1
|
Son J, Park AK, Shin SC, Kim D, Kim HW. Structural insights into the role of NahX from Pseudomonas sp. MC1 in the naphthalene degradation pathway. Biochem Biophys Res Commun 2025; 742:151120. [PMID: 39647457 DOI: 10.1016/j.bbrc.2024.151120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread organic pollutants known for their carcinogenic and mutagenic properties. There is a growing interest in understanding the degradation and detoxification processes of these substances using biological approaches. The bacterium Pseudomonas sp. MC1 contains a metabolic plasmid (81 kb) that encodes enzymes involved in the conversion of naphthalene (the simplest and most soluble PAH) to salicylate. Therein, nahX is a part of the lower naphthalene degradation operon and encodes a 140-amino acid protein. However, the function of NahX remains unclear. To understand its function more clearly, we first determined the three-dimensional structure of NahX. It has a fold similar to that of HbpS, which acts as a sensory component in response to oxidative stress. Biochemical studies have also shown that NahX and HbpS exhibit heme degradation activity and bind to iron ions. Heme degradation and iron-sequestering activity protect bacteria against oxidative stress. Previous studies have shown that oxidative stress occurs during naphthalene degradation. Therefore, we postulate that NahX has a defense mechanism against the oxidative stress that may occur during naphthalene metabolism.
Collapse
Affiliation(s)
- Jonghyeon Son
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Ae Kyung Park
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea; Division of Bacterial Diseases, Department of Laboratory Diagnosis and Analysis, Korea Disease Control and Prevention Agency, Cheongju-si, 28159, South Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Han-Woo Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea.
| |
Collapse
|
2
|
Global Chromosome Topology and the Two-Component Systems in Concerted Manner Regulate Transcription in Streptomyces. mSystems 2021; 6:e0114221. [PMID: 34783581 PMCID: PMC8594442 DOI: 10.1128/msystems.01142-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacterial gene expression is controlled at multiple levels, with chromosome supercoiling being one of the most global regulators. Global DNA supercoiling is maintained by the orchestrated action of topoisomerases. In Streptomyces, mycelial soil bacteria with a complex life cycle, topoisomerase I depletion led to elevated chromosome supercoiling, changed expression of a significant fraction of genes, delayed growth, and blocked sporulation. To identify supercoiling-induced sporulation regulators, we searched for Streptomyces coelicolor transposon mutants that were able to restore sporulation despite high chromosome supercoiling. We established that transposon insertion in genes encoding a novel two-component system named SatKR reversed the sporulation blockage resulting from topoisomerase I depletion. Transposition in satKR abolished the transcriptional induction of the genes within the so-called supercoiling-hypersensitive cluster (SHC). Moreover, we found that activated SatR also induced the same set of SHC genes under normal supercoiling conditions. We determined that the expression of genes in this region impacted S. coelicolor growth and sporulation. Interestingly, among the associated products is another two-component system (SitKR), indicating the potential for cascading regulatory effects driven by the SatKR and SitKR two-component systems. Thus, we demonstrated the concerted activity of chromosome supercoiling and a hierarchical two-component signaling system that impacts gene activity governing Streptomyces growth and sporulation. IMPORTANCEStreptomyces microbes, soil bacteria with complex life cycle, are the producers of a broad range of biologically active compounds (e.g., antibiotics). Streptomyces bacteria respond to various environmental signals using a complex transcriptional regulation mechanism. Understanding regulation of their gene expression is crucial for Streptomyces application as industrial organisms. Here, on the basis of the results of extensive transcriptomics analyses, we describe the concerted gene regulation by global DNA supercoiling and novel two-component system. Our data indicate that regulated genes encode growth and sporulation regulators. Thus, we demonstrate that Streptomyces bacteria link the global regulatory strategies to adjust life cycle to unfavorable conditions.
Collapse
|
3
|
Marijuán PC, Navarro J. From Molecular Recognition to the "Vehicles" of Evolutionary Complexity: An Informational Approach. Int J Mol Sci 2021; 22:ijms222111965. [PMID: 34769394 PMCID: PMC8585065 DOI: 10.3390/ijms222111965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Countless informational proposals and models have explored the singular characteristics of biological systems: from the initial choice of information terms in the early days of molecular biology to the current bioinformatic avalanche in this “omic” era. However, this was conducted, most often, within partial, specialized scopes or just metaphorically. In this paper, we attempt a consistent informational discourse, initially based on the molecular recognition paradigm, which addresses the main stages of biological organization in a new way. It considers the interconnection between signaling systems and information flows, between informational architectures and biomolecular codes, between controlled cell cycles and multicellular complexity. It also addresses, in a new way, a central issue: how new evolutionary paths are opened by the cumulated action of multiple variation engines or mutational ‘vehicles’ evolved for the genomic exploration of DNA sequence space. Rather than discussing the possible replacement, extension, or maintenance of traditional neo-Darwinian tenets, a genuine informational approach to evolutionary phenomena is advocated, in which systemic variation in the informational architectures may induce differential survival (self-construction, self-maintenance, and reproduction) of biological agents within their open ended environment.
Collapse
Affiliation(s)
- Pedro C. Marijuán
- Bioinformation Group, Aragon Health Sciences Institute (IACS), 50009 Zaragoza, Spain
- Correspondence:
| | - Jorge Navarro
- Department of Quantitative Methods for Business and Economy, University of Zaragoza, 50006 Zaragoza, Spain;
| |
Collapse
|
4
|
Bazurto JV, Nayak DD, Ticak T, Davlieva M, Lee JA, Hellenbrand CN, Lambert LB, Benski OJ, Quates CJ, Johnson JL, Patel JS, Ytreberg FM, Shamoo Y, Marx CJ. EfgA is a conserved formaldehyde sensor that leads to bacterial growth arrest in response to elevated formaldehyde. PLoS Biol 2021; 19:e3001208. [PMID: 34038406 PMCID: PMC8153426 DOI: 10.1371/journal.pbio.3001208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/25/2021] [Indexed: 01/07/2023] Open
Abstract
Normal cellular processes give rise to toxic metabolites that cells must mitigate. Formaldehyde is a universal stressor and potent metabolic toxin that is generated in organisms from bacteria to humans. Methylotrophic bacteria such as Methylorubrum extorquens face an acute challenge due to their production of formaldehyde as an obligate central intermediate of single-carbon metabolism. Mechanisms to sense and respond to formaldehyde were speculated to exist in methylotrophs for decades but had never been discovered. Here, we identify a member of the DUF336 domain family, named efgA for enhanced formaldehyde growth, that plays an important role in endogenous formaldehyde stress response in M. extorquens PA1 and is found almost exclusively in methylotrophic taxa. Our experimental analyses reveal that EfgA is a formaldehyde sensor that rapidly arrests growth in response to elevated levels of formaldehyde. Heterologous expression of EfgA in Escherichia coli increases formaldehyde resistance, indicating that its interaction partners are widespread and conserved. EfgA represents the first example of a formaldehyde stress response system that does not involve enzymatic detoxification. Thus, EfgA comprises a unique stress response mechanism in bacteria, whereby a single protein directly senses elevated levels of a toxic intracellular metabolite and safeguards cells from potential damage.
Collapse
Affiliation(s)
- Jannell V. Bazurto
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, Minnesota, United States of America
- Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Dipti D. Nayak
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - Tomislav Ticak
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - Milya Davlieva
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jessica A. Lee
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Chandler N. Hellenbrand
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Leah B. Lambert
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Olivia J. Benski
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Caleb J. Quates
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - Jagdish Suresh Patel
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - F. Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
5
|
Li M, Gašparovič H, Weng X, Chen S, Korduláková J, Jessen-Trefzer C. The Two-Component Locus MSMEG_0244/0246 Together With MSMEG_0243 Affects Biofilm Assembly in M. smegmatis Correlating With Changes in Phosphatidylinositol Mannosides Acylation. Front Microbiol 2020; 11:570606. [PMID: 33013801 PMCID: PMC7516205 DOI: 10.3389/fmicb.2020.570606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ferric and ferrous iron is an essential transition metal for growth of many bacterial species including mycobacteria. The genomic region msmeg_0234 to msmeg_0252 from Mycobacterium smegmatis is putatively involved in iron/heme metabolism. We investigate the genes encoding the presumed two component system MSMEG_0244/MSMEG_0246, the neighboring gene msmeg_0243 and their involvement in this process. We show that purified MSMEG_0243 indeed is a heme binding protein. Deletion of msmeg_0243/msmeg_0244/msmeg_0246 in Mycobacterium smegmatis leads to a defect in biofilm formation and colony growth on solid agar, however, this phenotype is independent of the supplied iron source. Further, analysis of the corresponding mutant and its lipids reveals that changes in morphology and biofilm formation correlate with altered acylation patterns of phosphatidylinositol mannosides (PIMs). We provide the first evidence that msmeg_0244/msmeg_0246 work in concert in cellular lipid homeostasis, especially in the maintenance of PIMs, with the heme-binding protein MSMEG_0243 as potential partner.
Collapse
Affiliation(s)
- Miaomaio Li
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Henrich Gašparovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Xing Weng
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Si Chen
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Yan Y, Soraru C, Keller V, Keller N, Ploux L. Antibacterial and Biofilm-Preventive Photocatalytic Activity and Mechanisms on P/F-Modified TiO2 Coatings. ACS APPLIED BIO MATERIALS 2020; 3:5687-5698. [DOI: 10.1021/acsabm.0c00467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yige Yan
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR7515, CNRS/Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex, France
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR7361, CNRS/Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse Cedex, France
| | - Charline Soraru
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR7361, CNRS/Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse Cedex, France
| | - Valérie Keller
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR7515, CNRS/Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex, France
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR7515, CNRS/Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex, France
| | - Lydie Ploux
- BioMaterials and BioEngineering, U1121, INSERM/Université de Strasbourg-Faculté Dentaire, 11 rue Humann, 67000 Strasbourg, France
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR7361, CNRS/Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse Cedex, France
| |
Collapse
|
7
|
McLean TC, Lo R, Tschowri N, Hoskisson PA, Al Bassam MM, Hutchings MI, Som NF. Sensing and responding to diverse extracellular signals: an updated analysis of the sensor kinases and response regulators of Streptomyces species. MICROBIOLOGY-SGM 2020; 165:929-952. [PMID: 31334697 DOI: 10.1099/mic.0.000817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Streptomyces venezuelae is a Gram-positive, filamentous actinomycete with a complex developmental life cycle. Genomic analysis revealed that S. venezuelae encodes a large number of two-component systems (TCSs): these consist of a membrane-bound sensor kinase (SK) and a cognate response regulator (RR). These proteins act together to detect and respond to diverse extracellular signals. Some of these systems have been shown to regulate antimicrobial biosynthesis in Streptomyces species, making them very attractive to researchers. The ability of S. venezuelae to sporulate in both liquid and solid cultures has made it an increasingly popular model organism in which to study these industrially and medically important bacteria. Bioinformatic analysis identified 58 TCS operons in S. venezuelae with an additional 27 orphan SK and 18 orphan RR genes. A broader approach identified 15 of the 58 encoded TCSs to be highly conserved in 93 Streptomyces species for which high-quality and complete genome sequences are available. This review attempts to unify the current work on TCS in the streptomycetes, with an emphasis on S. venezuelae.
Collapse
Affiliation(s)
- Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Rebecca Lo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mahmoud M Al Bassam
- Department of Paediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Nicolle F Som
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
8
|
Abstract
SIGNIFICANCE The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. CRITICAL ISSUES The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. FUTURE DIRECTIONS The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.
Collapse
Affiliation(s)
| | - Lisa-Marie Nisbett
- 2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York
| | - Bezalel Bacon
- 2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York
| | - Elizabeth Boon
- 1 Department of Chemistry, Stony Brook University , Stony Brook, New York.,2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York.,3 Institute of Chemical Biology and Drug Design, Stony Brook University , Stony Brook, New York
| |
Collapse
|
9
|
Ordóñez-Robles M, Rodríguez-García A, Martín JF. Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis. Microbiol Res 2018; 217:14-22. [DOI: 10.1016/j.micres.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
|
10
|
How prokaryotes 'encode' their environment: Systemic tools for organizing the information flow. Biosystems 2017; 164:26-38. [PMID: 28987781 DOI: 10.1016/j.biosystems.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
Abstract
An important issue related to code biology concerns the cell's informational relationships with the environment. As an open self-producing system, a great variety of inputs and outputs are necessary for the living cell, not only consisting of matter and energy but also involving information flows. The analysis here of the simplest cells will involve two basic aspects. On the one side, the molecular apparatuses of the prokaryotic signaling system, with all its variety of environmental signals and component pathways (which have been called 1-2-3 Component Systems), including the role of a few second messengers which have been pointed out in bacteria too. And in the other side, the gene transcription system as depending not only on signaling inputs but also on a diversity of factors. Amidst the continuum of energy, matter, and information flows, there seems to be evidence for signaling codes, mostly established around the arrangement of life-cycle stages, in large metabolic changes, or in the relationships with conspecifics (quorum sensing) and within microbial ecosystems. Additionally, and considering the complexity growth of signaling systems from prokaryotes to eukaryotes, four avenues or "roots" for the advancement of such complexity would come out. A comparative will be established in between the signaling strategies and organization of both kinds of cellular systems. Finally, a new characterization of "informational architectures" will be proposed in order to explain the coding spectrum of both prokaryotic and eukaryotic signaling systems. Among other evolutionary aspects, cellular strategies for the construction of novel functional codes via the intermixing of informational architectures could be related to the persistence of retro-elements with obvious viral ancestry.
Collapse
|
11
|
Abstract
Low concentrations of nitric oxide (NO) modulate varied behaviours in bacteria including biofilm dispersal and quorum sensing-dependent light production. H-NOX (haem-nitric oxide/oxygen binding) is a haem-bound protein domain that has been shown to be involved in mediating these bacterial responses to NO in several organisms. However, many bacteria that respond to nanomolar concentrations of NO do not contain an annotated H-NOX domain. Nitric oxide sensing protein (NosP), a newly discovered bacterial NO-sensing haemoprotein, may fill this role. The focus of this review is to discuss structure, ligand binding, and activation of H-NOX proteins, as well as to discuss the early evidence for NO sensing and regulation by NosP domains. Further, these findings are connected to the regulation of bacterial biofilm phenotypes and symbiotic relationships.
Collapse
Affiliation(s)
- Bezalel Bacon
- Stony Brook University, Stony Brook, NY, United States
| | | | | |
Collapse
|
12
|
Abstract
Nitric oxide (NO) is a freely diffusible, radical gas that has now been established as an integral signaling molecule in eukaryotes and bacteria. It has been demonstrated that NO signaling is initiated upon ligation to the heme iron of an H-NOX domain in mammals and in some bacteria. Bacterial H-NOX proteins have been found to interact with enzymes that participate in signaling pathways and regulate bacterial processes such as quorum sensing, biofilm formation, and symbiosis. Here, we review the biochemical characterization of these signaling pathways and, where available, describe how ligation of NO to H-NOX specifically regulates the activity of these pathways and their associated bacterial phenotypes.
Collapse
Affiliation(s)
- Lisa-Marie Nisbett
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, 11794-3400
| | - Elizabeth M. Boon
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, 11794-3400
| |
Collapse
|
13
|
Busche T, Winkler A, Wedderhoff I, Rückert C, Kalinowski J, Ortiz de Orué Lucana D. Deciphering the Transcriptional Response Mediated by the Redox-Sensing System HbpS-SenS-SenR from Streptomycetes. PLoS One 2016; 11:e0159873. [PMID: 27541358 PMCID: PMC4991794 DOI: 10.1371/journal.pone.0159873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022] Open
Abstract
The secreted protein HbpS, the membrane-embedded sensor kinase SenS and the cytoplasmic response regulator SenR from streptomycetes have been shown to form a novel type of signaling pathway. Based on structural biology as well as different biochemical and biophysical approaches, redox stress-based post-translational modifications in the three proteins were shown to modulate the activity of this signaling pathway. In this study, we show that the homologous system, named here HbpSc-SenSc-SenRc, from the model species Streptomyces coelicolor A3(2) provides this bacterium with an efficient defense mechanism under conditions of oxidative stress. Comparative analyses of the transcriptomes of the Streptomyces coelicolor A3(2) wild-type and the generated hbpSc-senSc-senRc mutant under native and oxidative-stressing conditions allowed to identify differentially expressed genes, whose products may enhance the anti-oxidative defense of the bacterium. Amongst others, the results show an up-regulated transcription of genes for biosynthesis of cysteine and vitamin B12, transport of methionine and vitamin B12, and DNA synthesis and repair. Simultaneously, transcription of genes for degradation of an anti-oxidant compound is down-regulated in a HbpSc-SenSc-SenRc-dependent manner. It appears that HbpSc-SenSc-SenRc controls the non-enzymatic response of Streptomyces coelicolor A3(2) to counteract the hazardous effects of oxidative stress. Binding of the response regulator SenRc to regulatory regions of some of the studied genes indicates that the regulation is direct. The results additionally suggest that HbpSc-SenSc-SenRc may act in concert with other regulatory modules such as a transcriptional regulator, a two-component system and the Streptomyces B12 riboswitch. The transcriptomics data, together with our previous in vitro results, enable a profound characterization of the HbpS-SenS-SenR system from streptomycetes. Since homologues to HbpS-SenS-SenR are widespread in different actinobacteria with ecological and medical relevance, the data presented here will serve as a basis to elucidate the biological role of these homologues.
Collapse
Affiliation(s)
- Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Ina Wedderhoff
- Applied Genetics of Microorganisms, Department of Biology and Chemistry, University of Osnabrueck, Osnabrueck, Barbarastraße 13, 49076, Osnabrueck, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Darío Ortiz de Orué Lucana
- Applied Genetics of Microorganisms, Department of Biology and Chemistry, University of Osnabrueck, Osnabrueck, Barbarastraße 13, 49076, Osnabrueck, Germany
- * E-mail:
| |
Collapse
|
14
|
Complete genome sequence of Streptomyces reticuli, an efficient degrader of crystalline cellulose. J Biotechnol 2016; 222:13-4. [DOI: 10.1016/j.jbiotec.2016.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 11/23/2022]
|
15
|
Heavner ME, Qiu WG, Cheng HP. Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales. PLoS One 2015; 10:e0135655. [PMID: 26309130 PMCID: PMC4550343 DOI: 10.1371/journal.pone.0135655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
Both bacterial symbionts and pathogens rely on their host-sensing mechanisms to activate the biosynthetic pathways necessary for their invasion into host cells. The Gram-negative bacterium Sinorhizobium meliloti relies on its RSI (ExoR-ExoS-ChvI) Invasion Switch to turn on the production of succinoglycan, an exopolysaccharide required for its host invasion. Recent whole-genome sequencing efforts have uncovered putative components of RSI-like invasion switches in many other symbiotic and pathogenic bacteria. To explore the possibility of the existence of a common invasion switch, we have conducted a phylogenomic survey of orthologous ExoR, ExoS, and ChvI tripartite sets in more than ninety proteobacterial genomes. Our analyses suggest that functional orthologs of the RSI invasion switch co-exist in Rhizobiales, an order characterized by numerous invasive species, but not in the order’s close relatives. Phylogenomic analyses and reconstruction of orthologous sets of the three proteins in Alphaproteobacteria confirm Rhizobiales-specific gene synteny and congruent RSI evolutionary histories. Evolutionary analyses further revealed site-specific substitutions correlated specifically to either animal-bacteria or plant-bacteria associations. Lineage restricted conservation of any one specialized gene is in itself an indication of species adaptation. However, the orthologous phylogenetic co-occurrence of all interacting partners within this single signaling pathway strongly suggests that the development of the RSI switch was a key adaptive mechanism. The RSI invasion switch, originally found in S. meliloti, is a characteristic of the Rhizobiales, and potentially a conserved crucial activation step that may be targeted to control host invasion by pathogenic bacterial species.
Collapse
Affiliation(s)
- Mary Ellen Heavner
- Biochemistry Program, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Wei-Gang Qiu
- Biological Sciences Department, Hunter College, City University of New York, New York, New York, United States of America
| | - Hai-Ping Cheng
- Biochemistry Program, The Graduate Center, City University of New York, New York, New York, United States of America
- Biological Sciences Department, Lehman College, City University of New York, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Salvado B, Vilaprinyo E, Sorribas A, Alves R. A survey of HK, HPt, and RR domains and their organization in two-component systems and phosphorelay proteins of organisms with fully sequenced genomes. PeerJ 2015; 3:e1183. [PMID: 26339559 PMCID: PMC4558063 DOI: 10.7717/peerj.1183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
Two Component Systems and Phosphorelays (TCS/PR) are environmental signal transduction cascades in prokaryotes and, less frequently, in eukaryotes. The internal domain organization of proteins and the topology of TCS/PR cascades play an important role in shaping the responses of the circuits. It is thus important to maintain updated censuses of TCS/PR proteins in order to identify the various topologies used by nature and enable a systematic study of the dynamics associated with those topologies. To create such a census, we analyzed the proteomes of 7,609 organisms from all domains of life with fully sequenced and annotated genomes. To begin, we survey each proteome searching for proteins containing domains that are associated with internal signal transmission within TCS/PR: Histidine Kinase (HK), Response Regulator (RR) and Histidine Phosphotranfer (HPt) domains, and analyze how these domains are arranged in the individual proteins. Then, we find all types of operon organization and calculate how much more likely are proteins that contain TCS/PR domains to be coded by neighboring genes than one would expect from the genome background of each organism. Finally, we analyze if the fusion of domains into single TCS/PR proteins is more frequently observed than one might expect from the background of each proteome. We find 50 alternative ways in which the HK, HPt, and RR domains are observed to organize into single proteins. In prokaryotes, TCS/PR coding genes tend to be clustered in operons. 90% of all proteins identified in this study contain just one of the three domains, while 8% of the remaining proteins combine one copy of an HK, a RR, and/or an HPt domain. In eukaryotes, 25% of all TCS/PR proteins have more than one domain. These results might have implications for how signals are internally transmitted within TCS/PR cascades. These implications could explain the selection of the various designs in alternative circumstances.
Collapse
Affiliation(s)
- Baldiri Salvado
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain
| | - Ester Vilaprinyo
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain ; IRBLleida , Lleida, Catalonya , Spain
| | - Albert Sorribas
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain
| | - Rui Alves
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida , Lleida, Catalonya , Spain
| |
Collapse
|
17
|
Antoraz S, Santamaría RI, Díaz M, Sanz D, Rodríguez H. Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front Microbiol 2015; 6:461. [PMID: 26029195 PMCID: PMC4429630 DOI: 10.3389/fmicb.2015.00461] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogens is changing the way scientists look for new antibiotic compounds. This race against the increased prevalence of multi-resistant strains makes it necessary to expedite the search for new compounds with antibiotic activity and to increase the production of the known. Here, we review a variety of new scientific approaches aiming to enhance antibiotic production in Streptomyces. These include: (i) elucidation of the signals that trigger the antibiotic biosynthetic pathways to improve culture media, (ii) bacterial hormone studies aiming to reproduce intra and interspecific communications resulting in antibiotic burst, (iii) co-cultures to mimic competition-collaboration scenarios in nature, and (iv) the very recent in situ search for antibiotics that might be applied in Streptomyces natural habitats. These new research strategies combined with new analytical and molecular techniques should accelerate the discovery process when the urgency for new compounds is higher than ever.
Collapse
Affiliation(s)
- Sergio Antoraz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Ramón I Santamaría
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Margarita Díaz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - David Sanz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Héctor Rodríguez
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
18
|
Ortiz de Orué Lucana D, Fedosov SN, Wedderhoff I, Che EN, Torda AE. The extracellular heme-binding protein HbpS from the soil bacterium Streptomyces reticuli is an aquo-cobalamin binder. J Biol Chem 2014; 289:34214-28. [PMID: 25342754 PMCID: PMC4256353 DOI: 10.1074/jbc.m114.585489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
The extracellular protein HbpS from Streptomyces reticuli interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV-visible spectroscopy confirmed binding (Kd = 34 μm) to aquo-cobalamin (H2OCbl(+)) but not to other cobalamins. Competition experiments with the H2OCbl(+)-coordinating ligand CN(-) and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H2OCbl(+) and substitutes for water. HbpS·Cobalamin lacks the Asp-X-His-X-X-Gly motif seen in some cobalamin binding enzymes. Preliminary tests showed that a related HbpS protein from a different species also binds H2OCbl(+). Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences among Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany,
| | - Sergey N Fedosov
- Department of Engineering, Aarhus University, 8000 Aarhus, Denmark, and
| | - Ina Wedderhoff
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany
| | - Edith N Che
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany
| | - Andrew E Torda
- Centre for Bioinformatics, Hamburg University, 20146 Hamburg, Germany
| |
Collapse
|
19
|
Regulation of the AbrA1/A2 two-component system in Streptomyces coelicolor and the potential of its deletion strain as a heterologous host for antibiotic production. PLoS One 2014; 9:e109844. [PMID: 25303210 PMCID: PMC4193843 DOI: 10.1371/journal.pone.0109844] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/27/2014] [Indexed: 12/16/2022] Open
Abstract
The Two-Component System (TCS) AbrA1/A2 from Streptomyces coelicolor M145 is a negative regulator of antibiotic production and morphological differentiation. In this work we show that it is able to auto-regulate its expression, exerting a positive induction of its own operon promoter, and that its activation is dependent on the presence of iron. The overexpression of the abrA2 response regulator (RR) gene in the mutant ΔabrA1/A2 results in a toxic phenotype. The reason is an excess of phosphorylated AbrA2, as shown by phosphoablative and phosphomimetic AbrA2 mutants. Therefore, non-cognate histidine kinases (HKs) or small phospho-donors may be responsible for AbrA2 phosphorylation in vivo. The results suggest that in the parent strain S. coelicolor M145 the correct amount of phosphorylated AbrA2 is adjusted through the phosphorylation-dephosphorylation activity rate of the HK AbrA1. Furthermore, the ABC transporter system, which is part of the four-gene operon comprising AbrA1/A2, is necessary to de-repress antibiotic production in the TCS null mutant. Finally, in order to test the possible biotechnological applications of the ΔabrA1/A2 strain, we demonstrate that the production of the antitumoral antibiotic oviedomycin is duplicated in this strain as compared with the production obtained in the wild type, showing that this strain is a good host for heterologous antibiotic production. Thus, this genetically modified strain could be interesting for the biotechnology industry.
Collapse
|
20
|
Iron binding at specific sites within the octameric HbpS protects streptomycetes from iron-mediated oxidative stress. PLoS One 2013; 8:e71579. [PMID: 24013686 PMCID: PMC3754957 DOI: 10.1371/journal.pone.0071579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/08/2013] [Indexed: 12/26/2022] Open
Abstract
The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress.
Collapse
|
21
|
Torda AE, Groves MR, Wedderhoff I, Ortiz de Orué Lucana D. Elucidation of haem-binding sites in the actinobacterial protein HbpS. FEMS Microbiol Lett 2013; 342:106-12. [PMID: 23373615 DOI: 10.1111/1574-6968.12093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/28/2022] Open
Abstract
The extracellular haem-binding protein from Streptomyces reticuli (HbpS) has been shown to be involved in redox sensing and to bind haem. However, the residues involved in haem coordination are unknown. Structural alignments to distantly related haem-binding proteins from Mycobacterium tuberculosis were used to identify a candidate haem-coordinating residue, and site-directed mutagenesis with UV/Vis spectroscopy was used to assess haem binding in vivo and in vitro. We present strong evidence that HbpS belongs to the small set of proteins, which do not use histidine to coordinate the metal in the haem group. Further spectroscopic evidence strongly indicates that threonine 113 is actively involved in coordination of haem. Subsequent protein/haem titration experiments show a 1 : 2, protein/haem stoichiometry. We also present data showing the degradation of haem by HbpS in vivo. Because HbpS is conserved in many Actinobacteria, the presented results are applicable to related species.
Collapse
Affiliation(s)
- Andrew E Torda
- Centre for Bioinformatics, Hamburg University, Hamburg, Germany
| | | | | | | |
Collapse
|
22
|
Immediate and heterogeneous response of the LiaFSR two-component system of Bacillus subtilis to the peptide antibiotic bacitracin. PLoS One 2013; 8:e53457. [PMID: 23326432 PMCID: PMC3543457 DOI: 10.1371/journal.pone.0053457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Two-component signal transduction systems are one means of bacteria to respond to external stimuli. The LiaFSR two-component system of Bacillus subtilis consists of a regular two-component system LiaRS comprising the core Histidine Kinase (HK) LiaS and the Response Regulator (RR) LiaR and additionally the accessory protein LiaF, which acts as a negative regulator of LiaRS-dependent signal transduction. The complete LiaFSR system was shown to respond to various peptide antibiotics interfering with cell wall biosynthesis, including bacitracin. METHODOLOGY AND PRINCIPAL FINDINGS Here we study the response of the LiaFSR system to various concentrations of the peptide antibiotic bacitracin. Using quantitative fluorescence microscopy, we performed a whole population study analyzed on the single cell level. We investigated switching from the non-induced 'OFF' state into the bacitracin-induced 'ON' state by monitoring gene expression of a fluorescent reporter from the RR-regulated liaI promoter. We found that switching into the 'ON' state occurred within less than 20 min in a well-defined switching window, independent of the bacitracin concentration. The switching rate and the basal expression rate decreased at low bacitracin concentrations, establishing clear heterogeneity 60 min after bacitracin induction. Finally, we performed time-lapse microscopy of single cells confirming the quantitative response as obtained in the whole population analysis for high bacitracin concentrations. CONCLUSION The LiaFSR system exhibits an immediate, heterogeneous and graded response to the inducer bacitracin in the exponential growth phase.
Collapse
|
23
|
Heilman BJ, St. John J, Oliver SRJ, Mascharak PK. Light-Triggered Eradication of Acinetobacter baumannii by Means of NO Delivery from a Porous Material with an Entrapped Metal Nitrosyl. J Am Chem Soc 2012; 134:11573-82. [DOI: 10.1021/ja3022736] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon J. Heilman
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz,
California 95064, United States
| | - Jessica St. John
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz,
California 95064, United States
| | - Scott R. J. Oliver
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz,
California 95064, United States
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz,
California 95064, United States
| |
Collapse
|
24
|
Arora DP, Boon EM. Nitric oxide regulated two-component signaling in Pseudoalteromonas atlantica. Biochem Biophys Res Commun 2012; 421:521-6. [PMID: 22521885 DOI: 10.1016/j.bbrc.2012.04.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
Bacteria employ two-component signaling to detect and respond to environmental stimuli. In essence, two-component signaling relies on a protein called a response regulator that can elicit a change in gene expression or protein function in response to phosphoryl transfer from a histidine kinase. Phosphorylation of the associated histidine kinase is regulated by detection of an environmental signal, thus linking sensing to cellular response. Recently, it has been suggested that H-NOX (Heme-nitric oxide/oxygen binding) proteins may act as nitric oxide (NO) sensors in two-component signaling systems. NO/H-NOX regulated histidine kinases have been reported, but their cognate response regulators have yet to be identified. In this work we provide biochemical characterization of a complete NO/H-NOX-regulated two-component signaling pathway in the biofilm-dwelling marine bacterium, Pseudoalteromonas atlantica. In P. atlantica, as is typical for bacteria that code for H-NOX, an hnoX gene is found in the same operon as a gene coding for a two-component signaling histidine kinase (H-NOX-associated histidine kinase; HahK). We find that HahK is capable of autophosphorylation in vitro and that NO-bound H-NOX inhibits HahK activity, implicating H-NOX as a selective NO sensor. The cognate response regulator, a protein annotated as a cyclic-di-GMP processing enzyme that we have named HarR (H-NOX-associated response regulator), was identified using bioinformatics tools. Phosphoryl transfer from HahK to HarR has been established. This report reveals the first biochemical characterization of an H-NOX-associated response regulator and contributes to a deeper understanding of NO/H-NOX signaling in bacteria.
Collapse
Affiliation(s)
- Dhruv P Arora
- Department of Chemistry and the Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | |
Collapse
|
25
|
Siedenburg G, Groves MR, Ortiz de Orué Lucana D. Novel redox-sensing modules: accessory protein- and nucleic acid-mediated signaling. Antioxid Redox Signal 2012; 16:668-77. [PMID: 22114914 PMCID: PMC3277925 DOI: 10.1089/ars.2011.4290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Organisms have evolved both enzymatic and nonenzymatic pathways to prevent oxidative damage to essential macromolecules, including proteins and nucleic acids. Pathways modulated by different protein-based sensory and regulatory modules ensure a rapid and appropriate response. RECENT ADVANCES In contrast to classical two-component systems that possess internal sensory and regulatory modules, an accessory protein-dependent redox-signaling system has been recently characterized in bacteria. This system senses extracellular iron-mediated oxidative stress signals via an extracellularly located protein (HbpS). In vivo and in vitro studies allowed the elucidation of molecular mechanisms governing this system. Moreover, recent studies show that nucleic acids may also participate in redox-signaling during antioxidative stress response. CRITICAL ISSUES Research for novel redox-signaling systems is often focused on known types of sensory and regulatory modules. It is also often considered that the oxidative attack of macromolecules, leading to modification and degradation processes, is the final step during oxidative stress. However, recent studies have demonstrated that oxidatively modified macromolecules can be intermediary states in the process of redox-signaling. FUTURE DIRECTIONS Analyses of adjacent regions of genes encoding for known sensory and regulatory modules can identify potential accessory modules that may increase the complexity of sensing systems. Despite the fact that the involvement of DNA-mediated signaling in the modulation of one bacterial regulator protein has been analyzed in detail, further studies are necessary to identify additional regulators. Given the role of DNA in oxidative-stress response, it is tempting to hypothesize that RNA modules may also mediate redox-signaling.
Collapse
Affiliation(s)
- Gabriele Siedenburg
- Department of Applied Genetics of Microorganisms, University of Osnabrueck, Osnabrueck, Germany
| | | | | |
Collapse
|
26
|
Darbon E, Martel C, Nowacka A, Pegot S, Moreau PL, Virolle MJ. Transcriptional and preliminary functional analysis of the six genes located in divergence of phoR/phoP in Streptomyces lividans. Appl Microbiol Biotechnol 2012; 95:1553-66. [DOI: 10.1007/s00253-012-3995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 01/14/2023]
|
27
|
Klare JP, Ortiz de Orué Lucana D. Conformational changes in the novel redox sensor protein HbpS studied by site-directed spin labeling and its turnover in dependence on the catalase-peroxidase CpeB. Antioxid Redox Signal 2012; 16:639-48. [PMID: 21846213 PMCID: PMC3277929 DOI: 10.1089/ars.2011.4080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS To establish conditions to study the oligomeric assembly of heme-binding protein (HbpS) in solution by applying the tools of site-directed spin labeling combined with pulse electron paramagnetic resonance (SDSL EPR) spectroscopy, as well as to analyze redox stress-based conformational changes in HbpS subunits within the oligomer in solution. In vivo elucidation of molecular mechanisms that control the downregulation of the novel redox-system HbpS-SenS-SenR. RESULTS Using a set of specifically generated HbpS mutants, and SDSL EPR spectroscopy, we show the octomeric assembly of HbpS in solution, and demonstrate that iron-mediated stress induces conformational changes in HbpS subunits within the octamer. We further demonstrate that the catalase-peroxidase CpeB protects HbpS from hydrogen peroxide (H(2)O(2))-mediated oxidative attack in vivo. Moreover, chromosomal inactivation of cpeB results in an enhanced sensitivity of the mutant to redox-cycling compounds. INNOVATION SDSL EPR has been used in this work for the first time to monitor redox-mediated conformational changes in a redox-sensing protein in solution. This work substantially explains redox-dependent dynamics in HbpS at the atomic level, and presents novel molecular mechanisms supporting downregulation of a signaling cascade. CONCLUSION Iron-mediated stress induces movements of subunits within the HbpS octomeric assembly. We suggest a motion of the C-terminal α-helix toward the preceding helical segment. These events upregulate the activity of the HbpS-SenS-SenR system, in which HbpS acts as an accessory element. The mycelia-associated CpeB, under the control of HbpS-SenS-SenR, protects the extracellular HbpS from oxidation in vivo. Thus, de novo synthesized HbpS proteins downregulate the HbpS-SenS-SenR signaling cascade.
Collapse
Affiliation(s)
- Johann P Klare
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
| | | |
Collapse
|
28
|
ROS-Mediated Signalling in Bacteria: Zinc-Containing Cys-X-X-Cys Redox Centres and Iron-Based Oxidative Stress. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:605905. [PMID: 21977318 PMCID: PMC3184428 DOI: 10.1155/2012/605905] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 01/26/2023]
Abstract
Bacteria are permanently in contact with reactive oxygen species (ROS), both over the course of their life cycle as well that present in their environment. These species cause damage to proteins, lipids, and nucleotides, negatively impacting the organism. To detect these ROS molecules and to stimulate the expression of proteins involved in antioxidative stress response, bacteria use a number of different protein-based regulatory and sensory systems. ROS-based stress detection mechanisms induce posttranslational modifications, resulting in overall conformational and structural changes within sensory proteins. The subsequent structural rearrangements result in changes of protein activity, which lead to regulated and appropriate response on the transcriptional level. Many bacterial enzymes and regulatory proteins possess a conserved signature, the zinc-containing redox centre Cys-X-X-Cys in which a disulfide bridge is formed upon oxidative stress. Other metal-dependent oxidative modifications of amino acid side-chains (dityrosines, 2-oxo-histidines, or carbonylation) also modulate the activity of redox-sensitive proteins. Using molecular biology, biochemistry, biophysical, and structure biology tools, molecular mechanisms involved in sensing and response to oxidative stress have been elucidated in detail. In this review, we analyze some examples of bacterial redox-sensing proteins involved in antioxidative stress response and focus further on the currently known molecular mechanism of function.
Collapse
|
29
|
Frunzke J, Gätgens C, Brocker M, Bott M. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J Bacteriol 2011; 193:1212-21. [PMID: 21217007 PMCID: PMC3067591 DOI: 10.1128/jb.01130-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/22/2010] [Indexed: 12/16/2022] Open
Abstract
The response regulator HrrA of the HrrSA two-component system (previously named CgtSR11) was recently found to be repressed by the global iron-dependent regulator DtxR in Corynebacterium glutamicum. Here, we provide evidence that HrrA mediates heme-dependent gene regulation in this nonpathogenic soil bacterium. Growth experiments and DNA microarray analysis revealed that C. glutamicum is able to use hemin as an alternative iron source and emphasize the involvement of the putative hemin ABC transporter HmuTUV and heme oxygenase (HmuO) in heme utilization. As a central part of this study, we investigated the regulon of the response regulator HrrA via comparative transcriptome analysis of an hrrA deletion mutant and C. glutamicum wild-type strain in combination with DNA-protein interaction studies with purified HrrA protein. Our data provide evidence for a heme-dependent transcriptional activation of heme oxygenase. Based on our results, it can be furthermore deduced that HrrA activates the expression of heme-containing components of the respiratory chain, namely, ctaD and the ctaE-qcrCAB operon encoding subunits I and III of cytochrome aa(3) oxidase and three subunits of the cytochrome bc(1) complex. In addition, HrrA was found to repress almost all genes involved in heme biosynthesis, including those for glutamyl-tRNA reductase (hemA), uroporphyrinogen decarboxylase (hemE), and ferrochelatase (hemH). Growth experiments with an hrrA deletion mutant showed that this strain is significantly impaired in heme utilization. In summary, our results provide evidence for a central role of the HrrSA system in the control of heme homeostasis in C. glutamicum.
Collapse
Affiliation(s)
- Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany.
| | | | | | | |
Collapse
|
30
|
Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni ME, Ramos JL. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 2010; 64:539-59. [PMID: 20825354 DOI: 10.1146/annurev.micro.112408.134054] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria sense and respond to a wide range of physical and chemical signals. Central to sensing and responding to these signals are two-component systems, which have a sensor histidine kinase (SK) and a response regulator (RR) as basic components. Here we review the different molecular mechanisms by which these signals are integrated and modulate the phosphorylation state of SKs. Apart from the basic mechanism, which consists of signal recognition by the SK that leads to an alteration of its autokinase activity and subsequently a change in the RR phosphorylation state, a variety of alternative modes have evolved. The biochemical data available on SKs, particularly their molecular interactions with signals, nucleotides, and their cognate RRs, are also reviewed.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Ortiz de Orué Lucana D, Roscher M, Honigmann A, Schwarz J. Iron-mediated oxidation induces conformational changes within the redox-sensing protein HbpS. J Biol Chem 2010; 285:28086-96. [PMID: 20571030 PMCID: PMC2934673 DOI: 10.1074/jbc.m110.127506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/04/2010] [Indexed: 12/27/2022] Open
Abstract
HbpS is an extracellular oligomeric protein, which has been shown to act in concert with the two-component system SenS-SenR during the sensing of redox stress. HbpS can bind and degrade heme under oxidative stress conditions, leading to a free iron ion. The liberated iron is subsequently coordinated on the protein surface. Furthermore, HbpS has been shown to modulate the phosphorylation state of the sensor kinase SenS as, in the absence of oxidative stress conditions, HbpS inhibits SenS autophosphorylation whereas the presence of heme or iron ions and redox-stressing agents enhances it. Using HbpS wild type and mutants as well as different biochemical and biophysical approaches, we show that iron-mediated oxidative stress induces both secondary structure and overall intrinsic conformational changes within HbpS. We demonstrate in addition that HbpS is oxidatively modified, leading to the generation of highly reactive carbonyl groups and tyrosine-tyrosine bonds. Further examination of the crystal structure and subsequent mutational analyses allowed the identification of the tyrosine residue participating in dityrosine formation, which occurs between two monomers within the octomeric assembly. Therefore, it is proposed that oxidative modifications causing structural and conformational changes are responsible for the control of SenS and hence of the HbpS-SenS-SenR signaling cascade.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- Department of Applied Genetics of Microorganisms, Faculty of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
32
|
The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae. J Bacteriol 2010; 192:4606-17. [PMID: 20639324 DOI: 10.1128/jb.00525-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, the causative agent of the severe respiratory disease diphtheria, utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. Because of the toxicity of high levels of hemin and iron, these compounds are often tightly regulated in bacterial systems. In this report, we identify and characterize the C. diphtheriae hrtAB genes, which encode a putative ABC type transporter involved in conferring resistance to the toxic effects of hemin. Deletion of the hrtAB genes in C. diphtheriae produced increased sensitivity to hemin, which was complemented by a plasmid harboring the cloned hrtAB locus. The HrtAB system was not involved in the uptake and use of hemin as an iron source. The hrtAB genes are located on the C. diphtheriae genome upstream from the chrSA operon, which encodes a previously characterized two-component signal transduction system that regulates gene expression in a heme-dependent manner. The hrtB promoter is activated by the ChrAS system in the presence of hemin or hemoglobin, and mutations in the chrSA genes abolish heme-activated expression from the hrtB promoter. It was also observed that transcription from the hrtB promoter is reduced in a dtxR deletion mutant, suggesting that DtxR is required for optimal expression of hrtAB. Previous studies proposed that the ChrS sensor kinase may be responsive to an environmental signal, such as hemin. We show that specific point mutations in the ChrS N-terminal transmembrane domain result in a reduced ability to activate the hrtB promoter in the presence of a heme source, suggesting that this putative sensor region is essential for the detection of a signal produced in response to hemin exposure. This study shows that the HrtAB system is required for protection from hemin toxicity and that expression of the hrtAB genes is regulated by the ChrAS two-component system. This study demonstrates a direct correlation between the detection of heme or a heme-associated signal by the N-terminal sensor domain of ChrS and the transcriptional activation of the hrtAB genes.
Collapse
|
33
|
Dailey TA, Boynton TO, Albetel AN, Gerdes S, Johnson MK, Dailey HA. Discovery and Characterization of HemQ: an essential heme biosynthetic pathway component. J Biol Chem 2010; 285:25978-86. [PMID: 20543190 DOI: 10.1074/jbc.m110.142604] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we identify a previously undescribed protein, HemQ, that is required for heme synthesis in Gram-positive bacteria. We have characterized HemQ from Bacillus subtilis and a number of Actinobacteria. HemQ is a multimeric heme-binding protein. Spectroscopic studies indicate that this heme is high spin ferric iron and is ligated by a conserved histidine with the sixth coordination site available for binding a small molecule. The presence of HemQ along with the terminal two pathway enzymes, protoporphyrinogen oxidase (HemY) and ferrochelatase, is required to synthesize heme in vivo and in vitro. Although the exact role played by HemQ remains to be characterized, to be fully functional in vitro it requires the presence of a bound heme. HemQ possesses minimal peroxidase activity, but as a catalase it has a turnover of over 10(4) min(-1). We propose that this activity may be required to eliminate hydrogen peroxide that is generated by each turnover of HemY. Given the essential nature of heme synthesis and the restricted distribution of HemQ, this protein is a potential antimicrobial target for pathogens such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Tamara A Dailey
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
34
|
The Rhodococcal Cell Envelope: Composition, Organisation and Biosynthesis. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
35
|
Marijuán PC, Navarro J, del Moral R. On prokaryotic intelligence: strategies for sensing the environment. Biosystems 2009; 99:94-103. [PMID: 19781596 DOI: 10.1016/j.biosystems.2009.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
The adaptive relationship with the environment is a sine qua non condition for any intelligent system. Discussions on the nature of cellular intelligence, however, have not systematically pursued yet the question of whether there is a fundamental way of sensing the environment, which may characterize prokaryotic cells, or not. The molecular systems found in bacterial signaling are extremely diverse, ranging from very simple transcription regulators (single proteins comprising just two domains) to the multi-component, multi-pathway signaling cascades that regulate crucial stages of the cell cycle, such as sporulation, biofilm formation, dormancy, pathogenesis or flagellar biosynthesis. The combined complexity of the environment and of the cellular way of life is reflected as a whole in the aggregate of signaling elements: an interesting power-law relationship emerges in that regard. In a basic taxonomy of bacterial signaling systems, the first level of complexity corresponds to the simplest regulators, the "one-component systems" (OCSs), which are defined as proteins that contain known or predicted input and output domains but lack histidine kinase and receiver domains. They are evolutionary precursors of the "two-component systems" (TCSs), which include histidine protein-kinase receptors and an independent response regulator, and are considered as the central signaling paradigm within prokaryotic organisms. The addition of independent receptors begets further functional complexity: thus, "three-component systems" (ThCSs) should be applied to those two-component systems that incorporate an extra non-kinase receptor to activate the protein-kinase. Further, the combined information processing functions (cross-talk) and integrative dynamics that OCS, TCS and ThCS may achieve together in the prokaryotic cell have to be depicted, as well as the relationship of these informational functions with the life cycle organization and its checkpoints. Finally, the extent to which formal models would capture the ongoing relationship of the living cell with its medium has to be gauged, in the light of both the complexity of molecular recognition events and the impredicative nature of living systems.
Collapse
Affiliation(s)
- Pedro C Marijuán
- Grupo de Bioinformación y Biología de Sistemas, Instituto Aragonés de Ciencias de la Salud (I+CS), Zaragoza, Spain.
| | | | | |
Collapse
|