1
|
Smirnova EV, Rakitina TV, Ziganshin RH, Saratov GA, Arapidi GP, Belogurov AA, Kudriaeva AA. Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics. Cells 2023; 12:cells12060944. [PMID: 36980286 PMCID: PMC10047773 DOI: 10.3390/cells12060944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.
Collapse
Affiliation(s)
- Evgeniya V Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana V Rakitina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Georgij P Arapidi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
2
|
Mohammed AS, Uversky VN. Intrinsic Disorder as a Natural Preservative: High Levels of Intrinsic Disorder in Proteins Found in the 2600-Year-Old Human Brain. BIOLOGY 2022; 11:1704. [PMID: 36552214 PMCID: PMC9775155 DOI: 10.3390/biology11121704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Proteomic analysis revealed the preservation of many proteins in the Heslington brain (which is at least 2600-year-old brain tissue uncovered within the skull excavated in 2008 from a pit in Heslington, Yorkshire, England). Five of these proteins-"main proteins": heavy, medium, and light neurofilament proteins (NFH, NFM, and NFL), glial fibrillary acidic protein (GFAP), and myelin basic (MBP) protein-are engaged in the formation of non-amyloid protein aggregates, such as intermediate filaments and myelin sheath. We used a wide spectrum of bioinformatics tools to evaluate the prevalence of functional disorder in several related sets of proteins, such as the main proteins and their 44 interactors, all other proteins identified in the Heslington brain, as well as the entire human proteome (20,317 manually curated proteins), and 10,611 brain proteins. These analyses revealed that all five main proteins, half of their interactors and almost one third of the Heslington brain proteins are expected to be mostly disordered. Furthermore, most of the remaining Heslington brain proteins are expected to contain sizable levels of disorder. This is contrary to the expected substantial (if not complete) elimination of the disordered proteins from the Heslington brain. Therefore, it seems that the intrinsic disorder of NFH, NFM, NFL, GFAP, and MBP, their interactors, and many other proteins might play a crucial role in preserving the Heslington brain by forming tightly folded brain protein aggregates, in which different parts are glued together via the disorder-to-order transitions.
Collapse
Affiliation(s)
- Aaron S. Mohammed
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Martinsen V, Kursula P. Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids 2021; 54:99-109. [PMID: 34889995 PMCID: PMC8810476 DOI: 10.1007/s00726-021-03111-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023]
Abstract
Myelin basic protein (MBP) is an abundant protein in central nervous system (CNS) myelin. MBP has long been studied as a factor in the pathogenesis of the autoimmune neurodegenerative disease multiple sclerosis (MS). MS is characterized by CNS inflammation, demyelination, and axonal loss. One of the main theories on the pathogenesis of MS suggests that exposure to foreign antigens causes the activation of cross-reactive T cells in genetically susceptible individuals, with MBP being a possible autoantigen. While a direct role for MBP as a primary antigen in human MS is unclear, it is clear that MBP and its functions in myelin formation and long-term maintenance are linked to MS. This review looks at some key molecular characteristics of MBP and its relevance to MS, as well as the mechanisms of possible molecular mimicry between MBP and some viral antigens. We also discuss the use of serum anti-myelin antibodies as biomarkers for disease. MBP is a prime example of an apparently simple, but in fact biochemically and structurally complex molecule, which is closely linked to both normal nervous system development and neurodegenerative disease.
Collapse
Affiliation(s)
- Vebjørn Martinsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway. .,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| |
Collapse
|
4
|
Gerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020; 216:717-734. [PMID: 32883702 PMCID: PMC7648574 DOI: 10.1534/genetics.120.303629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
Ring canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton, but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC-a component specific to female germline ring canals-is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ectopic actin structures in somatic follicle cells. Finally, we present findings that indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility-a result that is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.
Collapse
Affiliation(s)
- Julianne A Gerdes
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Katelynn M Mannix
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 Connecticut
| |
Collapse
|
5
|
Abstract
Intrinsically disordered proteins (IDPs) can adopt a range of conformations from globules to swollen coils. This large range of conformational preferences for different IDPs raises the question of how conformational preferences are encoded by sequence. Global compositional features of a sequence such as the fraction of charged residues and the net charge per residue engender certain conformational biases. However, more specific sequence features such as the patterning of oppositely charged residues, expansion driving residues, or residues that can undergo posttranslational modifications can also influence the conformational ensembles of an IDP. Here, we outline how to calculate important global compositional features and patterning metrics that can be used to classify IDPs into different conformational classes and predict relative changes in conformation for sequences with the same amino acid composition. Although increased effort has been devoted to determining conformational properties of IDPs in recent years, quantitative predictions of conformation directly from sequence remain difficult and often inaccurate. Thus, if quantitative predictions of conformational properties are desired, then sequence-specific simulations must be performed.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Baburina Y, Odinokova I, Azarashvili T, Akatov V, Sotnikova L, Krestinina O. Possible Involvement of 2',3'-Cyclic Nucleotide-3'-Phosphodiesterase in the Protein Phosphorylation-Mediated Regulation of the Permeability Transition Pore. Int J Mol Sci 2018; 19:ijms19113499. [PMID: 30405014 PMCID: PMC6274948 DOI: 10.3390/ijms19113499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Calcium as a secondary messenger regulates the phosphorylation of several membrane-bound proteins in brain and liver mitochondria. Regulation of the activity of different protein kinases and phosphatases by Ca2+ occurs through its binding with calmodulin. The protein phosphorylation is strongly dependent on the Ca2+-induced mitochondrial permeability transition pore (mPTP) opening. 2′,3′-Cyclic nucleotide-3′-phosphodiesterase (CNPase) was phosphorylated by protein kinases A and C. CNPase and melatonin (MEL) might interact with calmodulin. The effects of the calmodulin antagonist calmidazolium and the inhibitor of protein kinase A H89 on mPTP opening in rat brain mitochondria of male Wistar rats were investigated. In addition, the role of CNPase, serine/threonine kinases, and MEL in the mPTP opening was examined. The anti-CNPase antibody added to rat brain mitochondria (RBM) reduced the content of CNPase in mitochondria. The threshold [Ca2+] decreased, and mitochondrial swelling was accelerated in the presence of the anti-CNPase antibody. H89 enhanced the effect of anti-CNPase antibody and accelerated the swelling of mitochondria, while CmZ abolished the effect of anti-CNPase antibody under mPTP opening. The levels of phospho-Akt and phospho-GSK3β increased, while the MEL content did not change. It can be assumed that CNPase may be involved in the regulation of these kinases, which in turn plays an important role in mPTP functioning.
Collapse
Affiliation(s)
- Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Tamara Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Linda Sotnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| |
Collapse
|
7
|
Ponna SK, Ruskamo S, Myllykoski M, Keller C, Boeckers TM, Kursula P. Structural basis for PDZ domain interactions in the post-synaptic density scaffolding protein Shank3. J Neurochem 2018; 145:449-463. [DOI: 10.1111/jnc.14322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Srinivas Kumar Ponna
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Corinna Keller
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | | | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
- Department of Biomedicine; University of Bergen; Bergen Norway
| |
Collapse
|
8
|
Raasakka A, Ruskamo S, Kowal J, Barker R, Baumann A, Martel A, Tuusa J, Myllykoski M, Bürck J, Ulrich AS, Stahlberg H, Kursula P. Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci Rep 2017; 7:4974. [PMID: 28694532 PMCID: PMC5504075 DOI: 10.1038/s41598-017-05364-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Compact myelin comprises most of the dry weight of myelin, and its insulative nature is the basis for saltatory conduction of nerve impulses. The major dense line (MDL) is a 3-nm compartment between two cytoplasmic leaflets of stacked myelin membranes, mostly occupied by a myelin basic protein (MBP) phase. MBP is an abundant myelin protein involved in demyelinating diseases, such as multiple sclerosis. The association of MBP with lipid membranes has been studied for decades, but the MBP-driven formation of the MDL remains elusive at the biomolecular level. We employed complementary biophysical methods, including atomic force microscopy, cryo-electron microscopy, and neutron scattering, to investigate the formation of membrane stacks all the way from MBP binding onto a single membrane leaflet to the organisation of a stable MDL. Our results support the formation of an amorphous protein phase of MBP between two membrane bilayers and provide a molecular model for MDL formation during myelination, which is of importance when understanding myelin assembly and demyelinating conditions.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Julia Kowal
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Robert Barker
- School of Physical Sciences, University of Kent, Canterbury, Kent, United Kingdom
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Anne Martel
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Jussi Tuusa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
9
|
Muruganandam G, Raasakka A, Myllykoski M, Kursula I, Kursula P. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase. BMC BIOCHEMISTRY 2017; 18:7. [PMID: 28511668 PMCID: PMC5434554 DOI: 10.1186/s12858-017-0084-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/10/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). RESULTS We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. CONCLUSIONS We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.
Collapse
Affiliation(s)
- Gopinath Muruganandam
- Centre for Structural Systems Biology - Helmholtz Centre for Infection Research, German Electron Synchrotron (DESY), Hamburg, Germany
| | - Arne Raasakka
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Inari Kursula
- Centre for Structural Systems Biology - Helmholtz Centre for Infection Research, German Electron Synchrotron (DESY), Hamburg, Germany
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Petri Kursula
- Centre for Structural Systems Biology - Helmholtz Centre for Infection Research, German Electron Synchrotron (DESY), Hamburg, Germany
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Assembly of the elongated collagen prolyl 4-hydroxylase α2β2 heterotetramer around a central α2 dimer. Biochem J 2017; 474:751-769. [DOI: 10.1042/bcj20161000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 11/17/2022]
Abstract
Collagen prolyl 4-hydroxylase (C-P4H), an α2β2 heterotetramer, is a crucial enzyme for collagen synthesis. The α-subunit consists of an N-terminal dimerization domain, a central peptide substrate-binding (PSB) domain, and a C-terminal catalytic (CAT) domain. The β-subunit [also known as protein disulfide isomerase (PDI)] acts as a chaperone, stabilizing the functional conformation of C-P4H. C-P4H has been studied for decades, but its structure has remained elusive. Here, we present a three-dimensional small-angle X-ray scattering model of the entire human C-P4H-I heterotetramer. C-P4H is an elongated, bilobal, symmetric molecule with a length of 290 Å. The dimerization domains from the two α-subunits form a protein–protein dimer interface, assembled around the central antiparallel coiled-coil interface of their N-terminal α-helices. This region forms a thin waist in the bilobal tetramer. The two PSB/CAT units, each complexed with a PDI/β-subunit, form two bulky lobes pointing outward from this waist region, such that the PDI/β-subunits locate at the far ends of the βααβ complex. The PDI/β-subunit interacts extensively with the CAT domain. The asymmetric shape of two truncated C-P4H-I variants, also characterized in the present study, agrees with this assembly. Furthermore, data from these truncated variants show that dimerization between the α-subunits has an important role in achieving the correct PSB–CAT assembly competent for catalytic activity. Kinetic assays with various proline-rich peptide substrates and inhibitors suggest that, in the competent assembly, the PSB domain binds to the procollagen substrate downstream from the CAT domain.
Collapse
|
11
|
Substitutions mimicking deimination and phosphorylation of 18.5-kDa myelin basic protein exert local structural effects that subtly influence its global folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1262-77. [DOI: 10.1016/j.bbamem.2016.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/30/2016] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
|
12
|
Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner. Biophys J 2015; 108:903-917. [PMID: 25692595 DOI: 10.1016/j.bpj.2014.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022] Open
Abstract
Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors.
Collapse
|
13
|
Knoll W, Peters J, Kursula P, Gerelli Y, Natali F. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime. J Chem Phys 2015; 141:205101. [PMID: 25429962 DOI: 10.1063/1.4901738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.
Collapse
Affiliation(s)
- W Knoll
- University Joseph Fourier, UFR PhiTEM, Grenoble, France
| | - J Peters
- University Joseph Fourier, UFR PhiTEM, Grenoble, France
| | | | - Y Gerelli
- Institut Laue-Langevin, Grenoble, France
| | - F Natali
- Institut Laue-Langevin, Grenoble, France
| |
Collapse
|
14
|
The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro. Biosci Rep 2014; 34:e00157. [PMID: 25343306 PMCID: PMC4266924 DOI: 10.1042/bsr20140149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92–R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP–Fyn–SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62–L68), and demonstrate further that residues (V83–P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn–SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex. MBP interacts with Fyn kinase during oligodendrocyte development and myelination. We show that there is no binding-induced PPII formation in the primary ligand segment, and that a region upstream is required for in vitro interaction.
Collapse
|
15
|
Glatiramer acetate and nanny proteins restrict access of the multiple sclerosis autoantigen myelin basic protein to the 26S proteasome. BIOMED RESEARCH INTERNATIONAL 2014; 2014:926394. [PMID: 25276831 PMCID: PMC4172982 DOI: 10.1155/2014/926394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 12/23/2022]
Abstract
We recently showed that myelin basic protein (MBP) is hydrolyzed by 26S proteasome without ubiquitination. The previously suggested concept of charge-mediated interaction between MBP and the proteasome led us to attempt to compensate or mimic its positive charge to inhibit proteasomal degradation. We demonstrated that negatively charged actin and calmodulin (CaM), as well as basic histone H1.3, inhibit MBP hydrolysis by competing with the proteasome and MBP, respectively, for binding their counterpart. Interestingly, glatiramer acetate (GA), which is used to treat multiple sclerosis (MS) and is structurally similar to MBP, inhibits intracellular and in vitro proteasome-mediated MBP degradation. Therefore, the data reported in this study may be important for myelin biogenesis in both the normal state and pathophysiological conditions.
Collapse
|
16
|
Kursula P. The many structural faces of calmodulin: a multitasking molecular jackknife. Amino Acids 2014; 46:2295-304. [PMID: 25005783 DOI: 10.1007/s00726-014-1795-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 12/16/2022]
Abstract
Calmodulin (CaM) is a highly conserved protein and a crucial calcium sensor in eukaryotes. CaM is a regulator of hundreds of diverse target proteins. A wealth of studies has been carried out on the structure of CaM, both in the unliganded form and in complexes with target proteins and peptides. The outcome of these studies points toward a high propensity to attain various conformational states, depending on the binding partner. The purpose of this review is to provide examples of different conformations of CaM trapped in the crystal state. In addition, comparisons are made to corresponding studies in solution. The different CaM conformations in crystal structures are also compared based on the positions of the metal ions bound to their EF hands, in terms of distances, angles, and pseudo-torsion angles. Possible caveats and artifacts in CaM crystal structures are discussed, as well as the possibilities of trapping biologically relevant CaM conformations in the crystal state.
Collapse
Affiliation(s)
- Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland,
| |
Collapse
|
17
|
Knoll W, Peters J, Kursula P, Gerelli Y, Ollivier J, Demé B, Telling M, Kemner E, Natali F. Structural and dynamical properties of reconstituted myelin sheaths in the presence of myelin proteins MBP and P2 studied by neutron scattering. SOFT MATTER 2014; 10:519-529. [PMID: 24651633 DOI: 10.1039/c3sm51393a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The myelin sheath is a tightly packed, multilayered membrane structure wrapped around selected nerve axons in the central and the peripheral nervous system. Because of its electrical insulation of the axons, which allows fast, saltatory nerve impulse conduction, myelin is crucial for the proper functioning of the vertebrate nervous system. A subset of myelin-specific proteins is well-defined, but their influence on membrane dynamics, i.e. myelin stability, has not yet been explored in detail. We investigated the structure and the dynamics of reconstituted myelin membranes on a pico- to nanosecond timescale, influenced by myelin basic protein (MBP) and myelin protein 2 (P2), using neutron diffraction and quasi-elastic neutron scattering. A model for the scattering function describing molecular lipid motions is suggested. Although dynamical properties are not affected significantly by MBP and P2 proteins, they act in a highly synergistic manner influencing the membrane structure.
Collapse
Affiliation(s)
- Wiebke Knoll
- University Joseph Fourier UFR PhITEM, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Krestinina OV, Makarov PR, Baburina YL, Gordeeva AE, Azarashvili TS. The identification of phosphorylated forms of myelin basic protein associated with mitochondria. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413040053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Muruganandam G, Bürck J, Ulrich AS, Kursula I, Kursula P. Lipid membrane association of myelin proteins and peptide segments studied by oriented and synchrotron radiation circular dichroism spectroscopy. J Phys Chem B 2013; 117:14983-93. [PMID: 24236572 DOI: 10.1021/jp4098588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myelin-specific proteins are either integral or peripheral membrane proteins that, in complex with lipids, constitute a multilayered proteolipid membrane system, the myelin sheath. The myelin sheath surrounds the axons of nerves and enables rapid conduction of axonal impulses. Myelin proteins interact intimately with the lipid bilayer and play crucial roles in the assembly, function, and stability of the myelin sheath. Although myelin proteins have been investigated for decades, their structural properties upon membrane surface binding are still largely unknown. In this study, we have used simplified model systems consisting of synthetic peptides and membrane mimics, such as detergent micelles and/or lipid vesicles, to probe the conformation of peptides using synchrotron radiation circular dichroism spectroscopy (SRCD). Additionally, oriented circular dichroism spectroscopy (OCD) was employed to examine the orientation of myelin peptides in macroscopically aligned lipid bilayers. Various representative peptides from the myelin basic protein (MBP), P0, myelin/oligodencrocyte glycoprotein, and connexin32 (cx32) were studied. A helical peptide from the central immunodominant epitope of MBP showed a highly tilted orientation with respect to the membrane surface, whereas the N-terminal cytoplasmic segment of cx32 folded into a helical structure that was only slightly tilted. The folding of full-length myelin basic protein was, furthermore, studied in a bicelle environment. Our results provide information on the conformation and membrane alignment of important membrane-binding peptides in a membrane-mimicking environment, giving novel insights into the mechanisms of membrane binding and stacking by myelin proteins.
Collapse
Affiliation(s)
- Gopinath Muruganandam
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI) , German Electron Synchrotron (DESY), Hamburg 22607, Germany
| | | | | | | | | |
Collapse
|
20
|
Prell T, Lautenschläger J, Grosskreutz J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium 2013; 54:132-43. [DOI: 10.1016/j.ceca.2013.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 12/25/2022]
|
21
|
Han H, Myllykoski M, Ruskamo S, Wang C, Kursula P. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules. Biofactors 2013; 39:233-41. [PMID: 23780694 DOI: 10.1002/biof.1076] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/15/2012] [Indexed: 12/15/2022]
Abstract
The myelin sheath is a multilayered membrane in the nervous system, which has unique biochemical properties. Myelin carries a set of specific high-abundance proteins, the structure and function of which are still poorly understood. The proteins of the myelin sheath are involved in a number of neurological diseases, including autoimmune diseases and inherited neuropathies. In this review, we briefly discuss the structural properties and functions of selected myelin-specific proteins (P0, myelin oligodendrocyte glycoprotein, myelin-associated glycoprotein, myelin basic protein, myelin-associated oligodendrocytic basic protein, P2, proteolipid protein, peripheral myelin protein of 22 kDa, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and periaxin); such properties include, for example, interactions with lipid bilayers and the presence of large intrinsically disordered regions in some myelin proteins. A detailed understanding of myelin protein structure and function at the molecular level will be required to fully grasp their physiological roles in the myelin sheath.
Collapse
Affiliation(s)
- Huijong Han
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
22
|
Nunomura W, Jinbo Y, Isozumi N, Ohki S, Izumi Y, Matsushima N, Takakuwa Y. Novel Mechanism of Regulation of Protein 4.1G Binding Properties Through Ca2+/Calmodulin-Mediated Structural Changes. Cell Biochem Biophys 2013; 66:545-58. [DOI: 10.1007/s12013-012-9502-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Ruskamo S, Chukhlieb M, Vahokoski J, Bhargav SP, Liang F, Kursula I, Kursula P. Juxtanodin is an intrinsically disordered F-actin-binding protein. Sci Rep 2012; 2:899. [PMID: 23198089 PMCID: PMC3509349 DOI: 10.1038/srep00899] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/15/2012] [Indexed: 11/13/2022] Open
Abstract
Juxtanodin, also called ermin, is an F-actin-binding protein expressed by oligodendrocytes, the myelin-forming cells of the central nervous system. While juxtanodin carries a short conserved F-actin-binding segment at its C terminus, it otherwise shares no similarity with known protein sequences. We carried out a structural characterization of recombinant juxtanodin in solution. Juxtanodin turned out to be intrinsically disordered, as evidenced by conventional and synchrotron radiation CD spectroscopy. Small-angle X-ray scattering indicated that juxtanodin is a monomeric, highly elongated, unfolded molecule. Ensemble optimization analysis of the data suggested also the presence of more compact forms of juxtanodin. The C terminus was a strict requirement for co-sedimentation of juxtanodin with microfilaments, but juxtanodin had only mild effects on actin polymerization. The disordered nature of juxtanodin may predict functions as a protein interaction hub, although F-actin is its only currently known binding partner.
Collapse
Affiliation(s)
- Salla Ruskamo
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Maryna Chukhlieb
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Juha Vahokoski
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | - Fengyi Liang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Inari Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology - Helmholtz Centre for Infection Research (CSSB-HZI); Department of Chemistry, University of Hamburg; and German Electron Synchrotron (DESY), Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology - Helmholtz Centre for Infection Research (CSSB-HZI); Department of Chemistry, University of Hamburg; and German Electron Synchrotron (DESY), Hamburg, Germany
| |
Collapse
|
24
|
Myllykoski M, Itoh K, Kangas SM, Heape AM, Kang SU, Lubec G, Kursula I, Kursula P. The N-terminal domain of the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: direct molecular interaction with the calcium sensor calmodulin. J Neurochem 2012; 123:515-24. [DOI: 10.1111/jnc.12000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Matti Myllykoski
- Department of Biochemistry; University of Oulu; Oulu Finland
- Biocenter Oulu; University of Oulu; Oulu Finland
| | - Kouichi Itoh
- Laboratory of Molecular and Cellular Neurosciences; Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Sanuki-city Kagawa Japan
| | | | | | - Sung-Ung Kang
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Gert Lubec
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Inari Kursula
- Department of Biochemistry; University of Oulu; Oulu Finland
- Department of Chemistry; University of Hamburg and CSSB-HZI; DESY; Hamburg Germany
| | - Petri Kursula
- Department of Biochemistry; University of Oulu; Oulu Finland
- Biocenter Oulu; University of Oulu; Oulu Finland
- Department of Chemistry; University of Hamburg and CSSB-HZI; DESY; Hamburg Germany
| |
Collapse
|
25
|
Nagulapalli M, Parigi G, Yuan J, Gsponer J, Deraos G, Bamm VV, Harauz G, Matsoukas J, de Planque MRR, Gerothanassis IP, Babu MM, Luchinat C, Tzakos AG. Recognition pliability is coupled to structural heterogeneity: a calmodulin intrinsically disordered binding region complex. Structure 2012; 20:522-33. [PMID: 22405011 DOI: 10.1016/j.str.2012.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/01/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022]
Abstract
Protein interactions within regulatory networks should adapt in a spatiotemporal-dependent dynamic environment, in order to process and respond to diverse and versatile cellular signals. However, the principles governing recognition pliability in protein complexes are not well understood. We have investigated a region of the intrinsically disordered protein myelin basic protein (MBP(145-165)) that interacts with calmodulin, but that also promiscuously binds other biomolecules (membranes, modifying enzymes). To characterize this interaction, we implemented an NMR spectroscopic approach that calculates, for each conformation of the complex, the maximum occurrence based on recorded pseudocontact shifts and residual dipolar couplings. We found that the MBP(145-165)-calmodulin interaction is characterized by structural heterogeneity. Quantitative comparative analysis indicated that distinct conformational landscapes of structural heterogeneity are sampled for different calmodulin-target complexes. Such structural heterogeneity in protein complexes could potentially explain the way that transient and promiscuous protein interactions are optimized and tuned in complex regulatory networks.
Collapse
Affiliation(s)
- Malini Nagulapalli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Curcó D, Michaux C, Roussel G, Tinti E, Perpète EA, Alemán C. Stochastic simulation of structural properties of natively unfolded and denatured proteins. J Mol Model 2012; 18:4503-16. [DOI: 10.1007/s00894-012-1456-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 05/02/2012] [Indexed: 01/05/2023]
|
27
|
Boggs JM, Rangaraj G, Dicko A. Effect of phosphorylation of phosphatidylinositol on myelin basic protein-mediated binding of actin filaments to lipid bilayers in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2217-27. [PMID: 22538354 DOI: 10.1016/j.bbamem.2012.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also assemble actin filaments and tether them to lipid bilayers through electrostatic interactions. Here we investigate the effect of increased negative charge of the lipid bilayer due to phosphorylation of phosphatidylinositol (PI) on MBP-mediated binding of actin to the lipid bilayer, by substituting phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate for PI in phosphatidylcholine/phosphatidylglycerol lipid vesicles. Phosphorylation of PI caused dissociation of the MBP/actin complex from the lipid vesicles due to repulsion of the negatively charged complex from the negatively charged membrane surface. An effect of phosphorylation could be detected even if the inositol lipid was only 2mol% of the total lipid. Calcium-calmodulin dissociated actin from the MBP-lipid vesicles and phosphorylation of PI increased the amount dissociated. These results show that changes to the lipid composition of myelin, which could occur during signaling or other physiological events, could regulate the ability of MBP to act as a scaffolding protein and bind actin filaments to the lipid bilayer.
Collapse
Affiliation(s)
- Joan M Boggs
- Hospital for Sick Children, Toronto, ON, Canada.
| | | | | |
Collapse
|
28
|
Myllykoski M, Raasakka A, Han H, Kursula P. Myelin 2',3'-cyclic nucleotide 3'-phosphodiesterase: active-site ligand binding and molecular conformation. PLoS One 2012; 7:e32336. [PMID: 22393399 PMCID: PMC3290555 DOI: 10.1371/journal.pone.0032336] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/26/2012] [Indexed: 01/19/2023] Open
Abstract
The 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is a highly abundant membrane-associated enzyme in the myelin sheath of the vertebrate nervous system. CNPase is a member of the 2H phosphoesterase family and catalyzes the formation of 2'-nucleotide products from 2',3'-cyclic substrates; however, its physiological substrate and function remain unknown. It is likely that CNPase participates in RNA metabolism in the myelinating cell. We solved crystal structures of the phosphodiesterase domain of mouse CNPase, showing the binding mode of nucleotide ligands in the active site. The binding mode of the product 2'-AMP provides a detailed view of the reaction mechanism. Comparisons of CNPase crystal structures highlight flexible loops, which could play roles in substrate recognition; large differences in the active-site vicinity are observed when comparing more distant members of the 2H family. We also studied the full-length CNPase, showing its N-terminal domain is involved in RNA binding and dimerization. Our results provide a detailed picture of the CNPase active site during its catalytic cycle, and suggest a specific function for the previously uncharacterized N-terminal domain.
Collapse
Affiliation(s)
- Matti Myllykoski
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Arne Raasakka
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Huijong Han
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
29
|
Structured functional domains of myelin basic protein: cross talk between actin polymerization and Ca(2+)-dependent calmodulin interaction. Biophys J 2011; 101:1248-56. [PMID: 21889463 DOI: 10.1016/j.bpj.2011.07.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/15/2011] [Accepted: 07/22/2011] [Indexed: 11/22/2022] Open
Abstract
The 18.5-kDa myelin basic protein (MBP), the most abundant isoform in human adult myelin, is a multifunctional, intrinsically disordered protein that maintains compact assembly of the sheath. Solution NMR spectroscopy and a hydrophobic moment analysis of MBP's amino-acid sequence have previously revealed three regions with high propensity to form strongly amphipathic α-helices. These regions, located in the central, N- and C-terminal parts of the protein, have been shown to play a role in the interactions of MBP with cytoskeletal proteins, Src homology 3-domain-containing proteins, Ca(2+)-activated calmodulin (Ca(2+)-CaM), and myelin-mimetic membrane bilayers. Here, we have further characterized the structure-function relationship of these three domains. We constructed three recombinant peptides derived from the 18.5-kDa murine MBP: (A22-K56), (S72-S107), and (S133-S159) (which are denoted α1, α2, and α3, respectively). We used a variety of biophysical methods (circular dichroism spectroscopy, isothermal titration calorimetry, transmission electron microscopy, fluorimetry, and solution NMR spectroscopy and chemical shift index analysis) to characterize the interactions of these peptides with actin and Ca(2+)-CaM. Our results show that all three peptides can adopt α-helical structure inherently even in aqueous solution. Both α1- and α3-peptides showed strong binding with Ca(2+)-CaM, and both adopted an α-helical conformation upon interaction, but the binding of the α3-peptide appeared to be more dynamic. Only the α1-peptide exhibited actin polymerization and bundling activity, and the addition of Ca(2+)-CaM resulted in depolymerization of actin that had been polymerized by α1. The results of this study proved that there is an N-terminal binding domain in MBP for Ca(2+)-CaM (in addition to the primary site located in the C-terminus), and that it is sufficient for CaM-induced actin depolymerization. These three domains of MBP represent molecular recognition fragments with multiple roles in both membrane- and protein-association.
Collapse
|
30
|
Wang C, Neugebauer U, Bürck J, Myllykoski M, Baumgärtel P, Popp J, Kursula P. Charge isomers of myelin basic protein: structure and interactions with membranes, nucleotide analogues, and calmodulin. PLoS One 2011; 6:e19915. [PMID: 21647440 PMCID: PMC3102069 DOI: 10.1371/journal.pone.0019915] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/14/2011] [Indexed: 12/30/2022] Open
Abstract
As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids--a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers.
Collapse
Affiliation(s)
- Chaozhan Wang
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | - Jochen Bürck
- Institute for Biological Interfaces 2, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Peter Baumgärtel
- Berlin Electron Storage Ring Company for Synchrotron Radiation, Helmholtz-Zentrum Berlin, Germany
| | - Jürgen Popp
- Institute of Photonic Technology, Jena, Germany
- Institute for Physical Chemistry, Friedrich-Schiller-University Jena, Jena, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, German Electron Synchrotron, Hamburg, Germany
| |
Collapse
|
31
|
Myllykoski M, Baumgärtel P, Kursula P. Conformations of peptides derived from myelin-specific proteins in membrane-mimetic conditions probed by synchrotron radiation CD spectroscopy. Amino Acids 2011; 42:1467-74. [PMID: 21505824 DOI: 10.1007/s00726-011-0911-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/02/2011] [Indexed: 12/22/2022]
Abstract
Myelin is a tightly packed membrane multilayer in the nervous system, which harbours a specific set of quantitatively major proteins. All these proteins interact with the lipid bilayer, being either peripheral or integral membrane proteins. In this study, we examined the conformational properties of peptides from the myelin proteins P0, CNPase, MOBP, P2 and MOG, using trifluoroethanol and micelles of different detergents as membrane-like mimics. The peptides showed significant differences in their folding under the employed conditions, as evidenced by synchrotron radiation circular dichroism spectroscopy. Our experiments provide new structural information on the interactions between myelin proteins and membranes, using a simplified model system of synthetic peptides and micelles.
Collapse
|
32
|
Homchaudhuri L, De Avila M, Nilsson SB, Bessonov K, Smith GST, Bamm VV, Musse AA, Harauz G, Boggs JM. Secondary Structure and Solvent Accessibility of a Calmodulin-Binding C-Terminal Segment of Membrane-Associated Myelin Basic Protein. Biochemistry 2010; 49:8955-66. [DOI: 10.1021/bi100988p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lopamudra Homchaudhuri
- Department of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Miguel De Avila
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Stina B. Nilsson
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Kyrylo Bessonov
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Graham S. T. Smith
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Vladimir V. Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Abdiwahab A. Musse
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Joan M. Boggs
- Department of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Huttu J, Singh BK, Bhargav SP, Sattler JM, Schüler H, Kursula I. Crystallization and preliminary structural characterization of the two actin-depolymerization factors of the malaria parasite. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:583-587. [PMID: 20445265 PMCID: PMC2864698 DOI: 10.1107/s1744309110011589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/26/2010] [Indexed: 05/29/2023]
Abstract
The malaria parasite Plasmodium depends on its actin-based motor system for motility and host-cell invasion. Actin-depolymerization factors are important regulatory proteins that affect the rate of actin turnover. Plasmodium has two actin-depolymerization factors which seem to have different functions and display low sequence homology to the higher eukaryotic family members. Plasmodium actin-depolymerization factors 1 and 2 have been crystallized. The crystals diffracted X-rays to maximum resolutions of 2.0 and 2.1 A and belonged to space groups P3(1)21 or P3(2)21, with unit-cell parameters a = b = 68.8, c = 76.0 A, and P2(1)2(1)2, with unit-cell parameters a = 111.6, b = 57.9, c = 40.5 A, respectively, indicating the presence of one or two molecules per asymmetric unit in both cases.
Collapse
Affiliation(s)
- Jani Huttu
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and University of Hamburg, DESY, 22607 Hamburg, Germany
- Department of Biochemistry, University of Oulu, 90014 Oulu, Finland
| | | | | | - Julia M. Sattler
- Department of Infectious Diseases/Parasitology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Herwig Schüler
- Department of Infectious Diseases/Parasitology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and University of Hamburg, DESY, 22607 Hamburg, Germany
- Department of Biochemistry, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
34
|
Majava V, Polverini E, Mazzini A, Nanekar R, Knoll W, Peters J, Natali F, Baumgärtel P, Kursula I, Kursula P. Structural and functional characterization of human peripheral nervous system myelin protein P2. PLoS One 2010; 5:e10300. [PMID: 20421974 PMCID: PMC2858655 DOI: 10.1371/journal.pone.0010300] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/24/2010] [Indexed: 11/19/2022] Open
Abstract
The myelin sheath is a tightly packed multilayered membrane structure insulating selected axons in the central and the peripheral nervous systems. Myelin is a biochemically unique membrane, containing a specific set of proteins. In this study, we expressed and purified recombinant human myelin P2 protein and determined its crystal structure to a resolution of 1.85 A. A fatty acid molecule, modeled as palmitate based on the electron density, was bound inside the barrel-shaped protein. Solution studies using synchrotron radiation indicate that the crystal structure is similar to the structure of the protein in solution. Docking experiments using the high-resolution crystal structure identified cholesterol, one of the most abundant lipids in myelin, as a possible ligand for P2, a hypothesis that was proven by fluorescence spectroscopy. In addition, electrostatic potential surface calculations supported a structural role for P2 inside the myelin membrane. The potential membrane-binding properties of P2 and a peptide derived from its N terminus were studied. Our results provide an enhanced view into the structure and function of the P2 protein from human myelin, which is able to bind both monomeric lipids inside its cavity and membrane surfaces.
Collapse
Affiliation(s)
- Viivi Majava
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | - Rahul Nanekar
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - Wiebke Knoll
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
| | - Judith Peters
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
- Institut de Biologie Structurale, Grenoble, France
| | - Francesca Natali
- Institut Laue-Langevin, Grenoble, France
- Consiglio Nazionale delle Richerche – Operative Group in Grenoble, Grenoble, France
| | | | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| |
Collapse
|
35
|
Purification of recombinant growth hormone by clear native gels for conformational analyses: preservation of conformation and receptor binding. Amino Acids 2010; 39:859-69. [DOI: 10.1007/s00726-010-0542-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/24/2010] [Indexed: 11/26/2022]
|
36
|
Smith GST, Chen L, Bamm VV, Dutcher JR, Harauz G. The interaction of zinc with membrane-associated 18.5 kDa myelin basic protein: an attenuated total reflectance-Fourier transform infrared spectroscopic study. Amino Acids 2010; 39:739-50. [DOI: 10.1007/s00726-010-0513-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 02/03/2010] [Indexed: 11/28/2022]
|
37
|
Baran C, Smith GST, Bamm VV, Harauz G, Lee JS. Divalent cations induce a compaction of intrinsically disordered myelin basic protein. Biochem Biophys Res Commun 2009; 391:224-9. [PMID: 19903451 DOI: 10.1016/j.bbrc.2009.11.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Central nervous system myelin is a dynamic entity arising from membrane processes extended from oligodendrocytes, which form a tightly-wrapped multilamellar structure around neurons. In mature myelin, the predominant splice isoform of classic MBP is 18.5kDa. In solution, MBP is an extended, intrinsically disordered protein with a large effective protein surface for myriad interactions, and possesses transient and/or induced ordered secondary structure elements for molecular association or recognition. Here, we show by nanopore analysis that the divalent cations copper and zinc induce a compaction of the extended protein in vitro, suggestive of a tertiary conformation that may reflect its arrangement in myelin.
Collapse
Affiliation(s)
- Christian Baran
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Sask, Canada
| | | | | | | | | |
Collapse
|