1
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
2
|
López-Cano A, Martínez-Miguel M, Guasch J, Ratera I, Arís A, Garcia-Fruitós E. Exploring the impact of the recombinant Escherichia coli strain on defensins antimicrobial activity: BL21 versus Origami strain. Microb Cell Fact 2022; 21:77. [PMID: 35527241 PMCID: PMC9082834 DOI: 10.1186/s12934-022-01803-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
The growing emergence of microorganisms resistant to antibiotics has prompted the development of alternative antimicrobial therapies. Among them, the antimicrobial peptides produced by innate immunity, which are also known as host defense peptides (HDPs), hold great potential. They have been shown to exert activity against both Gram-positive and Gram-negative bacteria, including those resistant to antibiotics. These HDPs are classified into three categories: defensins, cathelicidins, and histatins. Traditionally, HDPs have been chemically synthesized, but this strategy often limits their application due to the high associated production costs. Alternatively, some HDPs have been recombinantly produced, but little is known about the impact of the bacterial strain in the recombinant product. This work aimed to assess the influence of the Escherichia coli strain used as cell factory to determine the activity and stability of recombinant defensins, which have 3 disulfide bonds. For that, an α-defensin [human α-defensin 5 (HD5)] and a β-defensin [bovine lingual antimicrobial peptide (LAP)] were produced in two recombinant backgrounds. The first one was an E. coli BL21 strain, which has a reducing cytoplasm, whereas the second was an E. coli Origami B, that is a strain with a more oxidizing cytoplasm. The results showed that both HD5 and LAP, fused to Green Fluorescent Protein (GFP), were successfully produced in both BL21 and Origami B strains. However, differences were observed in the HDP production yield and bactericidal activity, especially for the HD5-based protein. The HD5 protein fused to GFP was not only produced at higher yields in the E. coli BL21 strain, but it also showed a higher quality and stability than that produced in the Origami B strain. Hence, this data showed that the strain had a clear impact on both HDPs quantity and quality.
Collapse
|
3
|
Díaz-Garrido P, Cárdenas-Guerra RE, Martínez I, Poggio S, Rodríguez-Hernández K, Rivera-Santiago L, Ortega-López J, Sánchez-Esquivel S, Espinoza B. Differential activity on trypanosomatid parasites of a novel recombinant defensin type 1 from the insect Triatoma (Meccus) pallidipennis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103673. [PMID: 34700021 DOI: 10.1016/j.ibmb.2021.103673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Defensins are one of the major families of antimicrobial peptides (AMPs) that are widely distributed in insects. In Triatomines (Hemiptera: Reduviidae) vectors of Trypanosoma cruzi the causative agent of Chagas disease, two large groups of defensin isoforms have been described: type 1 and type 4. The aim of this study was to analyze the trypanocidal activity of a type 1 recombinant defensin (rDef1.3) identified in Triatoma (Meccus) pallidipennis, an endemic specie from México. The trypanocidal activity of this defensin was evaluated in vitro, against the parasites T. cruzi, T. rangeli, and two species of Leishmania (L. mexicana and L. major) both causative agents of cutaneous leishmaniasis. Our data demonstrated that the defensin was active against all the parasites although in different degrees. The defensin altered the morphology, reduced the viability and inhibited the growth of T.cruzi. When tested against T. rangeli (a parasite that infects a variety of mammalian species), stronger morphological effects where observed. Surprisingly the greatest effects were observed against the two Leishmania species, of which L. major was the parasite most affected with 50% of dead cells or with damaged membranes, in addition of a reduction in its proliferative capacity in culture. These results suggest that rDef1.3 has an important antimicrobial effect against trypanosomatids which cause some of the more important neglected tropical diseases transmitted by insect vectors.
Collapse
Affiliation(s)
- Paulina Díaz-Garrido
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Rosa Elena Cárdenas-Guerra
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Ignacio Martínez
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Sebastián Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Karla Rodríguez-Hernández
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Lucio Rivera-Santiago
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, C.P. 07360, México City, Mexico
| | - Sergio Sánchez-Esquivel
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico.
| |
Collapse
|
4
|
Improving the heterologous expression of human β-defensin 2 (HBD2) using an experimental design. Protein Expr Purif 2019; 167:105539. [PMID: 31715251 DOI: 10.1016/j.pep.2019.105539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022]
Abstract
At present, expressing antimicrobial peptides in bacterial models is considered a routine lab bench work. However, low expression yields of these types of proteins are usually obtained. In this work, the antimicrobial peptide human β-defensin 2 (HBD2) was obtained in low expression yields in Escherichia coli BL21(DE3). To improve the expression yields of HBD2, some variables such as cell density, temperature, and length of induction, as well as the inducer concentration, were investigated using a 24-factorial design of experiments (DoE). This approach allowed us to identify the identification of critical variables (main effects and interactions among factors) affecting bacterial HBD2 expression. After the evaluation of 19 different combination, the best condition to express HBD2 had a pre-induction temperature of 37 °C, a cell density of 1.0 U (600 nm), an induction temperature of 20 °C and a 0.1 mM of gene expression inducer (IPTG) over four hours. Under such conditions, the expression yield of the HBD2 peptide was one order of magnitude higher than the peptide expression performed initially.
Collapse
|
5
|
A mutated rabbit defensin NP-1 produced by Chlorella ellipsoidea can improve the growth performance of broiler chickens. Sci Rep 2019; 9:12778. [PMID: 31484978 PMCID: PMC6726607 DOI: 10.1038/s41598-019-49252-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/21/2019] [Indexed: 11/21/2022] Open
Abstract
The demand for alternatives to antibiotics to improve the growth performance of food animals is increasing. Defensins constitute the first line of defence against pathogens in the innate immune system of animals and humans. A transgenic Chlorella ellipsoidea strain producing mNP-1 (a mutated rabbit defensin NP-1) was previously obtained in our laboratory. In this study, a process for producing the transgenic strain on a large scale was developed, and the C. ellipsoidea strain producing mNP-1 was used as a feed additive to improve the health and growth performance of chickens. The volume of C. ellipsoidea producing mNP-1 can be scaled up to 10,000 L with approximately 100 g/L dry biomass, and the mNP-1 content of transgenic microalgal powder (TMP) was 90–105 mg/L. A TMP-to-regular feed ratio of 1‰, as the optimal effective dose, can promote the growth of broiler chickens by increasing weight by 9.27–12.95%. mNP-1 can improve duodenum morphology by promoting long and thin villi and affect the microbial community of the duodenum by increasing the diversity and abundance of beneficial microbes. These results suggested that transgenic Chlorella producing mNP-1 can be industrially produced and used as an effective feed additive and an alternative to antibiotics for improving the health and growth performance of broiler chickens or other types of food animals/poultry.
Collapse
|
6
|
Su G, Xie K, Chen D, Yu B, Huang Z, Luo Y, Mao X, Zheng P, Yu J, Luo J, He J. Differential expression, molecular cloning, and characterization of porcine beta defensin 114. J Anim Sci Biotechnol 2019; 10:60. [PMID: 31360462 PMCID: PMC6639935 DOI: 10.1186/s40104-019-0367-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
Background β-defensins have attracted considerable research interest because of their roles in protecting hosts from various pathogens. This study was conducted to investigate the expression profiles of the porcine β-defensin 114 (PBD114) in different breeds and in response to infections. Moreover, the function of PBD114 protein was partially investigated. Methods Six Tibetan pigs (TP) and six DLY (Duroc×Landrace×Yorkshire) pigs were slaughtered to explore the expression profiles of PBD114 in different breeds and tissues. For infection models, sixteen DLY pigs were divided into two groups and challenged either with sterile saline or E. coli K88. The recombinant protein PBD114 (rPBD114) was obtained by using a heterologous expression system in E. coli. Results PBD114 gene was highly expressed in tissues such as the intestine, liver, spleen, and thymus. Interestingly, the expression level of PBD114 gene was higher in the TP pigs than in the DLY pigs (P < 0.05), and was significantly elevated upon E. coli K88 challenge (P < 0.05). The nucleotide sequences of PBD114 from Tibetan and DLY pigs was identical, and both showed a 210-bp open reading frame encoding a 69-amino acid mature peptide. To explaore the function of PBD114 protein, PBD114 gene was successfully expressed in E. coli Origami B (DE3) and the molecular weight of the rPBD114 was estimated by SDS-PAGE to be 25 kDa. The rPBD114 was purified and mass spectrometry verified the protein as PBD114. Importantly, rPBD114 showed antimicrobial activities against E. coli DH5α and E. coli K88, and the minimal inhibitory concentrations (MICs) were 64 and 128 μg/mL, respectively. Hemolytic and cytotoxicity assays showed that rPBD114 did not affect cell viability under physiological concentrations. Conclusions PBD114 is an infection response gene that is differentially-expressed between different porcine breeds and tissues. The antimicrobial activity of PBD114 protein, against pathogens such as the E. coli K88, suggested that it may serve as a candidate for the substitution of conventionally used antibiotics. Electronic supplementary material The online version of this article (10.1186/s40104-019-0367-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guoqi Su
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Kunhong Xie
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Daiwen Chen
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Bing Yu
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Zhiqing Huang
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Yuheng Luo
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Xiangbing Mao
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Ping Zheng
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Jie Yu
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Junqiu Luo
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| | - Jun He
- 1Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China.,2Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 625014 People's Republic of China
| |
Collapse
|
7
|
Álvarez ÁH, Martínez Velázquez M, Prado Montes de Oca E. Human β-defensin 1 update: Potential clinical applications of the restless warrior. Int J Biochem Cell Biol 2018; 104:133-137. [PMID: 30236992 DOI: 10.1016/j.biocel.2018.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Accepted: 09/15/2018] [Indexed: 01/06/2023]
Abstract
Human β-defensin 1 (hBD-1) is a multifaceted antimicrobial peptide being a tumour suppressor and, depending on call of duty, capable of inducing self-nets and neutrophil extracellular traps (NETs) to capture and/or kill bacteria, participates in inflammatory responses in chronic diseases including hBD-3 upregulation and also capable of up/downregulation in the presence of certain species of Lactobacillus sp. Thus, is regulated by host microbiota. Alleles, genotypes and/or altered gene expression of its coding gene, DEFB1, have been associated with several human diseases/conditions ranging from metabolic/chronic (e.g. cancer), infectious (e.g. tuberculosis, HIV/AIDS), inflammatory (gastrointestinal diseases), male infertility and more recently, neurologic (e.g. depression and Alzheimer) and autoimmune diseases (e.g. vitiligo and systemic lupus erythematosus). The present update focuses on novel DEFB1/hBD-1 properties and biomarker features, its biological function and the pharmaceutical potential uses of antimicrobial peptide elicitors (APEs) or the engineered peptide in the treatment of hBD-1-related human diseases.
Collapse
Affiliation(s)
- Ángel H Álvarez
- Personalized Medicine National Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology Unit, Research Center of Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Mexico
| | - Moisés Martínez Velázquez
- Personalized Medicine National Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology Unit, Research Center of Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Mexico
| | - Ernesto Prado Montes de Oca
- Personalized Medicine National Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology Unit, Research Center of Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Mexico.
| |
Collapse
|
8
|
Du Y, Shang BY, Sheng WJ, Zhang SH, Li Y, Miao QF, Zhen YS. A recombinantly tailored β-defensin that displays intensive macropinocytosis-mediated uptake exerting potent efficacy against K-Ras mutant pancreatic cancer. Oncotarget 2018; 7:58418-58434. [PMID: 27517152 PMCID: PMC5295440 DOI: 10.18632/oncotarget.11170] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
K-Ras mutant pancreatic cancer cells display intensive macropinocytosis, indicating that this process may be exploited in the design of anticancer targeted therapies. In this study, we constructed a macropinocytosis-oriented recombinantly tailored defensin (DF-HSA) which consists of human β-defensin-2 (DF) and human serum albumin (HSA). The macropinocytosis intensity and cytotoxicity of DF-HSA were investigated in K-Ras mutant MIA PaCa-2 cells and wild-type BxPC-3 cells. As found, the DF-HSA uptake in MIA PaCa-2 cells was much higher than that in wild-type BxPC-3 cells. Correspondingly, the cytotoxicity of DF-HSA to MIA PaCa-2 cells was more potent than that to BxPC-3 cells. In addition, the cytotoxicity of DF-HSA was much stronger than that of β-defensin HBD2. DF-HSA suppressed cancer cell proliferation and induced mitochondrial pathway apoptosis. Notably, DF-HSA significantly inhibited the growth of human pancreatic carcinoma MIA PaCa-2 xenograft in athymic mice at well tolerated dose. By in vivo imaging, DF-HSA displayed a prominent accumulation in the tumor. The study indicates that the recombinantly tailored β-defensin can intensively enter into the K-Ras mutant pancreatic cancer cells through macropinocytosis-mediated process and exert potent therapeutic efficacy against the pancreatic carcinoma xenograft. The novel format of β-defensin may play an active role in macropinocytosis-mediated targeting therapy.
Collapse
Affiliation(s)
- Yue Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Bo-Yang Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Wei-Jin Sheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Sheng-Hua Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Qing-Fang Miao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, P.R. China
| |
Collapse
|
9
|
D-Cateslytin, a new antimicrobial peptide with therapeutic potential. Sci Rep 2017; 7:15199. [PMID: 29123174 PMCID: PMC5680178 DOI: 10.1038/s41598-017-15436-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
The rise of antimicrobial resistant microorganisms constitutes an increasingly serious threat to global public health. As a consequence, the efficacy of conventional antimicrobials is rapidly declining, threatening the ability of healthcare professionals to cure common infections. Over the last two decades host defense peptides have been identified as an attractive source of new antimicrobials. In the present study, we characterized the antibacterial and mechanistic properties of D-Cateslytin (D-Ctl), a new epipeptide derived from L-Cateslytin, where all L-amino acids were replaced by D-amino acids. We demonstrated that D-Ctl emerges as a potent, safe and robust peptide antimicrobial with undetectable susceptibility to resistance. Using Escherichia coli as a model, we reveal that D-Ctl targets the bacterial cell wall leading to the permeabilization of the membrane and the death of the bacteria. Overall, D-Ctl offers many assets that make it an attractive candidate for the biopharmaceutical development of new antimicrobials either as a single therapy or as a combination therapy as D-Ctl also has the remarkable property to potentiate several antimicrobials of reference such as cefotaxime, amoxicillin and methicillin.
Collapse
|
10
|
Møller TSB, Hay J, Saxton MJ, Bunting K, Petersen EI, Kjærulff S, Finnis CJA. Human β-defensin-2 production from S. cerevisiae using the repressible MET17 promoter. Microb Cell Fact 2017; 16:11. [PMID: 28100236 PMCID: PMC5241953 DOI: 10.1186/s12934-017-0627-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Baker’s yeast Saccharomyces cerevisiae is a proven host for the commercial production of recombinant biopharmaceutical proteins. For the manufacture of heterologous proteins with activities deleterious to the host it can be desirable to minimise production during the growth phase and induce production late in the exponential phase. Protein expression by regulated promoter systems offers the possibility of improving productivity in this way by separating the recombinant protein production phase from the yeast growth phase. Commonly used inducible promoters do not always offer convenient solutions for industrial scale biopharmaceutical production with engineered yeast systems. Results Here we show improved secretion of the antimicrobial protein, human β-defensin-2, (hBD2), using the S. cerevisiae MET17 promoter by repressing expression during the growth phase. In shake flask culture, a higher final concentration of human β-defensin-2 was obtained using the repressible MET17 promoter system than when using the strong constitutive promoter from proteinase B (PRB1) in a yeast strain developed for high-level commercial production of recombinant proteins. Furthermore, this was achieved in under half the time using the MET17 promoter compared to the PRB1 promoter. Cell density, plasmid copy-number, transcript level and protein concentration in the culture supernatant were used to study the effects of different initial methionine concentrations in the culture media for the production of human β-defensin-2 secreted from S. cerevisiae. Conclusions The repressible S. cerevisiae MET17 promoter was more efficient than a strong constitutive promoter for the production of human β-defensin-2 from S. cerevisiae in small-scale culture and offers advantages for the commercial production of this and other heterologous proteins which are deleterious to the host organism. Furthermore, the MET17 promoter activity can be modulated by methionine alone, which has a safety profile applicable to biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Thea S B Møller
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.,Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg East, 9220, Aalborg, Denmark
| | - Joanna Hay
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Malcolm J Saxton
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Karen Bunting
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Evamaria I Petersen
- Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg East, 9220, Aalborg, Denmark
| | - Søren Kjærulff
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Christopher J A Finnis
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.
| |
Collapse
|
11
|
Donnarumma G, Paoletti I, Fusco A, Perfetto B, Buommino E, de Gregorio V, Baroni A. β-Defensins: Work in Progress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 901:59-76. [DOI: 10.1007/5584_2015_5016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Sabag O, Lorberboum-Galski H. Combining flagellin and human β-defensin-3 to combat bacterial infections. Front Microbiol 2014; 5:673. [PMID: 25538693 PMCID: PMC4260519 DOI: 10.3389/fmicb.2014.00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/19/2014] [Indexed: 12/17/2022] Open
Abstract
The discovery and therapeutic use of antibiotics made a major contribution to the reduction of human morbidity and mortality. However, the growing resistance to antibiotics has become a matter of huge concern. In this study we aimed to develop an innovative approach to treat bacterial infections utilizing two components: the human antibacterial peptide β-defensin-3 (BD3) and the bacterial protein flagellin (F). This combination was designed to provide an efficient weapon against bacterial infections with the peptide killing the bacteria directly, while the flagellin protein triggers the immune system and acts against bacteria escaping from the peptide’s action. We designed, expressed and purified the fusion protein flagellin BD3 (FBD3) and its two components, the F protein and the native BD3 peptide. FBD3 fusion protein and native BD3 peptide had antibacterial activity in vitro against various bacterial strains. FBD3 and F proteins could also recognize their receptor expressed on target cells and stimulated secretion of IL-8. In addition, F and FBD3 proteins had a partial protective effect in mice infected by pathogenic Escherichia coli bacteria that cause a lethal disease. Moreover, we were able to show partial protection of mice infected with E. coli using a flagellin sequence from Salmonella. We also explored flagellin’s basic mechanisms of action, focusing on its effects on CD4+ T cells from healthy donors. We found that F stimulation caused an increase in the mRNA levels of the Th1 response cytokines IL12A and IFNγ. In addition, F stimulation affected its own receptor.
Collapse
Affiliation(s)
- Ofra Sabag
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School Jerusalem, Israel
| | - Haya Lorberboum-Galski
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School Jerusalem, Israel
| |
Collapse
|
13
|
Peng Z, Wang A, Feng Q, Wang Z, Ivanova IV, He X, Zhang B, Song W. High-level expression, purification and characterisation of porcine β-defensin 2 in Pichia pastoris and its potential as a cost-efficient growth promoter in porcine feed. Appl Microbiol Biotechnol 2014; 98:5487-97. [PMID: 24515729 DOI: 10.1007/s00253-014-5560-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 01/10/2023]
Abstract
Porcine β-defensin 2 (pBD2), a recently discovered porcine defensin that is produced by the intestine, exerts antimicrobial activities and innate immune effects that are linked to intestinal diseases in pigs. Here, we report a codon-optimised protein corresponding to mature pBD2 cDNA that was expressed and purified in Pichia pastoris yeast. The highest amount of secreted protein (3,694.0 mg/L) was reached 144 h into a 150-h induction during high-density cultivation. Precipitation followed by gel exclusion chromatography yielded 383.7 mg/L purified recombinant pBD2 (rpBD2) with a purity of ~93.7 %. Two recombinant proteins of 5,458.5 and 5,258.4 Da were detected in the mass spectrum due to variation in the amino-terminus. The rpBD2 exhibited high antimicrobial activity against a broad range of pig pathogenic bacteria (minimal inhibitory concentration [MIC] 32-128 μg/mL); the highest activity was observed against Salmonella choleraesuis, Staphylococcus aureus and Streptococcus suis (MIC 32-64 μg/mL). However, rpBD2 also inhibited the growth of probiotics such as Lactobacillus plantarum, Bacillus subtilis and Saccharomyces cerevisiae, but at lower efficacies than the pathogens. Purified or unpurified rpBD2 also maintained high activity over a wide range of pH values (2.0-10.0), a high thermal stability at 100 °C for 40 min and significant resistance to papain, pepsin and trypsin. In addition, the activity of rpBD2 towards S. aureus was unaffected by 10 mM dithiothreitol (DTT) and 20 % dimethyl sulphoxide (DMSO). Our results suggest that pBD2 could be produced efficiently in large quantities in P. pastoris and be a substitute for traditional antibiotics for growth promotion in the porcine industry.
Collapse
Affiliation(s)
- Zixin Peng
- State Key Laboratory of Direct-Fed Microbial Engineering, No. B-3 Northern Territory of Zhongguancun Dongsheng Science and Technology Park, Haidian District, Beijing, 100192, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Immunostimulation in the treatment for chronic fatigue syndrome/myalgic encephalomyelitis. Immunol Res 2014; 56:398-412. [PMID: 23576059 DOI: 10.1007/s12026-013-8413-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) has long been associated with the presence of infectious agents, but no single pathogen has been reliably identified in all patients with the disease. Recent studies using metagenomic techniques have demonstrated the presence of thousands of microbes in the human body that were previously undetected and unknown to science. More importantly, such species interact together by sharing genes and genetic function within communities. It follows that searching for a singular pathogen may greatly underestimate the microbial complexity potentially driving a complex disease like CFS/ME. Intracellular microbes alter the expression of human genes in order to facilitate their survival. We have put forth a model describing how multiple species-bacterial, viral, and fungal-can cumulatively dysregulate expression by the VDR nuclear receptor in order to survive and thus drive a disease process. Based on this model, we have developed an immunostimulatory therapy that is showing promise inducing both subjective and objective improvement in patients suffering from CFS/ME.
Collapse
|
15
|
Dalcin D, Ulanova M. The Role of Human Beta-Defensin-2 in Pseudomonas aeruginosa Pulmonary Infection in Cystic Fibrosis Patients. Infect Dis Ther 2013; 2:159-66. [PMID: 25134478 PMCID: PMC4108104 DOI: 10.1007/s40121-013-0015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 11/28/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disease affecting the Caucasian population. Chronic Pseudomonas aeruginosa pulmonary infection is the major cause of morbidity and mortality in CF patients. Human beta-defensin-2 (hBD-2) is an inducible pulmonary antimicrobial peptide that exerts bacteriostatic activity in a concentration-dependent manner. The decreased expression and compromised function of hBD-2 contributes to the pathogenesis of P. aeruginosa infection in the CF lung. The purpose of this review is to outline the significance of hBD-2 in P. aeruginosa chronic pulmonary infection in CF patients.
Collapse
Affiliation(s)
- Daniel Dalcin
- Northern Ontario School of Medicine, Lakehead University, 955 Oliver Rd, Thunder Bay, P7B 5E1, ON, Canada,
| | | |
Collapse
|
16
|
Corrales-Garcia L, Ortiz E, Castañeda-Delgado J, Rivas-Santiago B, Corzo G. Bacterial expression and antibiotic activities of recombinant variants of human β-defensins on pathogenic bacteria and M. tuberculosis. Protein Expr Purif 2013; 89:33-43. [PMID: 23459290 DOI: 10.1016/j.pep.2013.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 11/26/2022]
Abstract
Five variants of human β-defensins (HBDs) were expressed in Escherichia coli using two vector systems (pET28a(+) and pQE30) with inducible expression by IPTG. The last vector has not been previously reported as an expression system for HBDs. The recombinant peptides were different in their lengths and overall charge. The HBDs were expressed as soluble or insoluble proteins depending on the expression system used, and the final protein yields ranged from 0.5 to 1.6 mg of peptide/g of wet weight cells, with purities higher than 90%. The recombinant HBDs demonstrated a direct correlation between antimicrobial activity and the number of basic charged residues; that is, their antimicrobial activity was as follows: HBD3-M-HBD2 > HBD3 = HBD3-M = HB2-KLK > HBD2 when assayed against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Interestingly, HBD2 had the best antimicrobial activity against the Mycobacterium tuberculosis strain H37Rv (1.5 μM) and the heterologous tandem peptide, HBD3-M-HBD2, had the best minimal inhibitory concentration (MIC) value (2.7 μM) against a multidrug resistance strain (MDR) of M. tuberculosis, demonstrating the feasibility of the use of HBDs against pathogenic M. tuberculosis reported to be resistant to commercial antibiotics.
Collapse
Affiliation(s)
- Ligia Corrales-Garcia
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | | | | | | | | |
Collapse
|
17
|
Bai LL, Yin WB, Chen YH, Niu LL, Sun YR, Zhao SM, Yang FQ, Wang RRC, Wu Q, Zhang XQ, Hu ZM. A new strategy to produce a defensin: stable production of mutated NP-1 in nitrate reductase-deficient Chlorella ellipsoidea. PLoS One 2013; 8:e54966. [PMID: 23383016 PMCID: PMC3557228 DOI: 10.1371/journal.pone.0054966] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Defensins are small cationic peptides that could be used as the potential substitute for antibiotics. However, there is no efficient method for producing defensins. In this study, we developed a new strategy to produce defensin in nitrate reductase (NR)-deficient C. ellipsoidea (nrm-4). We constructed a plant expression vector carrying mutated NP-1 gene (mNP-1), a mature α-defensin NP-1 gene from rabbit with an additional initiator codon in the 5′-terminus, in which the selection markers were NptII and NR genes. We transferred mNP-1 into nrm-4 using electroporation and obtained many transgenic lines with high efficiency under selection chemicals G418 and NaNO3. The mNP-1 was characterized using N-terminal sequencing after being isolated from transgenic lines. Excitingly, mNP-1 was produced at high levels (approximately 11.42 mg/l) even after 15 generations of continuous fermentation. In addition, mNP-1 had strong activity against Escherichia coli at 5 µg/ml. This research developed a new method for producing defensins using genetic engineering.
Collapse
Affiliation(s)
- Li-Li Bai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wei-Bo Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yu-Hong Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Li-Li Niu
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yong-Ru Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Shi-Min Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Fu-Quan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Richard R.-C. Wang
- USDA-ARS, FRRL, Utah State University, Logan, Utah, United States of America
| | - Qing Wu
- Polo Biology Science Park Co., Ltd., Beijing, People’s Republic of China
| | - Xiang-Qi Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zan-Min Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
18
|
Human beta-defensin DEFB126 is capable of inhibiting LPS-mediated inflammation. Appl Microbiol Biotechnol 2012; 97:3395-408. [PMID: 23229569 DOI: 10.1007/s00253-012-4588-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 12/11/2022]
Abstract
β-Defensins are cationic, antimicrobial peptides that participate in antimicrobial defense as well as the regulation of innate and adaptive immunity. Human β-defensin 126 (DEFB126) is a multifunctional glycoprotein consisting of a conserved β-defensin core and a unique long glycosylated peptide tail. The long glycosylated peptide tail has been proven to be critical for efficient transport of sperm in the female reproductive tract, preventing their immune recognition, and efficient delivery of capacitated sperm to the site of fertilization. However, the functions of the conserved β-defensin core remain to be fully elucidated. In the present work, the conserved β-defensin core of the DEFB126 was expressed to explore its potential antimicrobial and anti-inflammatory activities. The DEFB126 core peptide exhibited both high potency for binding and neutralizing lipopolysaccharide (LPS) in vitro, and potent anti-inflammatory ability by down-regulating the mRNA expression of pro-inflammatory cytokines including IL-α, IL-1β, IL-6 and TNF-α in a murine macrophage cell line RAW264.7. The treatment with the DEFB126 core peptide also led to correspondingly decreased secretion of IL-6 and TNF-α. The blockade of LPS-induced p42/44 and p38 MAPK signal pathway might contribute to the anti-inflammation effects of the DEFB126 core peptide. Furthermore, fluorescence-labeled DEFB126 could enter RAW 264.7 cells and reduce the production of LPS-stimulated inflammatory factors, implying that DEFB126 might also participate in intracellular regulation beyond its direct LPS neutralization. In summary, our results demonstrate that the DEFB 126 core peptide has critical functions in parallel to its C-terminal tail by showing LPS-binding activity, anti-inflammatory effects and intracellular regulatory function.
Collapse
|
19
|
Cloning, expression and characterization of antimicrobial porcine β defensin 1 in Escherichia coli. Protein Expr Purif 2012; 88:47-53. [PMID: 23220638 DOI: 10.1016/j.pep.2012.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 12/17/2022]
Abstract
Porcine β defensin 1 (pBD1) is a cationic antimicrobial peptide with three pairs of disulfide bonds. When expressed in insect cells, two polypeptides of different length (pBD1(38) and pBD1(42)) accumulated, which differed by N-terminal truncation. However, only pBD1(42) was found in pigs. pBD1(42) had stronger antimicrobial activity than pBD1(38), and thus could be a good candidate as a bactericidal agent for pigs. In this study, pBD1(42) gene, obtained by RT-PCR using the tongue total RNA as a template, was cloned into pET30a expression vector and transformed into Escherichia coli BL21 (DE3) plysS. The recombinant pBD1(42) was expressed after induction by IPTG and purified by His tag affinity column with 90% purity. The recombinant pBD1(42) exhibited antimicrobial activity against both Gram-positive Staphylococcus aureus and Gram-negative E. coli including the multi-resistant E. coli. The minimum inhibitory concentrations (MICs) of recombinant pBD1(42) against tested bacteria were 100 μg/mL for E. coli and 80 μg/mL for S. aureus. In addition, pBD1(42) showed low hemolytic activity and high thermal stability. These properties are relevant for the biotechnological applications of the peptide.
Collapse
|
20
|
Zhang M, Qiu Z, Li Y, Yang Y, Zhang Q, Xiang Q, Su Z, Huang Y. Construction and characterization of a recombinant human beta defensin 2 fusion protein targeting the epidermal growth factor receptor: in vitro study. Appl Microbiol Biotechnol 2012; 97:3913-23. [DOI: 10.1007/s00253-012-4257-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/04/2023]
|
21
|
Liu Z, Tyo KEJ, Martínez JL, Petranovic D, Nielsen J. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 2012; 109:1259-68. [PMID: 22179756 DOI: 10.1002/bit.24409] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/28/2011] [Accepted: 12/08/2011] [Indexed: 11/06/2022]
Abstract
Yeast Saccharomyces cerevisiae has become an attractive cell factory for production of commodity and speciality chemicals and proteins, such as industrial enzymes and pharmaceutical proteins. Here we evaluate most important expression factors for recombinant protein secretion: we chose two different proteins (insulin precursor (IP) and α-amylase), two different expression vectors (POTud plasmid and CPOTud plasmid) and two kinds of leader sequences (the glycosylated alpha factor leader and a synthetic leader with no glycosylation sites). We used IP and α-amylase as representatives of a simple protein and a multi-domain protein, as well as a non-glycosylated protein and a glycosylated protein, respectively. The genes coding for the two recombinant proteins were fused independently with two different leader sequences and were expressed using two different plasmid systems, resulting in eight different strains that were evaluated by batch fermentations. The secretion level (µmol/L) of IP was found to be higher than that of α-amylase for all expression systems and we also found larger variation in IP production for the different vectors. We also found that there is a change in protein production kinetics during the diauxic shift, that is, the IP was produced at higher rate during the glucose uptake phase, whereas amylase was produced at a higher rate in the ethanol uptake phase. For comparison, we also refer to data from another study, (Tyo et al. submitted) in which we used the p426GPD plasmid (standard vector using URA3 as marker gene and pGPD1 as expression promoter). For the IP there is more than 10-fold higher protein production with the CPOTud vector compared with the standard URA3-based vector, and this vector system therefore represent a valuable resource for future studies and optimization of recombinant protein production in yeast.
Collapse
Affiliation(s)
- Zihe Liu
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
22
|
Palma MS. Erratum to: Peptides as toxins/defensins. Amino Acids 2011. [DOI: 10.1007/s00726-011-0842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Palma MS. Peptides as toxins/defensins. Amino Acids 2010; 40:1-4. [DOI: 10.1007/s00726-010-0726-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
|