1
|
Engler S, Buchner J. The evolution and diversification of the Hsp90 co-chaperone system. Biol Chem 2025:hsz-2025-0112. [PMID: 40261701 DOI: 10.1515/hsz-2025-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The molecular chaperone Hsp90 is the central element of a chaperone machinery in the cytosol of eukaryotic cells that is characterized by a large number of structurally and functionally different co-chaperones that influence the core chaperone component in different ways and increase its influence on the proteome. From yeast to humans, the number of Hsp90 co-chaperones has increased from 14 to over 40, and new co-chaperones are still being discovered. While Hsp90 itself has only undergone limited changes in structure and mechanism from yeast to humans, its increased importance and contribution to different processes in humans is based on the evolution and expansion of the cohort of co-chaperones. In this review, we provide an overview of Hsp90 co-chaperones, focusing on their roles in regulating Hsp90 function and their evolution from yeast to humans.
Collapse
Affiliation(s)
- Sonja Engler
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| |
Collapse
|
2
|
Molecular and immunological characterization of the calcyclin binding protein in rodent malaria parasite. Exp Parasitol 2023; 246:108475. [PMID: 36707015 DOI: 10.1016/j.exppara.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Malaria remains as a global life-threatening disorder due to the emergence of resistance against standard antimalarials. Consequently, there is a serious need to better understand the biology of the malaria parasite in order to determine appropriate targets for new interventions. Calcyclin binding protein (CacyBP) is a multi-functional and multi-ligand protein that is not well characterized in malaria disease. In this study, we have cloned CacyBP from rodent species Plasmodium yoelii nigeriensis and purified the recombinant protein to carry out its detailed molecular, biophysical and immunological characterization. Molecular characterization indicates that PyCacyBP is a ∼27 kDa protein in parasite lysate and exists in monomer and dimer forms. Bioinformatic analysis of CacyBP showed significant sequence and structural similarities between rodent and human malaria parasites. CacyBP is expressed in all blood stages of P. yoelii nigeriensis parasite. In silico studies proposed the immunogenic potential of CacyBP. The rPyCacyBP immunized mice exhibited elevated levels of IgG1, IgG2a, IgG2b and IgG3 in their serum. Notably, cellular immune response in splenocytes from immunized mice showed increased expression of pro-inflammatory cytokines such as IL-12, IFN-γ and TNF-α. This CacyBP exhibited pro-inflammatory immune response in rodent host. These finding revealed that CacyBP may have the potential to boost the host immunity for protection against malaria infection. The present study provides basis for further exploration of the biological function of CacyBP in malaria parasite.
Collapse
|
3
|
Srivastava A, Tommasi C, Sessions D, Mah A, Bencomo T, Garcia JM, Jiang T, Lee M, Shen JY, Seow LW, Nguyen A, Rajapakshe K, Coarfa C, Tsai KY, Lopez-Pajares V, Lee CS. MAB21L4 Deficiency Drives Squamous Cell Carcinoma via Activation of RET. Cancer Res 2022; 82:3143-3157. [PMID: 35705526 PMCID: PMC9444977 DOI: 10.1158/0008-5472.can-22-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
Epithelial squamous cell carcinomas (SCC) most commonly originate in the skin, where they display disruptions in the normally tightly regulated homeostatic balance between keratinocyte proliferation and terminal differentiation. We performed a transcriptome-wide screen for genes of unknown function that possess inverse expression patterns in differentiating keratinocytes compared with cutaneous SCC (cSCC), leading to the identification of MAB21L4 (C2ORF54) as an enforcer of terminal differentiation that suppresses carcinogenesis. Loss of MAB21L4 in human cSCC organoids increased expression of RET to enable malignant progression. In addition to transcriptional upregulation of RET, deletion of MAB21L4 preempted recruitment of the CacyBP-Siah1 E3 ligase complex to RET and reduced its ubiquitylation. In SCC organoids and in vivo tumor models, genetic disruption of RET or selective inhibition of RET with BLU-667 (pralsetinib) suppressed SCC growth while inducing concomitant differentiation. Overall, loss of MAB21L4 early during SCC development blocks differentiation by increasing RET expression. These results suggest that targeting RET activation is a potential therapeutic strategy for treating SCC. SIGNIFICANCE Downregulation of RET mediated by MAB21L4-CacyBP interaction is required to induce epidermal differentiation and suppress carcinogenesis, suggesting RET inhibition as a potential therapeutic approach in squamous cell carcinoma.
Collapse
Affiliation(s)
- Ankit Srivastava
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA.,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm 17177, Sweden
| | - Cristina Tommasi
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Dane Sessions
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Angela Mah
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Tomas Bencomo
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Jasmine M. Garcia
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Tiffany Jiang
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Michael Lee
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Joseph Y. Shen
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Lek Wei Seow
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Audrey Nguyen
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA
| | - Kimal Rajapakshe
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology & Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL 33612, USA
| | | | - Carolyn S. Lee
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304 USA
| |
Collapse
|
4
|
Zhou J, Li F, Yang Y. Protective effects of calcyclin-binding protein against pulmonary vascular remodeling in flow-associated pulmonary arterial hypertension. Respir Res 2022; 23:223. [PMID: 36042446 PMCID: PMC9429705 DOI: 10.1186/s12931-022-02137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH) is recognized as a cancer-like disease with a proliferative and pro-migratory phenotype in pulmonary artery smooth muscle cells (PASMCs). Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) has been implicated in the progression of various cancers; however, it has not been previously studied in the context of CHD-PAH. Here, we aimed to examine the function of CacyBP/SIP in CHD-PAH and explore its potential as a novel regulatory target for the disease. METHODS The expression of CacyBP/SIP in PASMCs was evaluated both in the pulmonary arterioles of patients with CHD-PAH and in high-flow-induced PAH rats. The effects of CacyBP/SIP on pulmonary vascular remodeling and PASMC phenotypic switch, proliferation, and migration were investigated. LY294002 (MedChemExpress, NJ, USA) was used to block the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway to explore changes in PASMC dysfunction induced by low CacyBP/SIP levels. Hemodynamics and pulmonary arterial remodeling were further explored in rats after short-interfering RNA-mediated decrease of CacyBP/SIP expression. RESULTS CacyBP/SIP expression was markedly reduced both in the remodeled pulmonary arterioles of patients with CHD-PAH and in high-flow-induced PAH rats. Low CacyBP/SIP expression promoted hPASMC phenotypic switch, proliferation, and migration via PI3K/AKT pathway activation. Our results indicated that CacyBP/SIP protected against pulmonary vascular remodeling through amelioration of hPASMC dysfunction in CHD-PAH. Moreover, after inhibition of CacyBP/SIP expression in vivo, we observed increased right ventricular hypertrophy index, poor hemodynamics, and severe vascular remodeling. CONCLUSIONS CacyBP/SIP regulates hPASMC dysfunction, and its increased expression may ameliorate progression of CHD-PAH.
Collapse
Affiliation(s)
- Jingjing Zhou
- Echocardiography Medical Center, Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - FuRong Li
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yicheng Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng, No. 167, Beijing, 100037, China.
| |
Collapse
|
5
|
S100A14 suppresses metastasis of nasopharyngeal carcinoma by inhibition of NF-kB signaling through degradation of IRAK1. Oncogene 2020; 39:5307-5322. [PMID: 32555330 DOI: 10.1038/s41388-020-1363-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique head and neck cancer with highly aggressive and metastatic potential in which distant metastasis is the main reason for treatment failure. Till present, the underlying molecular mechanisms of NPC metastasis remains poorly understood. Here, we identified S100 calcium-binding protein A14 (S100A14) as a functional regulator suppressing NPC metastasis by inhibiting the NF-kB signaling pathway and reversing the epithelial-mesenchymal transition (EMT). S100A14 was found to be downregulated in highly metastatic NPC cells and tissues. Immunohistochemical staining of 202 NPC samples revealed that lower S100A14 expression was significantly correlated with shorter patient overall survival (OS) and distant metastasis-free survival (DMFS). S100A14 was also found as an independent prognostic factor for favorable survival. Gain- and loss-of-function studies confirmed that S100A14 suppressed the in vitro and in vivo motility of NPC cells. Mechanistically, S100A14 promoted the ubiquitin-proteasome-mediated degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) to suppress NPC cellular migration. Moreover, S100A14 and IRAK1 established a feedback loop that could be disrupted by the IRAK1 inhibitor T2457. Overall, our findings showed that the S100A14-IRAK1 feedback loop could be a promising therapeutic target for NPC metastasis.
Collapse
|
6
|
Zhang HL, Liu CY, Ma W, Huang L, Li CJ, Li CS, Zhang ZW. Identification of differentially expressed proteins in the gastric mucosal atypical hyperplasia tissue microenvironment. Oncol Lett 2018; 16:2355-2365. [PMID: 30008939 PMCID: PMC6036401 DOI: 10.3892/ol.2018.8941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/05/2018] [Indexed: 11/06/2022] Open
Abstract
In the present study, the interaction of proteins in the microenvironment of gastric mucosal atypical hyperplasia was analyzed. The stromata of normal gastric mucosa (NGM) and gastric mucosal atypical hyperplasia (GMAH) tissues were purified with laser capture microdissection (LCM). The differentially expressed GMAH proteins of the NGM and GMAH tissues were identified by quantitative proteomic techniques with isotope labeling. The cross-talk between differentially expressed proteins in NGM and GMAH tissues was then analyzed by bioinformatics. There were 165 differentially expressed proteins identified from the stromata of NGM and GMAH tissues. Among them, 99 proteins were upregulated and 66 were downregulated in GMAH tissue. The present study demonstrated that these proteins in gastric mucosal atypical hyperplasia were involved in cancer-associated signaling pathways, including the p53, mitogen-activated protein kinase (MAPK), cell cycle and apoptosis signaling pathways, and were involved in cellular growth, cellular proliferation, apoptosis and the humoral immune response. The results of the present study suggest that the 165 differentially expressed proteins, including S100 calcium-binding protein A6 (S100A6) and superoxide dismutase 3 (SOD3) in the microenvironment of gastric mucosal atypical hyperplasia, are involved in the p53, MAPK, cell cycle and apoptosis signaling pathways, and serve a function in the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- He-Liang Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China.,Medical Company, Troops 66028 of People's Liberation Army, Chengde, Hebei 067000, P.R. China
| | - Chong-Yuan Liu
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Ma
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lin Huang
- Department of Pediatrics, Shaoyang Medical School, Shaoyang, Hunan 422000, P.R. China
| | - Chang-Jian Li
- Clinical Medicine Undergraduate Program, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Cheng-Song Li
- Clinical Medicine Undergraduate Program, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Wei Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
7
|
Rosińska S, Filipek A. Interaction of CacyBP/SIP with NPM1 and its influence on NPM1 localization and function in oxidative stress. J Cell Physiol 2018; 233:8826-8838. [PMID: 29806702 DOI: 10.1002/jcp.26797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022]
Abstract
Calcyclin (S100A6) binding protein/Siah-1 interacting protein (CacyBP/SIP) is mainly a cytoplasmic protein; however, some literature data suggested its presence in the nucleus. In this work we examined more precisely the nuclear localization and function of CacyBP/SIP. By applying mass spectrometry, we have identified several nuclear proteins, among them is nucleophosmin (NPM1), that may interact with CacyBP/SIP. Subsequent assays revealed that CacyBP/SIP forms complexes with NPM1 in the cell and that the interaction between these two proteins is direct. Interestingly, although CacyBP/SIP exhibits phosphatase activity, we have found that its overexpression favors phosphorylation of NPM1 on S125. In turn, the RNA immunoprecipitation assay indicated that the altered CacyBP/SIP level has an impact on the amount of 28S and 18S rRNA bound to NPM1. The overexpression of CacyBP/SIP resulted in a significant increase in the binding of 28S and 18S rRNA to NPM1, whereas silencing of CacyBP/SIP expression decreased 28S rRNA binding and had no effect on the binding of 18S rRNA. Further studies have shown that under oxidative stress, CacyBP/SIP overexpression alters NPM1 distribution in cell nuclei. In addition, staining for a nucleolar marker, fibrillarin, revealed that CacyBP/SIP is indispensable for maintaining the nucleolar structure. These results are in agreement with data obtained by western blot analysis, which show that upon oxidative stress the NPM1 level decreases but that CacyBP/SIP overexpression counteracts the effect of stress. Altogether, our results show for the first time that CacyBP/SIP binds to and affects the properties of a nuclear protein, NPM1, and that it is indispensable for preserving the structure of nucleoli under oxidative stress.
Collapse
Affiliation(s)
- Sara Rosińska
- Nencki Institute of Experimental Biology, Laboratory of Calcium Binding Proteins, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Laboratory of Calcium Binding Proteins, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Góral A, Bartkowska K, Djavadian RL, Filipek A. CacyBP/SIP, a Hsp90 binding chaperone, in cellular stress response. Int J Biochem Cell Biol 2018; 99:178-185. [PMID: 29660399 DOI: 10.1016/j.biocel.2018.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
Abstract
CacyBP/SIP interacts with Hsp90 and is able to protect proteins from denaturation and/or aggregation induced by elevated temperature. In this work we studied the influence of different stress factors on CacyBP/SIP level in HEp-2 cells. We have found that H2O2 and radicicol treatment resulted in a significant increase (up to 40%) in the CacyBP/SIP level. We have also found that HEp-2 cells overexpressing CacyBP/SIP were more resistant to stress-induced death. Further studies have revealed that the Hsf1 transcription factor binds to the CacyBP/SIP gene promoter and up-regulates CacyBP/SIP expression under stress conditions. To check whether the CacyBP/SIP protein might play a role in stress responses in vivo, we analyzed its level in selected brain structures of control and stressed mice. We have found that the level of the CacyBP/SIP protein was higher in the thalamus/hypothalamus, hippocampus and brainstem of stressed mice. Thus, the presented results clearly indicate that CacyBP/SIP is involved in cellular stress response.
Collapse
Affiliation(s)
- Agnieszka Góral
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katarzyna Bartkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ruzanna L Djavadian
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
9
|
Feng S, Zhou Q, Yang B, Li Q, Liu A, Zhao Y, Qiu C, Ge J, Zhai H. The effect of S100A6 on nuclear translocation of CacyBP/SIP in colon cancer cells. PLoS One 2018. [PMID: 29534068 PMCID: PMC5849316 DOI: 10.1371/journal.pone.0192208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Calcyclin Binding Protein/(Siah-1 interacting protein) (CacyBP/SIP) acts as an oncogene in colorectal cancer. The nuclear accumulation of CacyBP/SIP has been linked to the proliferation of cancer cells. It has been reported that intracellular Ca2+ induces the nuclear translocation of CacyBP/SIP. However, the molecular mechanism of CacyBP/SIP nuclear translocation has yet to be elucidated. The purpose of this study was to test whether the Ca2+-dependent binding partner S100 protein is involved in CacyBP/SIP nuclear translocation in colon cancer SW480 cells. METHODS The subcellular localization of endogenous CacyBP/SIP was observed following the stimulation of ionomycin or BAPTA/AM by immunofluorescence staining in SW480 cells. S100A6 small interfering RNAs (siRNA) were transfected into SW480 cells. Immunoprecipitation assays detected whether S100 protein is relevant to the nuclear translocation of CacyBP/SIP in response to changes in [Ca2+]i. RESULTS We observed that endogenous CacyBP/SIP is translocated from the cytosol to the nucleus following the elevation of [Ca2+]i by ionomycin in SW480 cells. Co-immunoprecipitation experiments showed that the interaction between S100A6 and CacyBP/SIP was increased simultaneously with elevated Ca2+. Knockdown of S100A6 abolished the Ca2+ effect on the subcellular translocation of CacyBP/SIP. CONCLUSION Thus, we demonstrated that S100A6 is required for the Ca2+-dependent nuclear translocation of CacyBP/SIP in colon cancer SW480 cells.
Collapse
Affiliation(s)
- Shanshan Feng
- Surgery Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qiaozhi Zhou
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Bo Yang
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qianqian Li
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Aiqin Liu
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yingying Zhao
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Changqing Qiu
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jun Ge
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Huihong Zhai
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Yan S, Li A, Liu Y. CacyBP/SIP inhibits the migration and invasion behaviors of glioblastoma cells through activating Siah1 mediated ubiquitination and degradation of cytoplasmic p27. Cell Biol Int 2017; 42:216-226. [PMID: 29024247 DOI: 10.1002/cbin.10889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/07/2017] [Indexed: 11/09/2022]
Abstract
Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) has been reported to be up-regulated and plays an important role in promoting cell proliferation in human glioma. However, the effect of CacyBP/SIP on glioma cell motility is still unclear. Here, to our surprise, CacyBP/SIP was found to inhibit the migration and invasion of glioma cells U251 and U87. Silencing of CacyBP/SIP significantly promoted the migration and invasion behaviors of glioma cells. On the contrary, overexpression of CacyBP/SIP obviously suppressed them. Further investigation indicated that silencing of CacyBP/SIP significantly reduced the interaction between Siah1 and cytoplasmic p27, which in turn attenuated the ubiquitination and degradation of cytoplasmic p27. In contrast, overexpression of CacyBP/SIP promoted the interaction between Siah1 and cytoplasmic p27, which in turn increased the ubiquitination and degradation of cytoplasmic p27. Importantly, the degradation of p27 could be blocked by Siah1 knockdown. Finally, we found that CacyBP/SIP was reversely related to cytoplasmic p27 in human normal brain tissues and glioma tissues. Taken together, these results suggest that CacyBP/SIP plays an important role in inhibiting glioma cell migration and invasion through promoting the degradation of cytoplasmic p27.
Collapse
Affiliation(s)
- Shiwei Yan
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Aimin Li
- Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Yuguang Liu
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| |
Collapse
|
11
|
Regulation of CacyBP/SIP expression by NFAT1 transcription factor. Immunobiology 2017; 222:872-877. [PMID: 28526484 DOI: 10.1016/j.imbio.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/09/2017] [Indexed: 01/11/2023]
Abstract
In this work we have shown that NFAT1 transcription factor is involved in the regulation of CacyBP/SIP expression. We have demonstrated, by applying Western blot, RT-PCR and luciferase assay that the level of CacyBP/SIP increases upon NFAT1 overexpression. Moreover, inhibition or stimulation of NFAT transcriptional activity exerts a corresponding effect on the expression of CacyBP/SIP gene. Furthermore, EMSA and chromatin immunoprecipitation (ChIP) assay have shown that NFAT1 binds to its specific binding sites within the CacyBP/SIP gene. In conclusion, our data have shown for the first time the regulation of CacyBP/SIP gene expression by NFAT1. Since NFAT transcription factors are involved in processes related to immune response, these results indicate potential involvement of CacyBP/SIP in the immune system.
Collapse
|
12
|
Topolska-Woś AM, Rosińska S, Filipek A. MAP kinase p38 is a novel target of CacyBP/SIP phosphatase. Amino Acids 2017; 49:1069-1076. [PMID: 28283909 PMCID: PMC5437258 DOI: 10.1007/s00726-017-2404-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/28/2017] [Indexed: 11/04/2022]
Abstract
Mitogen-activated protein (MAP) kinases are important players in cellular signaling pathways. Recently, it has been shown that CacyBP/SIP serves as a phosphatase for one of the MAP kinases, ERK1/2. Through dephosphorylation of this kinase CacyBP/SIP modulates the transcriptional activity of Elk-1 and the activity of the CREB-BDNF pathway. In this work, using NB2a cell lysate and recombinant proteins, we show that CacyBP/SIP binds and dephosphorylates another member of the MAP kinase family, p38. Analysis of recombinant full-length CacyBP/SIP and its three major domains, N-terminal, middle CS and C-terminal SGS, indicates that the middle CS domain is responsible for p38 dephosphorylation. Moreover, we show that CacyBP/SIP might be implicated in response to oxidative stress. Dephosphorylation of phospho-p38 by CacyBP/SIP in NB2a cells treated with hydrogen peroxide is much more effective than in control ones. In conclusion, involvement of CacyBP/SIP in the regulation of p38 kinase activity, in addition to that of ERK1/2, might point to the function of CacyBP/SIP in pro-survival and pro-apoptotic pathways.
Collapse
Affiliation(s)
- Agnieszka M Topolska-Woś
- Laboratory of Calcium Binding Proteins, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Sara Rosińska
- Laboratory of Calcium Binding Proteins, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Anna Filipek
- Laboratory of Calcium Binding Proteins, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
13
|
Zhai H, Shi Y, Chen X, Wang J, Lu Y, Zhang F, Liu Z, Lei T, Fan D. CacyBP/SIP promotes the proliferation of colon cancer cells. PLoS One 2017; 12:e0169959. [PMID: 28196083 PMCID: PMC5308830 DOI: 10.1371/journal.pone.0169959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/25/2016] [Indexed: 01/30/2023] Open
Abstract
CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.
Collapse
Affiliation(s)
- Huihong Zhai
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiong Chen
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Faming Zhang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhengxiong Liu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ting Lei
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|
14
|
Wasik U, Kadziolka B, Kilanczyk E, Filipek A. Influence of S100A6 on CacyBP/SIP Phosphorylation and Elk-1 Transcriptional Activity in Neuroblastoma NB2a Cells. J Cell Biochem 2016; 117:126-31. [PMID: 26085436 DOI: 10.1002/jcb.25257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/12/2015] [Indexed: 11/06/2022]
Abstract
In this work, we have found that casein kinase II (CKII) phosphorylates the CacyBP/SIP protein under in vitro conditions and have mapped the phosphorylation site to threonine 184. Moreover, we present evidence that S100A6, a CacyBP/SIP interacting protein, inhibits this phosphorylation in the presence of Ca(2+). CacyBP/SIP phosphorylation by CKII was also observed in neuroblastoma NB2a cells. Interestingly, we have found that the effect of DRB, a CKII inhibitor, on CacyBP/SIP phosphorylation state is similar to that of S100A6 overexpression. Phosphorylation at threonine 184 seems to have an effect on CacyBP/SIP phosphatase activity since the T184E phosphorylation mimic mutant overexpressed in NB2a cells has lower phosphatase activity toward p-ERK1/2 when compared to the non-phosphorylable T184A mutant or to the wild-type protein. In conclusion, our data suggest that S100A6 and Ca(2+), through inhibiting CacyBP/SIP phosphorylation on threonine 184, are important regulators of CacyBP/SIP phosphatase activity and of ERK1/2-Elk-1 signaling pathway.
Collapse
Affiliation(s)
- Urszula Wasik
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Ewa Kilanczyk
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
15
|
Góral A, Bieganowski P, Prus W, Krzemień-Ojak Ł, Kądziołka B, Fabczak H, Filipek A. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone. PLoS One 2016; 11:e0156507. [PMID: 27249023 PMCID: PMC4889068 DOI: 10.1371/journal.pone.0156507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 11/19/2022] Open
Abstract
The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery.
Collapse
Affiliation(s)
- Agnieszka Góral
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | - Wiktor Prus
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | - Beata Kądziołka
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Hanna Fabczak
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
- * E-mail:
| |
Collapse
|
16
|
Fu C, Wan Y, Shi H, Gong Y, Wu Q, Yao Y, Niu M, Li Z, Xu K. Expression and regulation of CacyBP/SIP in chronic lymphocytic leukemia cell balances of cell proliferation with apoptosis. J Cancer Res Clin Oncol 2016; 142:741-8. [PMID: 26603518 DOI: 10.1007/s00432-015-2077-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, with incidence in Chinese populations also increasing. CLL involves an accumulation of abnormal B cells which result in dysregulation of cell proliferation and apoptosis rates. The calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) plays a pivotal role in tumorigenicity and cell apoptosis. Here, we investigated the function of CacyBP/SIP in CLL cell proliferation and apoptosis. METHODS CacyBP/SIP expression levels were measured in peripheral blood mononuclear cells from 23 Chinese CLL patients and three healthy donors by western blotting. Correlation analysis was performed to assess associations between CacyBP/SIP expression and clinical stage, chromosome abnormalities and zeta-chain-associated protein kinase 70 (ZAP-70) expression. We silenced CacyBP/SIP expression in MEC-1 cells using a lentivirus system and analyzed cell vitality, cell cycle and tumorigenicity. Apoptosis was also analyzed following the upregulation of CacyBP/SIP expression in MEC-1 cells. RESULTS Downregulation of CacyBP/SIP expression in CLL patients was negatively correlated with CLL clinical stage, but not with patient sex, age, del(13q14) or del(17q-) presence, or ZAP-70 expression. CacyBP/SIP silencing significantly enhanced cell proliferation and tumorigenicity. CacyBP/SIP silencing promoted accumulation of cells in S phase by upregulation of β-catenin, cyclin D1 and cyclin E, and downregulation of p21. Moreover, CacyBP/SIP overexpression facilitated CLL apoptosis through the activation of pro-caspase-3. CONCLUSION CacyBP/SIP is a useful indicator of CLL disease processes and plays an important role in sustaining the balance of cell proliferation and apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Asian People/genetics
- Blotting, Western
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Caspase 3/metabolism
- Cell Proliferation
- Cyclin D1/metabolism
- Cyclin E/metabolism
- Down-Regulation
- Enzyme Activation
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Staging
- S Phase
- Signal Transduction
- Up-Regulation
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Chunling Fu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yan Wan
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Hengliang Shi
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yanqing Gong
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Yao Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
- Blood Diseases Institute or Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
17
|
The potential role of CacyBP/SIP in tumorigenesis. Tumour Biol 2016; 37:10785-91. [PMID: 26873490 DOI: 10.1007/s13277-016-4871-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/14/2016] [Indexed: 01/15/2023] Open
Abstract
Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) was initially described as a binding partner of S100A6 in the Ehrlich ascites tumor cells and later as a Siah-1-interacting protein. This 30 kDa protein includes three domains and is involved in cell proliferation, differentiation, cytoskeletal rearrangement, and transcriptional regulation via binding to various proteins. Studies have also shown that the CacyBP/SIP is a critical protein in tumorigenesis. But, its promotion or suppression of cancer progression may depend on the cell type. In this review, the biological characteristics and target proteins of CacyBP/SIP have been described. Moreover, the exact role of CacyBP/SIP in various cancers is discussed.
Collapse
|
18
|
Tang Y, Zhan W, Cao T, Tang T, Gao Y, Qiu Z, Fu C, Qian F, Yu R, Shi H. CacyBP/SIP inhibits Doxourbicin-induced apoptosis of glioma cells due to activation of ERK1/2. IUBMB Life 2016; 68:211-9. [PMID: 26825673 DOI: 10.1002/iub.1477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/04/2016] [Indexed: 11/11/2022]
Abstract
Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) was previously reported to promote the proliferation of glioma cells. However, the effect of CacyBP/SIP on apoptosis of glioma is poorly understood. Here, our study shows that CacyBP/SIP plays a role in inhibiting doxorubicin (DOX) induced apoptosis of glioma cells U251 and U87. Overexpression of CacyBP/SIP obviously suppressed the DOX-induced cell apoptosis. On the contrary, silencing of CacyBP/SIP significantly promoted it. Further investigation indicated that inhibition of apoptosis by CacyBP/SIP was relevant to its nuclear translocation in response to the DOX treatment. Importantly, we found that the level of p-ERK1/2 in nuclei was related to the nuclear accumulation of CacyBP/SIP. Finally, the role of CacyBP/SIP was confirmed in vivo in a mouse model with the cell line stably silencing CacyBP/SIP. Taken together, our results suggest that CacyBP/SIP plays an important role in inhibiting apoptosis of glioma cells which might be mediated by ERK1/2 signaling pathway, which will provide some guidance for the treatment of glioma.
Collapse
Affiliation(s)
- Yuan Tang
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenjian Zhan
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Tong Cao
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Tianjin Tang
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yong Gao
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhichao Qiu
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Chunling Fu
- Institute of Blood Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Fengyuan Qian
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of clinical medicine, The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
19
|
Podgorniak T, Milan M, Pujolar JM, Maes GE, Bargelloni L, De Oliveira E, Pierron F, Daverat F. Differences in brain gene transcription profiles advocate for an important role of cognitive function in upstream migration and water obstacles crossing in European eel. BMC Genomics 2015; 16:378. [PMID: 25962588 PMCID: PMC4427925 DOI: 10.1186/s12864-015-1589-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND European eel is a panmictic species, whose decline has been recorded since the last 20 years. Among human-induced environmental factors of decline, the impact of water dams during species migration is questioned. The main issue of this study was to pinpoint phenotypic traits that predisposed glass eels to successful passage by water barriers. The approach of the study was individual-centred and without any a priori hypothesis on traits involved in the putative obstacles selective pressure. We analyzed the transcription level of 14,913 genes. RESULTS Transcriptome analysis of three tissues (brain, liver and muscle) from individuals sampled on three successive forebays separated by water obstacles indicated different gene transcription profiles in brain between the two upstream forebays. No differences in gene transcription levels were observed in liver and muscle samples among segments. A total of 26 genes were differentially transcribed in brain. These genes encode for, among others, keratins, cytokeratins, calcium binding proteins (S100 family), cofilin, calmodulin, claudin and thy-1 membrane glycoprotein. The functional analysis of these genes highlighted a putative role of cytoskeletal dynamics and synaptic plasticity in fish upstream migration. CONCLUSION Synaptic connections in brain are solicited while eels are climbing the obstacles with poorly designed fishways. Successful passage by such barriers can be related to spatial learning and spatial orientation abilities when fish is out of the water.
Collapse
Affiliation(s)
- Tomasz Podgorniak
- Irstea Bordeaux, UR EABX, HYNES (Irstea - EDF R&D), 50 avenue de Verdun, Cestas, 33612, Cedex, France.
| | - Massimo Milan
- University of Padova, Viale dell'Università 16, Legnaro, 35020, PD, Italy.
| | - Jose Marti Pujolar
- University of Padova, Viale dell'Università 16, Legnaro, 35020, PD, Italy. .,Department of Bioscience, Aarhus University, Ny Munkegade 114, Aarhus C, DK-8000, Denmark.
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, Comparative Genomics Centre, College of Marine and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia. .,Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven (KU Leuven), Leuven, B-3000, Belgium.
| | - Luca Bargelloni
- University of Padova, Viale dell'Università 16, Legnaro, 35020, PD, Italy.
| | - Eric De Oliveira
- EDF R&D LNHE, HYNES (Irstea-EDF R&D), 6, quai Watier, Bat Q, Chatou, 78400, France.
| | - Fabien Pierron
- Univ. Bordeaux, EPOC, UMR 5805, Talence, F-33400, France. .,CNRS, EPOC, UMR 5805, Talence, F-33400, France.
| | - Francoise Daverat
- Irstea Bordeaux, UR EABX, HYNES (Irstea - EDF R&D), 50 avenue de Verdun, Cestas, 33612, Cedex, France.
| |
Collapse
|
20
|
Ishihara K, Kanai S, Sago H, Yamakawa K, Akiba S. Comparative proteomic profiling reveals aberrant cell proliferation in the brain of embryonic Ts1Cje, a mouse model of Down syndrome. Neuroscience 2014; 281:1-15. [PMID: 25261685 DOI: 10.1016/j.neuroscience.2014.09.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 12/31/2022]
Abstract
To identify molecular candidates involved in brain disabilities of Ts1Cje, a mouse model of Down syndrome (DS), we performed comparative proteomic analyses. Proteins extracted from the brains of postnatal wild-type (WT) and Ts1Cje mice were analyzed by two-dimensional gel electrophoresis (2-DE). No differences were detected in the proteins expressed in the whole brain between WT and Ts1Cje mice at postnatal day 0 and 3months of age. Five spots with differential expression in the brains of Ts1Cje mice were detected by 2-DE of brain proteins from WT and Ts1Cje embryos at embryonic day 14.5 (E14.5). These differentially expressed proteins in Ts1Cje embryos were identified as calcyclin-binding protein (CACYBP), nucleoside diphosphate kinase-B (NDPK-B), transketolase (TK), pyruvate kinase (PK), and 60S acidic ribosomal protein P0 (RPLP0) by peptide mass fingerprinting. CACYBP and NDPK-B were involved in cell proliferation, whereas TK and PK were associated with energy metabolism. Experiments on cell proliferation, an in vivo bromodeoxyuridine (BrdU)-labeling experiment, and immunohistochemical analysis for phospho-histone H3 (an M-phase marker) demonstrated increased numbers of BrdU-positive and M-phase cells in the ganglionic eminence. Our findings suggest that the dysregulated expression of proteins demonstrated by comparative proteomic analysis could be a factor in increased cell proliferation, which may be associated with abnormalities in DS brain during embryonic life.
Collapse
Affiliation(s)
- K Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan; Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan.
| | - S Kanai
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - H Sago
- Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, 2-10-1 Okura Setagaya-ku, Tokyo 157-8535, Japan
| | - K Yamakawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan
| | - S Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
21
|
The CacyBP/SIP protein is sumoylated in neuroblastoma NB2a cells. Neurochem Res 2014; 38:2427-32. [PMID: 24078263 PMCID: PMC3824344 DOI: 10.1007/s11064-013-1155-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 10/31/2022]
Abstract
The Calcyclin binding protein and Siah-1 interacting protein (CacyBP/SIP) protein is highly expressed in mammalian brain as well as in neuroblastoma NB2a cells and pheochromocytoma PC12 cells. This protein interacts with several targets such as cytoskeletal proteins or ERK1/2 kinase and seems to be involved in many cellular processes. In this work we examined a post-translational modification of CacyBP/SIP which might have an effect on its function. Since theoretical analysis of the amino acid sequence of CacyBP/SIP indicated several lysine residues which could potentially be sumoylated we checked experimentally whether this protein might be modified by SUMO attachment. We have shown that indeed CacyBP/SIP bound the E2 SUMO ligase, Ubc9, in neuroblastoma NB2a cell extract and was sumoylated in these cells. By fractionation of NB2a cell extract we have found that, contrary to the majority of SUMO-modified proteins, sumoylated CacyBP/SIP is present in the cytoplasmic and not in the nuclear fraction. We have also established that lysine 16 is the residue which undergoes sumoylation in the CacyBP/SIP protein.
Collapse
|
22
|
Expression of S100A6 in rat hippocampus after traumatic brain injury due to lateral head acceleration. Int J Mol Sci 2014; 15:6378-90. [PMID: 24739809 PMCID: PMC4013634 DOI: 10.3390/ijms15046378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
In a rat model of traumatic brain injury (TBI), we investigated changes in cognitive function and S100A6 expression in the hippocampus. TBI-associated changes in this protein have not previously been reported. Rat S100A6 was studied via immunohistochemical staining, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR) after either lateral head acceleration or sham. Reduced levels of S100A6 protein and mRNA were observed 1 h after TBI, followed by gradual increases over 6, 12, 24, and 72 h, and then a return to sham level at 14 day. Morris water maze (MWM) test was used to evaluate animal spatial cognition. TBI- and sham-rats showed an apparent learning curve, expressed as escape latency. Although TBI-rats displayed a relatively poorer cognitive ability than sham-rats, the disparity was not significant early post-injury. Marked cognitive deficits in TBI-rats were observed at 72 h post-injury compared with sham animals. TBI-rats showed decreased times in platform crossing in the daily MWM test; the performance at 72 h post-injury was the worst. In conclusion, a reduction in S100A6 may be one of the early events that lead to secondary cognitive decline after TBI, and its subsequent elevation is tightly linked with cognitive improvement. S100A6 may play important roles in neuronal degeneration and regeneration in TBI.
Collapse
|
23
|
Ji YF, Huang H, Jiang F, Ni RZ, Xiao MB. S100 family signaling network and related proteins in pancreatic cancer (Review). Int J Mol Med 2014; 33:769-76. [PMID: 24481067 DOI: 10.3892/ijmm.2014.1633] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/20/2014] [Indexed: 11/06/2022] Open
Abstract
The occurrence and development of pancreatic cancer is a complex process convoluted by multi-pathogenies, multi-stages and multi-factors. S100 proteins are members of the S100 family that regulate multiple cellular pathways related to pancreatic cancer progression and metastasis. S100 proteins have a broad range of intracellular and extracellular functions, including the regulation of protein phosphorylation and enzyme activity, calcium homeostasis and the regulation of cytoskeletal components and transcriptional factors. S100 proteins interact with receptor for advanced glycation end-products (RAGE), p53 and p21, which play a role in the degradation of the extracellular matrix (ECM) and metastasis, and also interact with cytoskeletal proteins and the plasma membrane in pancreatic cancer progression and metastasis. S100A11 and S100P are significant tumor markers for pancreatic cancer and unfavorable predictors for the prognosis of patients who have undergone surgical resection. Recently, S100A2 has been suggested to be a negative prognostic biomarker in pancreatic cancer, and the expression of S100A6 may be an independent prognostic impact factor. The expression of S100A4 and S100P is associated with drug resistance, differentiation, metastasis and clinical outcome. This review summarizes the role and significance of the S100 family signaling network and related proteins in pancreatic cancer.
Collapse
Affiliation(s)
- Yi-Fei Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Run-Zhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ming-Bing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
24
|
Zhai HH, Feng SS, Qiu CQ, Wu J, Wang AP. Clinical significance of expression of CacyBP/SIP in colorectal tissues. Shijie Huaren Xiaohua Zazhi 2014; 22:1328-1333. [DOI: 10.11569/wcjd.v22.i9.1328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of CacyBP/SIP [Calcyclin (S100A6)-binding protein/Siah-1 interacting protein] in normal colorectal tissue, colorectal hyperplastic polyps, colorectal adenoma and colorectal cancer.
METHODS: Immunohistochemistry was used to analyze the expression of CacyBP/SIP in 10 normal colorectal tissue samples, 17 samples of colorectal hyperplastic polyps, 26 samples of colorectal adenomas and 50 samples of colorectal cancer. Four frozen tissue samples of colorectal cancer and adjacent noncancerous tissues were used in Western blot to detect CacyBP/SIP expression. Immunohistochemical results were compared against patient data and pathological analysis of tissue slices. Slices were assessed for associations with gender, age, degree of tumor differentiation and TNM stage.
RESULTS: CacyBP/SIP was detected in 0 (0/10) of normal tissue samples, 17.7% (7/26) of colorectal hyperplastic polyps, 26.9% (7/26) of colorectal adenomas, and 52% (26/50) of colorectal cancer tissues by immunohistochemistry. The expression of CacyBP/SIP in colorectal adenomas and colorectal cancer tissues was higher than that in the normal colon tissue and colorectal hyperplasic polyps (0 vs 26.9%, 0 vs 52%, 17.7% vs 26.9%, 17.7% vs 52%, P < 0.05 for all). The expression of CacyBP/SIP was also higher in cancerous tissue than in adjacent noncancerous colorectal tissue, as revealed by Western blot (P < 0.05). There was no association between CacyBP/SIP expression and patient age, gender, degree of tumor differentiation or TNM stage (P > 0.05 for all).
CONCLUSION: These results suggest that CacyBP/SIP may be involved in the progression of colorectal cancer.
Collapse
|
25
|
García-Berrocoso T, Penalba A, Boada C, Giralt D, Cuadrado E, Colomé N, Dayon L, Canals F, Sanchez JC, Rosell A, Montaner J. From brain to blood: New biomarkers for ischemic stroke prognosis. J Proteomics 2013; 94:138-48. [DOI: 10.1016/j.jprot.2013.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/02/2013] [Accepted: 09/14/2013] [Indexed: 11/26/2022]
|
26
|
S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway. PLoS One 2013; 8:e62092. [PMID: 23637971 PMCID: PMC3637369 DOI: 10.1371/journal.pone.0062092] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/15/2013] [Indexed: 01/05/2023] Open
Abstract
Background and Objective S100A8 and S100A9, two members of the S100 protein family, have been reported in association with the tumor cell differentiation and tumor progression. Previous study has showed that their expression in stromal cells of colorectal carcinoma (CRC) is associated with tumor size. Here, we investigated the clinical significances of S100A8 and S100A9 in tumor cells of CRC and their underlying molecular mechanisms. Methods Expression of S100A8 and S100A9 in colorectal carcinoma and matching distal normal tissues were measured by reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. CRC cell lines treated with the recombinant S100A8 and S100A9 proteins were used to analyze the roles and molecular mechanisms of the two proteins in CRC in vitro. Results S100A8 and S100A9 were elevated in more than 50% of CRC tissues and their expression in tumor cells was associated with differentiation, Dukes stage and lymph node metastasis. The CRC cell lines treatment with recombinant S100A8 and S100A9 proteins promoted the viability and migration of CRC cells. Furthermore, the two recombinant proteins also resulted in the increased levels of β-catenin and its target genes c-myc and MMP7. β-catenin over-expression in CRC cells by Adβ-catenin increased cell viability and migration. β-catenin knock-down by Adsiβ-catenin reduced cell viability and migration. Furthermore, β-catenin knockdown also partially abolished the promotive effects of recombinant S100A8 and S100A9 proteins on the viability and migration of CRC cells. Conclusions Our work demonstrated that S100A8 and S100A9 are linked to the CRC progression, and one of the underlying molecular mechanisms is that extracellular S100A8 and S100A9 proteins contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway.
Collapse
|
27
|
CacyBP/SIP enhances multidrug resistance of pancreatic cancer cells by regulation of P-gp and Bcl-2. Apoptosis 2013; 18:861-9. [DOI: 10.1007/s10495-013-0831-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Jurewicz E, Ostrowska Z, Jozwiak J, Redowicz MJ, Lesniak W, Moraczewska J, Filipek A. CacyBP/SIP as a novel modulator of the thin filament. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:761-6. [PMID: 23266554 DOI: 10.1016/j.bbamcr.2012.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/21/2023]
Abstract
The CacyBP/SIP protein interacts with several targets, including actin. Since the majority of actin filaments are associated with tropomyosin, in this work we characterized binding of CacyBP/SIP to the actin-tropomyosin complex and examined the effects of CacyBP/SIP on actin filament functions. By using reconstituted filaments composed of actin and AEDANS-labeled tropomyosin, we observed that binding of CacyBP/SIP caused an increase in tropomyosin fluorescence intensity indicating the occurrence of conformational changes within the filament. We also found that CacyBP/SIP bound directly to tropomyosin and that these proteins did not compete with each other for binding to actin. Electron microscopy showed that in the absence of tropomyosin CacyBP/SIP destabilized actin filaments, but tropomyosin reversed this effect. Actin-activated myosin S1 ATPase activity assays, performed using a colorimetric method, indicated that CacyBP/SIP reduced ATPase activity and that the presence of tropomyosin enhanced this inhibitory effect. Thus, our results suggest that CacyBP/SIP, through its interaction with both actin and tropomyosin, regulates the organization and functional properties of the thin filament.
Collapse
|
29
|
Wasik U, Schneider G, Mietelska-Porowska A, Mazurkiewicz M, Fabczak H, Weis S, Zabke C, Harrington CR, Filipek A, Niewiadomska G. Calcyclin binding protein and Siah-1 interacting protein in Alzheimer's disease pathology: neuronal localization and possible function. Neurobiol Aging 2012; 34:1380-8. [PMID: 23260124 DOI: 10.1016/j.neurobiolaging.2012.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 10/18/2012] [Accepted: 11/16/2012] [Indexed: 01/13/2023]
Abstract
The calcyclin binding protein and Siah-1 interacting protein (CacyBP/SIP) protein was shown to play a role in the organization of microtubules. In this work we have examined the neuronal distribution and possible function of CacyBP/SIP in cytoskeletal pathophysiology. We have used brain tissue from Alzheimer's disease (AD) patients and from transgenic mice modeling 2 different pathologies characteristic for AD: amyloid and tau. In the brain from AD patients, CacyBP/SIP was found to be almost exclusively present in neuronal somata, and in control patients it was seen in the somata and neuronal processes. In mice doubly transgenic for amyloid precursor protein and presenilin 1 there was no difference in CacyBP/SIP neuronal localization in comparison with the nontransgenic animals. By contrast in tau transgenic mice, localization of CacyBP/SIP was similar to that observed for AD patients. To find the relation between CacyBP/SIP and tau we examined dephosphorylation of tau by CacyBP/SIP. We found that indeed it exhibited phosphatase activity toward tau. Altogether, our results suggest that CacyBP/SIP might play a role in AD pathology.
Collapse
Affiliation(s)
- Urszula Wasik
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Up-regulation of CacyBP/SIP during rat breast cancer development. Breast Cancer 2012; 21:350-7. [PMID: 22926504 PMCID: PMC3996359 DOI: 10.1007/s12282-012-0399-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/08/2012] [Indexed: 02/07/2023]
Abstract
Background CacyBP/SIP (calcyclin binding protein/Siah-1 interacting protein) was originally discovered in Ehrlich ascities tumor cells but was later found also in many different tumors. Methods To better understand the function of CacyBP/SIP in carcinogenesis, we used immunohistochemistry, Western blotting, and RT-PCR assays to study the distribution and level of CacyBP/SIP in mammary tissues after tumor induction in rat with DMBA [(dimethylbenz[a]anthracene)]. Application of such a model allowed us to monitor changes in CacyBP/SIP level during development of breast cancer. Results We found that both the protein and mRNA levels of CacyBP/SIP gradually increased in pathologically changed tissues and were highest in tumors taken 8 weeks after DMBA treatment. Similar changes as for CacyBP/SIP were detected in the level of β-catenin. Conclusion Increase in CacyBP/SIP expression during development of breast cancer, observed early in the mammary tissues with only minimal pathological changes, might suggest an important role of this protein in the process of carcinogenesis.
Collapse
|
31
|
Rines AK, Burke MA, Fernandez RP, Volpert OV, Ardehali H. Snf1-related kinase inhibits colon cancer cell proliferation through calcyclin-binding protein-dependent reduction of β-catenin. FASEB J 2012; 26:4685-95. [PMID: 22874833 DOI: 10.1096/fj.12-212282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sucrose nonfermenting 1 (Snf1)-related kinase (SNRK) is a serine/threonine kinase with sequence similarity to AMP-activated protein kinase (AMPK); however, its function is not well characterized. We conducted a gene array to determine which genes are regulated by SNRK. The array demonstrated that SNRK overexpression increased the levels of genes involved in cell proliferation, including calcyclin-binding protein (CacyBP), a member of the ubiquitin ligase complex that targets nonphosphorylated β-catenin for degradation. We confirmed that SNRK increased CacyBP mRNA and protein, and decreased β-catenin protein in HCT116 and RKO colon cancer cells. Furthermore, SNRK inhibited colon cancer cell proliferation, and CacyBP down-regulation reversed the SNRK-mediated decrease in proliferation and β-catenin. SNRK overexpression also decreased β-catenin nuclear localization and target gene transcription, and β-catenin down-regulation reversed the effects of SNRK knockdown on proliferation. SNRK transcript levels were reduced in human colon tumors compared to normal tissue by 35.82%, and stable knockdown of SNRK increased colon cancer cell tumorigenicity. Our results demonstrate that SNRK is down-regulated in colon cancer and inhibits colon cancer cell proliferation through CacyBP up-regulation and β-catenin degradation, resulting in reduced proliferation signaling. These findings reveal a novel function for SNRK in the regulation of colon cancer cell proliferation and β-catenin signaling.
Collapse
Affiliation(s)
- Amy K Rines
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
32
|
S100A6 is transcriptionally regulated by β-catenin and interacts with a novel target, lamin A/C, in colorectal cancer cells. Cell Calcium 2012; 51:470-7. [PMID: 22560296 DOI: 10.1016/j.ceca.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 04/02/2012] [Accepted: 04/09/2012] [Indexed: 12/11/2022]
Abstract
In this paper we document an increased expression of S100A6, a calcium binding protein of the S100 family, and its co-localization with β-catenin in colorectal cancer tissues and in metastatic, SW620, versus non-metastatic, SW480, human colorectal cancer cell lines. Moreover, we show up-regulation of the S100A6 protein level in non-metastatic SW480 cells due to overexpression of β-catenin as well as the activation of the S100A6 gene promoter upon cell transfection with β-catenin and the TCF-Lef1 transcription factor. Since we found a high level of S100A6 in metastatic SW620 cells we searched for its interacting partners in the protein extract prepared from these cells. Using several methods we found that S100A6 interacts with lamin A/C, a protein known to be implicated in colon carcinogenesis. Our results reveal a novel and important network of relations and interactions between proteins potentially involved in colorectal cancer development and progression.
Collapse
|
33
|
Identification and characterization of a novel calcyclin binding protein (CacyBP) gene from Apis cerana cerana. Mol Biol Rep 2012; 39:8053-63. [DOI: 10.1007/s11033-012-1652-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
34
|
Kilanczyk E, Wasik U, Filipek A. CacyBP/SIP phosphatase activity in neuroblastoma NB2a and colon cancer HCT116 cells. Biochem Cell Biol 2012; 90:558-64. [PMID: 22480271 DOI: 10.1139/o2012-011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we have reported that CacyBP/SIP could be a novel phosphatase for ERK1/2 kinase. In this work, we analyzed the CacyBP/SIP phosphatase activity toward ERK1/2 in 2 cell lines of different origin. We showed that overexpression of CacyBP/SIP in NB2a cells resulted in a lower level of phosphorylated ERK1/2 (P-ERK1/2) in the nuclear fraction while such overexpression in HCT116 cells had no effect on the level of P-ERK1/2. Moreover, we found that overexpression of CacyBP/SIP resulted in higher phosphatase activity in the nuclear fraction obtained from NB2a cells when compared with HCT116 cells. Using 2-D electrophoresis we showed that the pattern of spots representing CacyBP/SIP differed in these 2 cell lines and was probably due to a different phosphorylation state of this protein. We also established that after overexpression of CacyBP/SIP in NB2a cells, the amount of nuclear β-catenin was low, while it remained high in HCT116 cells. Since NB2a cells have differentiation potential and HCT116 cells do not, our data suggest that different activity of CacyBP/SIP in these 2 cell lines might affect the ERK1/2 pathway in the differentiation or proliferation processes.
Collapse
Affiliation(s)
- Ewa Kilanczyk
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
35
|
Casad ME, Yu L, Daniels JP, Wolf MJ, Rockman HA. Deletion of Siah-interacting protein gene in Drosophila causes cardiomyopathy. Mol Genet Genomics 2012; 287:351-60. [PMID: 22398840 DOI: 10.1007/s00438-012-0684-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/22/2012] [Indexed: 01/18/2023]
Abstract
Drosophila is a useful model organism in which the genetics of human diseases, including recent advances in identification of the genetics of heart development and disease in the fly, can be studied. To identify novel genes that cause cardiomyopathy, we performed a deficiency screen in adult Drosophila. Using optical coherence tomography to phenotype cardiac function in awake adult Drosophila, we identified Df(1)Exel6240 as having cardiomyopathy. Using a number of strategies including customized smaller deletions, screening of mutant alleles, and transgenic rescue, we identified CG3226 as the causative gene for this deficiency. CG3226 is an uncharacterized gene in Drosophila possessing homology to the mammalian Siah-interacting protein (SIP) gene. Mammalian SIP functions as an adaptor protein involved in one of the β-catenin degradation complexes. To investigate the effects of altering β-catenin/Armadillo signaling in the adult fly, we measured heart function in flies expressing either constitutively active Armadillo or transgenic constructs that block Armadillo signaling, specifically in the heart. While, increasing Armadillo signaling in the heart did not have an effect on adult heart function, decreasing Armadillo signaling in the fly heart caused the significant reduction in heart chamber size. In summary, we show that deletion of CG3226, which has homology to mammalian SIP, causes cardiomyopathy in adult Drosophila. Alterations in Armadillo signaling during development lead to important changes in the size and function of the adult heart.
Collapse
Affiliation(s)
- Michelle E Casad
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
36
|
S100A6 protein negatively regulates CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation and tumorigenesis. PLoS One 2012; 7:e30185. [PMID: 22295074 PMCID: PMC3266240 DOI: 10.1371/journal.pone.0030185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022] Open
Abstract
Calcyclin-binding protein (CacyBP/SIP), identified on the basis of its ability to interact with S100 proteins in a calcium-dependent manner, was previously found to inhibit the proliferation and tumorigenesis of gastric cancer cells in our laboratory. Importantly, the effects of S100 proteins on the biological behavior of CacyBP/SIP in gastric cancer remain unclear. Herein, we report the construction of eukaryotic expression vectors for wild-type CacyBP/SIP and a truncated mutant lacking the S100 protein binding domain (CacyBP/SIPΔS100). The expressions of the wild-type and truncated recombinant proteins were demonstrated by transfection of MKN45 gastric cancer cells. Co-immunoprecipitation assays demonstrated interaction between S100A6 and wild-type CacyBP/SIP in MKN45 cells. Removal of the S100 protein binding domain dramatically reduced the affinity of CacyBP/SIP for S100 proteins as indicated by reduced co-immunoprecipitation of S100A6 by CacyBP/SIPΔS100. The MTT assay, FACS assay, clonogenic assay and tumor xenograft experiment were performed to assess the effect of CacyBP/SIP on cell growth and tumorigenesis in vitro and in vivo. Overexpression of CacyBP/SIP inhibited the proliferation and tumorigenesis of MKN45 gastric cancer cells; the proliferation and tumorigenesis rates were even further reduced by the expression of CacyBP/SIPΔS100. We also showed that S100 proteins negatively regulate CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation, through an effect on β-catenin protein expression and transcriptional activation of Tcf/LEF. Although the underlying mechanism of action requires further investigation, this study provides new insight into the interaction between S100 proteins and CacyBP/SIP, which might enrich our knowledge of S100 proteins and be helpful for our understanding of the development of gastric cancer.
Collapse
|
37
|
Zhao W, Wang C, Wang J, Ge A, Li Y, Li W, Lu Y. Relationship between CacyBP/SIP expression and prognosis in astrocytoma. J Clin Neurosci 2011; 18:1240-4. [PMID: 21764585 DOI: 10.1016/j.jocn.2011.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/05/2011] [Accepted: 01/07/2011] [Indexed: 10/17/2022]
Abstract
The aim of this study was to investigate the expression of calcyclin-binding protein (also known as Siah-1-interacting protein [CacyBP/SIP]) in astrocytoma and to determine its prognostic value in overall survival of patients with glioblastoma multiforme (GBM). Tissue specimens were obtained from 77 Chinese patients who had undergone surgery for astrocytoma. The expression of CacyBP/SIP was examined by immunohistochemistry. The relationship between CacyBP/SIP and proliferating cell nuclear antigen index (PCNA) expression was investigated, and the prognostic value of CacyBP/SIP expression in patients with astrocytomas was analyzed. Of 77 tumors, 49 (63.6%) were negative for CacyBP/SIP expression. Loss of CacyBP/SIP expression was significantly associated with a high histological grade and with poor survival in univariate and multivariate analyses. Cox multivariable analysis showed that loss of CacyBP/SIP expression correlated with poor prognosis in patients with astrocytomas and was an independent prognostic factor (p<0.05). The mean survival time of patients with tumors that had lost expression of CacyBP/SIP was 25.58months (95% confidence interval [CI], 15.36-25.81months), compared to a mean survival time of 36.37months (95% CI, 27.90-44.84months) for patients with CacyBP/SIP-expressing tumors. CacyBP/SIP expression was also negatively correlated with PCNA expression in astrocytoma tissue (p<0.05). Our findings suggest that CacyBP/SIP may have an important role as a negative regulator of astrocytoma development and progression, and that CacyBP/SIP might be a useful molecular marker for predicting the prognosis of astrocytoma.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Pietzsch J. S100 proteins in health and disease. Amino Acids 2010; 41:755-60. [PMID: 21120552 DOI: 10.1007/s00726-010-0816-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/17/2010] [Indexed: 12/26/2022]
|