxidative stress. Recently, the levels of extracellular heat shock protein 72 (eHSP72) were found to be elevated in ALL, and its elevation associated with poor prognosis. Therefore, considering the possible role of eHSP72 as a modulator of the immunological system and metabolism, the aim of this study was to describe the response of eHSP72 to the induction phase of chemotherapy, along with metabolic, inflammatory and oxidative stress markers, in children and adolescents newly diagnosed with ALL. Methods Nineteen patients were recruited and analysed before and after the induction phase of chemotherapy (with 28 days of duration). Blood samples were taken for the analysis of C-reactive protein (CRP), levels of lipoperoxidation, insulin (and HOMA-IR), cortisol, glucose, lipid profile and eHSP72. Results We found that induction phase of chemotherapy leads to a drop in glucose levels (from 101.79±19 to 75.8±9.7 mg/dL), improvements on inflammation (CRP levels, p<0.01) and oxidative stress (TBARS levels, p<0.01), reduction on eHSP72 (p=0.03) and improved insulin sensitivity (HOMA-IR, p=0.02). Conclusion Our results indicate that eHSP72 may have an immune and metabolic role and could be used as a marker of the treatment success and metabolic changes in children with ALL.
Collapse
Affiliation(s)
- Ana Paula Trussardi Fayh
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Camila de Carvalho Gomes
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Helena Trevisan Schroeder
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Telma Maria de Araújo Moura Lemos
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Yuan Y, Pan SS, Shen YJ. Cardioprotection of exercise preconditioning involving heat shock protein 70 and concurrent autophagy: a potential chaperone-assisted selective macroautophagy effect. J Physiol Sci 2018; 68:55-67. [PMID: 27928720 PMCID: PMC10717675 DOI: 10.1007/s12576-016-0507-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 12/23/2022]
Abstract
It has been confirmed that exercise preconditioning (EP) has a protective effect on acute cardiovascular stress. However, how Hsp70 participates in EP-induced cardioprotection is unknown. EP may involve Hsp70 to repair unfolded proteins or may also stabilize the function of the endoplasmic reticulum via Hsp70-related autophagy to work on a protective formation. Our EP protocol involves four periods of 10 min running with 10 min recovery intervals. We added a period of exhaustive running to test this protective effect, using histology and molecular biotechnology methods to detect related markers. EP provided cardioprotection at its early and late phases against exhaustive exercise-induced ischemic myocardial injury. Results showed that Hsp70 co-chaperone protein BAG3, ubiquitin adaptor p62 and critical autophagy protein LC3 were significantly upregulated at the early phase. Meanwhile, Hsp70, Hsp70/BAG3 co-localization extent, LC31 and LC3II were significantly upregulated at the late phase. Hsp70 mRNA levels and LC3II/I ratios were also consistent with the extent of myocardial injury following exhaustive exercise. Hsp70 increase was delayed relative to BAG3 and p62 after EP, indicating a pre-synthesized phenomenon of BAG3 and p62 for chaperone-assisted selective autophagy (CASA). The decreased Hsp70, BAG3 and p62 levels and increased Hsp70/BAG3 co-localization extent and LC3 levels induced by exhaustive exercise after EP suggest that EP-induced cardioprotection might associate with CASA. Hsp70 has a cardioprotective role and has a closer link with CASA in LEP. Additionally, EP may not cause exhaustion-dependent excessive autophagy regulation. Collectively, during early and late EP, CASA potentially plays different roles in cardioprotection.
Collapse
Affiliation(s)
- Yang Yuan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| | - Shan-Shan Pan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China.
| | - Yu-Jun Shen
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| |
Collapse
|
22
|
Bruchim Y, Horowitz M, Aroch I. Pathophysiology of heatstroke in dogs - revisited. Temperature (Austin) 2017; 4:356-370. [PMID: 29435477 PMCID: PMC5800390 DOI: 10.1080/23328940.2017.1367457] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Heatstroke results from a failure to dissipate accumulated heat during exposure to hot environments, or during strenuous physical exercise under heat stress. It is characterized by core body temperatures > 41°C, with central nervous system dysfunction. Functional morphology and thermoregulatory effectors differences between dogs and humans may require special heatstroke protective adaptations in dogs, however, the risk factors for developing heatstroke are similar in both. In dogs, these include hot, especially highly humid environments, excessive physical activity, obesity, large (>15 kg) body weight, being of certain breed (e.g., Labrador retrievers and brachycephalic breeds), upper airway obstruction and prolonged seizures. Lack of acclimation to heat and physical fitness decreases the survival of heat stroked dogs. At the systemic level, blood pooling within the large internal organs (e.g., spleen, liver) is a major contributor to the development of shock and consequent intestinal ischemia, hypoxia and endothelial hyperpermeability, commonly occurring in heatstroke patients. Evoked serious complications include rhabdomyolysis, acute kidney injury, acute respiratory distress syndrome and ultimately, sepsis and disseminated intravascular coagulation. The most common clinical signs in dogs include acute collapse, tachypnea, spontaneous bleeding, shock signs and mental abnormalities, including depression, disorientation or delirium, seizures, stupor and coma. In such dogs, presence of peripheral blood nucleated red blood cells uniquely occurs, and is a highly sensitive diagnostic and prognostic biomarker. Despite early, appropriate body cooling, and intensive supportive treatment, with no available specific treatment to ameliorate the severe inflammatory and hemostatic derangements, the mortality rate is around 50%, similar to that of human heatstroke victims. This review discusses the pathophysiology of canine heatstroke from a veterinarian's point of view, integrating new and old studies and knowledge.
Collapse
Affiliation(s)
- Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Itamar Aroch
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
23
|
Tuttle JA, Chrismas BCR, Gibson OR, Barrington JH, Hughes DC, Castle PC, Metcalfe AJ, Midgley AW, Pearce O, Kabir C, Rayanmarakar F, Al-Ali S, Lewis MP, Taylor L. The Hsp72 and Hsp90α mRNA Responses to Hot Downhill Running Are Reduced Following a Prior Bout of Hot Downhill Running, and Occur Concurrently within Leukocytes and the Vastus Lateralis. Front Physiol 2017; 8:473. [PMID: 28747888 PMCID: PMC5506191 DOI: 10.3389/fphys.2017.00473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
The leukocyte heat shock response (HSR) is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle), and whether an acute preconditioning strategy (e.g., downhill running) can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6) completed two trials (HPC1HOTDOWN and HPC2HOTDOWN) of 30 min running at lactate threshold (LT) on -10% gradient in 30°C and 50% relative humidity (RH) separated by 7 d. A temperate preconditioning group (TPC; n = 5) completed 30 min running at LT on a -1% gradient in 20°C and 50% (TPC1TEMPFLAT) and 7 d later completed 30 min running at LT on -10% gradient in 30°C and 50% RH (TPC2HOTDOWN). Venous blood samples and muscle biopsies (vastus lateralis; VL) were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05) and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05) responses accompanied reductions (p < 0.05) in physiological strain [exercising rectal temperature (-0.3°C) and perceived muscle soreness (~ -14%)] during HPC2HOTDOWN compared to HPC1HOTDOWN (i.e., a preconditioning effect). Both VL and leukocyte Hsp72 and Hsp90α mRNA increased (p < 0.05) simultaneously following downhill runs and demonstrated a strong relationship (p < 0.01) of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy which ameliorates physiological strain, soreness and Hsp72 and Hsp90α mRNA responses to a subsequent bout. Leukocyte and VL analyses are appropriate tissues to infer the extent to which the HSR has been augmented.
Collapse
Affiliation(s)
- James A Tuttle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University LondonLondon, United Kingdom
| | - James H Barrington
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavis, CA, United States
| | - Paul C Castle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Alan J Metcalfe
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom.,School of Exercise and Health Sciences, Edith Cowan UniversityPerth, WA, Australia
| | - Adrian W Midgley
- Department of Sport and Physical Activity, Edgehill UniversityOrmskirk, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | | | - Sami Al-Ali
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,ASPETAR, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar
| |
Collapse
|
24
|
Leite JSM, Cruzat VF, Krause M, Homem de Bittencourt PI. Physiological regulation of the heat shock response by glutamine: implications for chronic low-grade inflammatory diseases in age-related conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0021-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Dimauro I, Mercatelli N, Caporossi D. Exercise-induced ROS in heat shock proteins response. Free Radic Biol Med 2016; 98:46-55. [PMID: 27021964 DOI: 10.1016/j.freeradbiomed.2016.03.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 11/26/2022]
Abstract
Cells have evolved multiple and sophisticated stress response mechanisms aiming to prevent macromolecular (including proteins, lipids, and nucleic acids) damage and to maintain or re-establish cellular homeostasis. Heat shock proteins (HSPs) are among the most highly conserved, ubiquitous, and abundant proteins in all organisms. Originally discovered more than 50 years ago through heat shock stress, they display multiple, remarkable roles inside and outside cells under a variety of stresses, including also oxidative stress and radiation, recognizing unfolded or misfolded proteins and facilitating their restructuring. Exercise consists in a combination of physiological stresses, such as metabolic disturbances, changes in circulating levels of hormones, increased temperature, induction of mild to severe inflammatory state, increased production of reactive oxygen and nitrogen species (ROS and RNS). As a consequence, exercise is one of the main stimuli associated with a robust increase in different HSPs in several tissues, which appears to be also fundamental in facilitating the cellular remodeling processes related to the training regime. Among all factors involved in the exercise-related modulation of HSPs level, the ROS production in the contracting muscle or in other tissues represents one of the most attracting, but still under discussion, mechanism. Following exhaustive or damaging muscle exercise, major oxidative damage to proteins and lipids is likely involved in HSP expression, together with mechanically induced damage to muscle proteins and the inflammatory response occurring several days into the recovery period. Instead, the transient and reversible oxidation of proteins by physiological concentrations of ROS seems to be involved in the activation of stress response following non-damaging muscle exercise. This review aims to provide a critical update on the role of HSPs response in exercise-induced adaptation or damage in humans, focusing on experimental results where the link between redox homeostasis and HSPs expression by exercise has been addressed. Further, with the support of in vivo and in vitro studies, we discuss the putative molecular mechanisms underlying the ROS-mediated modulation of HSP expression and/or activity during exercise.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy.
| |
Collapse
|
26
|
Emery SM, Dobrowsky RT. Promoting Neuronal Tolerance of Diabetic Stress: Modulating Molecular Chaperones. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:181-210. [PMID: 27133150 DOI: 10.1016/bs.irn.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The etiology of diabetic peripheral neuropathy (DPN) involves an interrelated series of metabolic and vascular insults that ultimately contribute to sensory neuron degeneration. In the quest to pharmacologically manage DPN, small-molecule inhibitors have targeted proteins and pathways regarded as "diabetes specific" as well as others whose activity are altered in numerous disease states. These efforts have not yielded any significant therapies, due in part to the complicating issue that the biochemical contribution of these targets/pathways to the progression of DPN does not occur with temporal and/or biochemical uniformity between individuals. In a complex, chronic neurodegenerative disease such as DPN, it is increasingly appreciated that effective disease management may not necessarily require targeting a pathway or protein considered to contribute to disease progression. Alternatively, it may prove sufficiently beneficial to pharmacologically enhance the activity of endogenous cytoprotective pathways to aid neuronal tolerance to and recovery from glucotoxic stress. In pursuing this paradigm shift, we have shown that modulating the activity and expression of molecular chaperones such as heat shock protein 70 (Hsp70) may provide translational potential for the effective medical management of insensate DPN. Considerable evidence supports that modulating Hsp70 has beneficial effects in improving inflammation, oxidative stress, and glucose sensitivity. Given the emerging potential of modulating Hsp70 to manage DPN, the current review discusses efforts to characterize the cytoprotective effects of this protein and the benefits and limitations that may arise in drug development efforts that exploit its cytoprotective activity.
Collapse
Affiliation(s)
- S M Emery
- The University of Kansas, Lawrence, KS, United States
| | - R T Dobrowsky
- The University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
27
|
Sudden infant death syndrome: no significant expression of heat-shock proteins (HSP27, HSP70). Forensic Sci Med Pathol 2015; 12:33-9. [DOI: 10.1007/s12024-015-9730-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
|
28
|
Implications of a pre-exercise alkalosis-mediated attenuation of HSP72 on its response to a subsequent bout of exercise. Amino Acids 2015; 48:499-504. [PMID: 26433893 DOI: 10.1007/s00726-015-2103-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate if a pre-exercise alkalosis-mediated attenuation of HSP72 had any effect on the response of the same stress protein after a subsequent exercise. Seven physically active males [25.0 ± 6.5 years, 182.1 ± 6.0 cm, 74.0 ± 8.3 kg, peak aerobic power (PPO) 316 ± 46 W] performed a repeated sprint exercise (EXB1) following a dose of 0.3 g kg(-1) body mass of sodium bicarbonate (BICARB), or a placebo of 0.045 g kg(-1) body mass of sodium chloride (PLAC). Participants then completed a 90-min intermittent cycling protocol (EXB2). Monocyte expressed HSP72 was significantly attenuated after EXB1 in BICARB compared to PLAC, however, there was no difference in the HSP72 response to the subsequent EXB2 between conditions. Furthermore there was no difference between conditions for measures of oxidative stress (protein carbonyl and HSP32). These findings confirm the sensitivity of the HSP72 response to exercise-induced changes in acid-base status in vivo, but suggest that the attenuated response has little effect upon subsequent stress in the same day.
Collapse
|
29
|
Krause M, Bock PM, Takahashi HK, Homem De Bittencourt PI, Newsholme P. The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond) 2015; 128:789-803. [PMID: 25881670 DOI: 10.1042/cs20140695] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The 70 kDa heat-shock protein (HSP70) family is important for a dynamic range of cellular processes that include protection against cell stress, modulation of cell signalling, gene expression, protein synthesis, protein folding and inflammation. Within this family, the inducible 72 kDa and the cognate 73 kDa forms are found at the highest level. HSP70 has dual functions depending on location. For example, intracellular HSP70 (iHSP70) is anti-inflammatory whereas extracellular HSP70 (eHSP70) has a pro-inflammatory function, resulting in local and systemic inflammation. We have recently identified a divergence in the levels of eHSP70 and iHSP70 in subjects with diabetes compared with healthy subjects and also reported that eHSP70 was correlated with insulin resistance and pancreatic β-cell dysfunction/death. In the present review, we describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signalling in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mauricio Krause
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Martins Bock
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hilton Kenji Takahashi
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem De Bittencourt
- *Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Philip Newsholme
- ‡School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia
| |
Collapse
|
30
|
De Blois J, Kjellstrom T, Agewall S, Ezekowitz JA, Armstrong PW, Atar D. The Effects of Climate Change on Cardiac Health. Cardiology 2015; 131:209-17. [DOI: 10.1159/000398787] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/08/2015] [Indexed: 11/19/2022]
Abstract
The earth's climate is changing and increasing ambient heat levels are emerging in large areas of the world. An important cause of this change is the anthropogenic emission of greenhouse gases. Climate changes have a variety of negative effects on health, including cardiac health. People with pre-existing medical conditions such as cardiovascular disease (including heart failure), people carrying out physically demanding work and the elderly are particularly vulnerable. This review evaluates the evidence base for the cardiac health consequences of climate conditions, with particular reference to increasing heat exposure, and it also explores the potential further implications.
Collapse
|
31
|
Human monocyte heat shock protein 72 responses to acute hypoxic exercise after 3 days of exercise heat acclimation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:849809. [PMID: 25874231 PMCID: PMC4385626 DOI: 10.1155/2015/849809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/21/2014] [Indexed: 01/21/2023]
Abstract
The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% V̇O2peak in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 (P = 0.97). STHA induced an increase in basal HSP72 (P = 0.03) with no change observed in CON (P = 0.218). Basal mHSP72 remained elevated before HST2 for the STHA group (P < 0.05) and was unchanged from HST1 in CON (P > 0.05). Percent change in mHSP72 was lower after HST2 in STHA compared to CON (P = 0.02). The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72.
Collapse
|
32
|
The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediators Inflamm 2015; 2015:249205. [PMID: 25814786 PMCID: PMC4357135 DOI: 10.1155/2015/249205] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Recent evidence shows divergence between the concentrations of extracellular 70 kDa heat shock protein [eHSP70] and its intracellular concentrations [iHSP70] in people with type 2 diabetes (T2DM). A vital aspect regarding HSP70 physiology is its versatility to induce antagonistic actions, depending on the location of the protein. For example, iHSP70 exerts a powerful anti-inflammatory effect, while eHSP70 activates proinflammatory pathways. Increased eHSP70 is associated with inflammatory and oxidative stress conditions, whereas decreased iHSP70 levels are related to insulin resistance in skeletal muscle. Serum eHSP70 concentrations are positively correlated with markers of inflammation, such as C-reactive protein, monocyte count, and TNF-α, while strategies to enhance iHSP70 (e.g., heat treatment, chemical HSP70 inducers or coinducers, and physical exercise) are capable of reducing the inflammatory profile and the insulin resistance state. Here, we present recent findings suggesting that imbalances in the HSP70 status, described by the [eHSP70]/[iHSP70] ratio, may be determinant to trigger a chronic proinflammatory state that leads to insulin resistance and T2DM development. This led us to hypothesize that changes in this ratio value could be used as a biomarker for the management of the inflammatory response in insulin resistance and diabetes.
Collapse
|
33
|
Bruchim Y, Aroch I, Eliav A, Abbas A, Frank I, Kelmer E, Codner C, Segev G, Epstein Y, Horowitz M. Two years of combined high-intensity physical training and heat acclimatization affect lymphocyte and serum HSP70 in purebred military working dogs. J Appl Physiol (1985) 2014; 117:112-8. [PMID: 24903923 DOI: 10.1152/japplphysiol.00090.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Military working dogs in hot countries undergo exercise training at high ambient temperatures for at least 9 mo annually. Physiological adaptations to these harsh conditions have been extensively studied; however, studies focusing on the underlying molecular adaptations are limited. In the current study, military working dogs were chosen as a model to examine the effects of superimposing endurance exercise on seasonal acclimatization to environmental heat stress. The lymphocyte HSP70 profile and extracellular HSP70 were studied in tandem with physiological performance in the dogs from their recruitment for the following 2 yr. Aerobic power and heat shock proteins were measured at the end of each summer, with physical performance tests (PPTs) in an acclimatized room (22°C). The study shows that together with a profound enhancement of aerobic power and physical performance, hsp72 mRNA induction immediately post-PPT and 45 min later, progressively increased throughout the study period (relative change in median lymphocyte hsp72 mRNA first PPT, 4.22 and 12.82; second PPT, 17.19 and 109.05, respectively), whereas induction of HSP72 protein was stable. These responses suggest that cellular/molecular adaptive tools for maintaining HSP72 homeostasis exist. There was also a significant rise in basal and peak median optical density extracellular HSP at the end of each exercise test (first PPT, 0.13 and 0.15; second PPT, 1.04 and 1.52, respectively). The relationship between these enhancements and improved aerobic power capacity is not yet fully understood.
Collapse
Affiliation(s)
- Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem;
| | - Itamar Aroch
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Ady Eliav
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Atallah Abbas
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Ilan Frank
- Israel Defense Force Military Working Dog Unit
| | - Efrat Kelmer
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Carolina Codner
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Gilad Segev
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Yoram Epstein
- Heller Institute of Medical Research, Chaim Sheba Medical Center, Tel Hashomer, and Tel-Aviv University Medical School, Israel; and
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| |
Collapse
|
34
|
Liu S, Wang J, Cong B, Huang X, Chen K, Zhang P. Characterization and expression analysis of a mitochondrial heat-shock protein 70 gene from the Antarctic moss Pohlia nutans. Polar Biol 2014. [DOI: 10.1007/s00300-014-1508-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Elevated levels of extracellular heat-shock protein 72 (eHSP72) are positively correlated with insulin resistance in vivo and cause pancreatic β-cell dysfunction and death in vitro. Clin Sci (Lond) 2014; 126:739-52. [PMID: 24325467 DOI: 10.1042/cs20130678] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
eHSP72 (extracellular heat-shock protein 72) is increased in the plasma of both types of diabetes and is positively correlated with inflammatory markers. Since aging is associated with a low-grade inflammation and IR (insulin resistance), we aimed to: (i) analyse the concentration of eHSP72 in elderly people and determine correlation with insulin resistance, and (ii) determine the effects of eHSP72 on β-cell function and viability in human and rodent pancreatic β-cells. Fasting blood samples were collected from 50 older people [27 females and 23 males; 63.4±4.4 years of age; BMI (body mass index)=25.5±2.7 kg/m2]. Plasma samples were analysed for eHSP72, insulin, TNF (tumour necrosis factor)-α, leptin, adiponectin and cortisol, and glycaemic and lipid profile. In vitro studies were conducted using rodent islets and clonal rat and human pancreatic β-cell lines (BRIN-BD11 and 1.1B4 respectively). Cells/islets were incubated for 24 h with eHSP72 (0, 0.2, 4, 8 and 40 ng/ml). Cell viability was measured using three different methods. The impact of HSP72 on β-cell metabolic status was determined using Seahorse Bioscience XFe96 technology. To assess whether the effects of eHSP72 were mediated by Toll-like receptors (TLR2/TLR4), we co-incubated rodent islets with eHSP72 and the TLR2/TLR4 inhibitor OxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; 30 μg/ml). We found a positive correlation between plasma eHSP72 and HOMA-IR (homoeostasis model assessment of IR) (r=0.528, P<0.001), TNF-α (r=0.389, P<0.014), cortisol (r=0.348, P<0.03) and leptin/adiponectin (r=0.334, P<0.03). In the in vitro studies, insulin secretion was decreased in an eHSP72 dose-dependent manner in BRIN-BD11 cells (from 257.7±33 to 84.1±10.2 μg/mg of protein per 24 h with 40 ng/ml eHSP72), and in islets in the presence of 40 ng/ml eHSP72 (from 0.48±0.07 to 0.33±0.009 μg/20 islets per 24 h). Similarly, eHSP72 reduced β-cell viability (at least 30% for BRIN-BD11 and 10% for 1.1B4 cells). Bioenergetic studies revealed that eHSP72 altered pancreatic β-cell metabolism. OxPAPC restored insulin secretion in islets incubated with 40 ng/ml eHSP72. In conclusion, we have demonstrated a positive correlation between eHSP72 and IR. In addition, we suggest that chronic eHSP72 exposure may mediate β-cell failure.
Collapse
|
36
|
Mikkelsen UR, Paulsen G, Schjerling P, Helmark IC, Langberg H, Kjær M, Heinemeier KM. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion. Eur J Appl Physiol 2013; 113:1883-93. [PMID: 23467900 DOI: 10.1007/s00421-013-2606-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/03/2013] [Indexed: 12/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal eccentric contractions with each leg with intramuscular infusion of the NSAID indomethacin or placebo. Biopsies were obtained from m. vastus lateralis before and after (5, 28 hrs and 8 days) the exercise bout from both legs (NSAID vs unblocked leg) and analysed for expression of the HSPs HSP70, HSP27 and αB-crystallin (mRNA and protein). NSAID did not affect the mRNA expression of any of the HSPs. Compared to pre values, the mRNA expression of all HSPs was increased; αB-crystallin, 3.6- and 5.4-fold; HSP70, 26- and 3.4-fold; and HSP27: 4.8- and 6.5-fold at 5 and 28 hrs post-exercise, respectively (all p < 0.008). Immunohistochemical stainings for αB-crystallin and HSP70 revealed increased staining in some samples but with no differences between legs. Changes in force-generating capacity correlated with both αB-crystallin and HSP70 mRNA and immunohistochemisty data. Increased expression of HSPs was observed on mRNA and protein level following eccentric exercise; however, this response was unaffected by local intramuscular infusion of NSAIDs.
Collapse
Affiliation(s)
- U R Mikkelsen
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
37
|
Peart DJ, Kirk RJ, Madden LA, Siegler JC, Vince RV. The influence of exogenous carbohydrate provision and pre-exercise alkalosis on the heat shock protein response to prolonged interval cycling. Amino Acids 2012; 44:903-10. [PMID: 23090292 DOI: 10.1007/s00726-012-1419-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
The aim of this study was to observe the intracellular heat shock protein 72 (HSP72) and heme oxygenase-1 (HSP32) response to prolonged interval cycling following the ingestion of carbohydrates (CHO) and sodium bicarbonate (NaHCO(3)). Six recreationally active males (mean ± SD; age 23.2 ± 2.9 years, height 179.5 ± 5.5 cm, body mass 76.5 ± 6.8 kg, and peak power output 315 ± 36 W) volunteered to complete a 90 min interval cycling exercise on four occasions. The trials were completed in a random and blinded manner following ingestion of either: placebo and an artificial sweetener (P-P), NaHCO(3) and sweetener (B-P), placebo and CHO (P-CHO), and NaHCO(3) and CHO (B-CHO). Both HSP72 and HSP32 were significantly increased in monocytes and lymphocytes from 45 min post-exercise (p ≤ 0.039), with strong relationships between both cell types (HSP72, r = 0.83; HSP32, r = 0.89). Exogenous CHO had no influence on either HSP72 or HSP32, but the ingestion of NaHCO(3) significantly attenuated HSP32 in monocytes and lymphocytes (p ≤ 0.042). In conclusion, the intracellular stress protein response to 90 min interval exercise is closely related in monocytes and lymphocytes, and HSP32 appears to be attenuated with a pre-exercise alkalosis.
Collapse
Affiliation(s)
- Daniel J Peart
- Department of Sport, Health and Exercise Science, University of Hull, Hull HU6 7RX, UK
| | | | | | | | | |
Collapse
|
38
|
Uryash A, Wu H, Bassuk J, Kurlansky P, Adams JA. Preconditioning with periodic acceleration (pGz) provides second window of cardioprotection. Life Sci 2012; 91:178-85. [DOI: 10.1016/j.lfs.2012.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/30/2012] [Accepted: 06/27/2012] [Indexed: 11/27/2022]
|
39
|
Peart DJ, Kirk RJ, Hillman AR, Madden LA, Siegler JC, Vince RV. The physiological stress response to high-intensity sprint exercise following the ingestion of sodium bicarbonate. Eur J Appl Physiol 2012; 113:127-34. [DOI: 10.1007/s00421-012-2419-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/03/2012] [Indexed: 12/01/2022]
|
40
|
Madden LA, Hayman YA, Underwood C, Vince RV, Greenman J, Allsup D, Ali S. Increased inducible heat shock protein 72 expression associated with PBMC isolated from patients with haematological tumours. Scandinavian Journal of Clinical and Laboratory Investigation 2012; 72:380-6. [PMID: 22548611 DOI: 10.3109/00365513.2012.681683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Heat shock protein 72 (Hsp72) is a highly inducible stress protein and molecular chaperone. Cancers have been shown to be associated with increased Hsp72 expression within the tumour itself and this may lead to resistance to apoptosis. METHODS Peripheral blood mononuclear cells (PBMC) were isolated from patients diagnosed with chronic lymphocytic leukaemia (CLL) (n = 27) and chronic myelomonocytic leukaemia (CMML) (n = 16) and Hsp72 expression was characterized on both the cell surface and intracellularly by flow cytometry. To allow for comparison PBMC from breast cancer patients (n = 25) and healthy volunteers (n = 19) were included. RESULTS Both lymphocytes and monocytes from CLL and CMML patients showed high levels of total Hsp72 expression (4-6 fold increase) in comparison to breast cancer and healthy subjects. The majority of Hsp72 in these tumours was determined to be cell-surface expressed (64-93% of cell total Hsp72). CONCLUSIONS A correlation was observed between lymphocyte and monocyte total Hsp72 expression (p < 0.001) suggesting a common stress response pathway may exist in these blood cells and there are stress conditions present within the circulation. Hsp72 expression was not found to be related to white blood cell count.
Collapse
Affiliation(s)
- Leigh A Madden
- Postgraduate Medical Institute, University of Hull, Hull, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rodrigues-Krause J, Krause M, O’Hagan C, De Vito G, Boreham C, Murphy C, Newsholme P, Colleran G. Divergence of intracellular and extracellular HSP72 in type 2 diabetes: does fat matter? Cell Stress Chaperones 2012; 17:293-302. [PMID: 22215518 PMCID: PMC3312959 DOI: 10.1007/s12192-011-0319-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022] Open
Affiliation(s)
- Josianne Rodrigues-Krause
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, Conway Institute, Dublin, Ireland
| | - Mauricio Krause
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Conway Institute, Dublin, Ireland
| | - C. O’Hagan
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Giuseppe De Vito
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Colin Murphy
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
| | - Philip Newsholme
- UCD School of Biomolecular and Biomedical Science, Conway Institute, Dublin, Ireland
- School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Gerard Colleran
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
| |
Collapse
|
42
|
Taylor L, Hillman AR, Midgley AW, Peart DJ, Chrismas B, McNaughton LR. Hypoxia-mediated prior induction of monocyte-expressed HSP72 and HSP32 provides protection to the disturbances to redox balance associated with human sub-maximal aerobic exercise. Amino Acids 2012; 43:1933-44. [PMID: 22441647 DOI: 10.1007/s00726-012-1265-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/05/2012] [Indexed: 11/29/2022]
Abstract
HSP72 is rapidly expressed in response to a variety of stressors in vitro and in vivo (including hypoxia). This project sought a hypoxic stimulus to elicit increases in HSP72 and HSP32 in attempts to confer protection to the sub-maximal aerobic exercise-induced disturbances to redox balance. Eight healthy recreationally active male subjects were exposed to five consecutive days of once-daily hypoxia (2,980 m, 75 min). Seven days prior to the hypoxic acclimation period, subjects performed 60 min of cycling on a cycle ergometer (exercise bout 1-EXB1), and this exercise bout was repeated 1 day post-cessation of the hypoxic period (exercise bout 2-EXB2). Blood samples were taken immediately pre- and post-exercise and 1, 4 and 8 h post-exercise for HSP72 and immediately pre, post and 1 h post-exercise for HSP32, TBARS and glutathione [reduced (GSH), oxidised (GSSG) and total (TGSH)], with additional blood samples obtained immediately pre-day 1 and post-day 5 of the hypoxic acclimation period for the same indices. Monocyte-expressed HSP32 and HSP72 were analysed by flow cytometry, with measures of oxidative stress accessed by commercially available kits. There were significant increases in HSP72 (P < 0.001), HSP32 (P = 0.03), GSSG (t = 9.5, P < 0.001) and TBARS (t = 5.6, P = 0.001) in response to the 5-day hypoxic intervention, whereas no significant changes were observed for GSH (P = 0.22) and TGSH (P = 0.25). Exercise-induced significant increases in HSP72 (P < 0.001) and HSP32 (P = 0.003) post-exercise in EXB1; this response was absent for HSP72 (P ≥ 0.79) and HSP32 (P ≥ 0.99) post-EXB2. The hypoxia-mediated increased bio-available HSP32 and HSP72 and favourable alterations in glutathione redox, prior to exercise commencing in EXB2 compared to EXB1, may acquiesce the disturbances to redox balance encountered during the second physiologically identical exercise bout.
Collapse
Affiliation(s)
- Lee Taylor
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Department of Sport and Exercise Sciences, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Polhill Campus, Polhill Avenue, Bedford, Bedfordshire MK41 9EA, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Lee LY, Kaizu T, Toyokawa H, Zhang M, Ross M, Stolz DB, Huang C, Gandhi C, Geller DA, Murase N. Carbon monoxide induces hypothermia tolerance in Kupffer cells and attenuates liver ischemia/reperfusion injury in rats. Liver Transpl 2011; 17:1457-66. [PMID: 21850691 PMCID: PMC3222745 DOI: 10.1002/lt.22415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ischemia/reperfusion (I/R) injury in liver grafts, which is initiated by cold preservation and is augmented by reperfusion, is a major problem that complicates graft quality, posttransplant patient care, and outcomes of liver transplantation (LT). Kupffer cells (KCs) play important roles in I/R injury; however, little is known about their changes during cold preservation. We examined whether a pretreatment with carbon monoxide (CO), a cytoprotective product of heme degradation, could influence KC activity during cold storage and protect liver grafts against LT-induced I/R injury. In vitro, primary rat KCs were stimulated for 24 hours under hypothermic conditions (4°C, 20% O(2)), with lipopolysaccharide, or under hypoxic conditions (37°C, 5% O(2)) with or without a CO pretreatment. When rat KCs were exposed to hypothermic conditions, they produced reactive oxygen species (ROS), but they did not produce tumor necrosis factor α (TNF-α) or nitric oxide. The preincubation of KCs with CO up-regulated heat shock protein 70 (HSP70) and inhibited ROS generation. When liver grafts from donor rats exposed to CO (250 ppm) for 24 hours were transplanted after 18 hours of cold preservation in University of Wisconsin solution, HSP70 expression increased in these grafts versus control grafts, and serum aspartate aminotransferase and alanine aminotransferase levels as well as necrotic areas and inflammatory infiltrates were significantly reduced after LT. CO-pretreated liver grafts showed less up-regulation of TNF-α and inducible nitric oxide synthase messenger RNA (mRNA) and reduced expression of proapoptotic B cell lymphoma 2-associated X protein mRNA, cleaved caspase-3, and poly(adenosine diphosphate ribose) polymerase. In conclusion, the pretreatment of donors with CO ameliorates LT-associated I/R injury with increased hepatic HSP70 expression, particularly in the KC population.
Collapse
Affiliation(s)
- Lung-Yi Lee
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Takashi Kaizu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Hideyoshi Toyokawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Matthew Zhang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Mark Ross
- Center for Biologic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Donna Beer Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Chao Huang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Chandrashekhar Gandhi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - David A. Geller
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Noriko Murase
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| |
Collapse
|
44
|
Proteomic analysis of the nucleus accumbens in rhesus monkeys of morphine dependence and withdrawal intervention. J Proteomics 2011; 75:1330-42. [PMID: 22123079 DOI: 10.1016/j.jprot.2011.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/31/2011] [Accepted: 11/06/2011] [Indexed: 02/05/2023]
Abstract
It has been known that the reinforcing effects and long-term consequences of morphine are closely associated with nucleus accumbens (NAc) in the brain, a key region of the mesolimbic dopamine pathway. However, the proteins involved in neuroadaptive processes and withdrawal symptom in primates of morphine dependence have not been well explored. In the present study, we performed proteomes in the NAc of rhesus monkeys of morphine dependence and withdrawal intervention with clonidine or methadone. Two-dimensional electrophoresis was used to compare changes in cytosolic protein abundance in the NAc. We found a total of 46 proteins differentially expressed, which were further identified by mass spectrometry analysis. The identified proteins can be classified into 6 classes: metabolism and mitochondrial function, synaptic transmission, cytoskeletal proteins, oxidative stress, signal transduction and protein synthesis and degradation. Importantly, we discovered 14 proteins were significantly but similarly altered after withdrawal therapy with clonidine or methadone, revealing potential pharmacological strategies or targets for the treatment of morphine addiction. Our study provides a comprehensive understanding of the neuropathophysiology associated with morphine addiction and withdrawal therapy in primate, which is helpful for the development of opiate withdrawal pharmacotherapies.
Collapse
|
45
|
|
46
|
Tavassol F, Kampmann A, Lindhorst D, Schumann P, Kokemüller H, Bormann KH, Gellrich NC, Rücker M. Prolongated Survival of Osteoblast-Like Cells on Biodegradable Scaffolds by Heat Shock Preconditioning. Tissue Eng Part A 2011; 17:1935-43. [DOI: 10.1089/ten.tea.2010.0603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Frank Tavassol
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Kampmann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Daniel Lindhorst
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Paul Schumann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Horst Kokemüller
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Kai-Hendrik Bormann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Nils-Claudius Gellrich
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Martin Rücker
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Xia M, Bian M, Yu Q, Liu J, Huang Y, Jin X, Lu S, Yu M, Huang F. Cold water stress attenuates dopaminergic neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Acta Biochim Biophys Sin (Shanghai) 2011; 43:448-454. [PMID: 21558280 DOI: 10.1093/abbs/gmr029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, we tested the effect of cold water stress (CWS) on dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model, and found that CWS pretreatment elicited less MPTP neurotoxicity. To understand the molecular mechanism underlying this phenomenon, we detected the expression of heat shock protein 70 (Hsp70) in the striatum of the experimental mice, and found that CWS pretreatment could significantly increase striatal Hsp70 in MPTP-treated mice. Furthermore, in parallel with the induction of Hsp70, the MPTP-induced increase of striatal α-synuclein was inhibited in the CWS + MPTP-treated mice. CWS pretreatment also significantly inhibited the reduction of anti-apoptotic molecule Bcl-2 expression in the striatum and enhanced Bcl-2 transcription in the substantia nigra of MPTP-treated mice. Taken together, these data indicated that Hsp70 might be an important intermediate for the neuroprotective effect of CWS against MPTP-induced dopaminergic toxicity.
Collapse
Affiliation(s)
- Mingfeng Xia
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vince RV, Midgley AW, Laden G, Madden LA. The effect of hyperbaric oxygen preconditioning on heat shock protein 72 expression following in vitro stress in human monocytes. Cell Stress Chaperones 2011; 16:339-43. [PMID: 21132545 PMCID: PMC3077228 DOI: 10.1007/s12192-010-0246-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022] Open
Abstract
Hyperbaric oxygen (HBO) is thought to confer protection to cells via a cellular response to free radicals. This process may involve increased expression of heat shock proteins, in particular the highly inducible heat shock protein 72 (Hsp72). Healthy male volunteers (n = 16) were subjected to HBO for 1 h at 2.8 ATA. Inducible Hsp72 expression was measured by flow cytometry pre-, post- and 4 h-post HBO. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood via density centrifugation pre-, post- and 4 h post-HBO. PBMC were then subjected to an in vitro heat shock at 40°C or hypoxia at 37°C (5% O(2)) with a control at 37°C. Cells were then analysed for Hsp72 expression by flow cytometry. Monocytes showed no significant changes in Hsp72 expression following HBO. No detectable Hsp72 was seen in lymphocytes or neutrophils. Following in vitro hypoxic exposure, a significant increase in Hsp72 expression was observed in monocytes isolated immediately post- (p = 0.006) and 4 h post-HBO (p = 0.010) in comparison to control values. HBO does not induce Hsp72 expression in PBMC. The reported benefits of HBO in terms of pre-conditioning are not due to inducement of Hsp72 expression in circulating blood cells, but may involve an enhancement of the stress response.
Collapse
Affiliation(s)
- Rebecca V. Vince
- Department of Sport, Health and Exercise Science, University of Hull, Hull, HU6 7RX UK
| | - Adrian W. Midgley
- Department of Sport, Health and Exercise Science, University of Hull, Hull, HU6 7RX UK
| | - Gerard Laden
- Hull Hyperbaric Unit, Hull and East Riding Hospital, Anlaby, HU10 7AZ UK
| | - Leigh A. Madden
- Postgraduate Medical Institute, University of Hull, Room 003, Hardy Building, Hull, HU6 7RX UK
| |
Collapse
|
49
|
Peart DJ, McNaughton LR, Midgley AW, Taylor L, Towlson C, Madden LA, Vince RV. Pre-exercise alkalosis attenuates the heat shock protein 72 response to a single-bout of anaerobic exercise. J Sci Med Sport 2011; 14:435-40. [PMID: 21498114 DOI: 10.1016/j.jsams.2011.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/23/2011] [Accepted: 03/18/2011] [Indexed: 11/17/2022]
Abstract
The heat shock protein 72 (HSP72) response following exercise is well documented, however, little is known on whether the expression may be mediated by the ingestion of ergogenic aids prior to performance. The purpose of this research was to investigate the effect of sodium bicarbonate (NaHCO(3)) ingestion on monocyte and lymphocyte expressed HSP72 and oxidative stress for 4-h post exercise. Seven active males (22.3 ± 2.9 years, 181.6 ± 4.5 cm, 78.1 ± 8.1 kg) performed a 4-min 'all-out' cycle test following a dose of 0.3 g kg(-1) body mass of NaHCO(3), or an equimolar placebo dose of sodium chloride. HSP72 was measured by flow cytometry and oxidative stress was determined via plasma thiobarbituric acid substances (TBARS) analysis. The NaHCO(3) ingestion significantly increased blood pH (p<0.001), bicarbonate (p<0.001) and base excess (p<0.001) pre-exercise. Despite this there was no evidence of a significantly improved exercise performance when compared with the placebo trials (p ≥ 0.26) (means ± SD; average power 292 ± 43 W vs. 291 ± 50 W; peak power 770 ± 218 W vs. 775 ± 211 W; work completed 71 ± 10 kJ vs. 68 ± 10 kJ). Monocyte expressed HSP72 was significantly lower under experimental conditions during the 4-h post-exercise (p=0.013), as was plasma TBARS (p<0.001). These findings suggest that pre-exercise alkalosis can attenuate the stress response to a single bout of anaerobic exercise.
Collapse
Affiliation(s)
- Daniel J Peart
- Department of Sport, Health and Exercise Science, University of Hull, Hull, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Short-term exercise provides left ventricular myocardial protection against intermittent hypoxia-induced apoptosis in rats. Eur J Appl Physiol 2011; 111:1939-50. [DOI: 10.1007/s00421-010-1824-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
|