1
|
Zhang K, Zhu YW, Tang AQ, Zhou ZT, Yang YL, Liu ZH, Li Y, Liang XY, Feng ZF, Wang J, Jiang T, Jiang QY, Wu DD. Role of 3-mercaptopyruvate sulfurtransferase in cancer: Molecular mechanisms and therapeutic perspectives. Transl Oncol 2025; 52:102272. [PMID: 39813769 PMCID: PMC11783123 DOI: 10.1016/j.tranon.2025.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/10/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
The occurrence and development of tumor is mediated by a wide range of complex mechanisms. Subsequent to nitric oxide and carbon monoxide, hydrogen sulfide (H2S) holds the distinction of being the third identified gasotransmitter. Alternation of H2S level has been widely demonstrated to induce an array of disturbances in important cancer cell signaling pathways. As a result, the effects of H2S-catalyzing enzymes in cancers also attract widspread attention. 3-mercaptopyruvate sulfurtransferase (3-MST) is privileged to be one of them. In fact, 3-MST is overexpressed in many tumors including human colon cancer, lung adenocarcinoma, and bladder urothelial carcinoma. But it is also lowly expressed in hepatocellular carcinoma. In this review, we focus on the generation of endogenous H2S and polysulfides, facilitated by 3-MST. Additionally, we delve deeply into the potential role of 3-MST in tumorigenesis and development. The impact of 3-MST inhibition on the development of tumors and its potential for tumor therapy are also highlighted.
Collapse
Affiliation(s)
- Ka Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ze-Tao Zhou
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Lun Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zi-Hui Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yan Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan 475004, China
| | - Jun Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Tong Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Yang C, Mu GF, Liang X, Yan Q. Gas-Responsive and Gas-Releasing Polymer Assemblies. Chemphyschem 2024; 25:e202400413. [PMID: 38747673 DOI: 10.1002/cphc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Indexed: 06/28/2024]
Abstract
In order to explore the unique physiological roles of gas signaling molecules and gasotransmitters in vivo, chemists have engineered a variety of gas-responsive polymers that can monitor their changes in cellular milieu, and gas-releasing polymers that can orchestrate the release of gases. These have advanced their potential applications in the field of bio-imaging, nanodelivery, and theranostics. Since these polymers are of different chain structures and properties, the morphology of their assemblies will manifest distinct transitions after responding to gas or releasing gas. In this review, we summarize the fundamental design rationale of gas-responsive and gas-releasing polymers in structure and their controlled transition in self-assembled morphology and function, as well as present some perspectives in this prosperous field. Emerging challenges faced for the future research are also discussed.
Collapse
Affiliation(s)
- Cuiqin Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Gui-Fang Mu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Xin Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| |
Collapse
|
3
|
Kaleta K, Janik K, Rydz L, Wróbel M, Jurkowska H. Bridging the Gap in Cancer Research: Sulfur Metabolism of Leukemic Cells with a Focus on L-Cysteine Metabolism and Hydrogen Sulfide-Producing Enzymes. Biomolecules 2024; 14:746. [PMID: 39062461 PMCID: PMC11274876 DOI: 10.3390/biom14070746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Leukemias are cancers of the blood-forming system, representing a significant challenge in medical science. The development of leukemia cells involves substantial disturbances within the cellular machinery, offering hope in the search for effective selective treatments that could improve the 5-year survival rate. Consequently, the pathophysiological processes within leukemia cells are the focus of critical research. Enzymes such as cystathionine beta-synthase and sulfurtransferases like thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine gamma-lyase play a vital role in cellular sulfur metabolism. These enzymes are essential to maintaining cellular homeostasis, providing robust antioxidant defenses, and supporting cell division. Numerous studies have demonstrated that cancerous processes can alter the expression and activity of these enzymes, uncovering potential vulnerabilities or molecular targets for cancer therapy. Recent laboratory research has indicated that certain leukemia cell lines may exhibit significant changes in the expression patterns of these enzymes. Analysis of the scientific literature and online datasets has confirmed variations in sulfur enzyme function in specific leukemic cell lines compared to normal leukocytes. This comprehensive review collects and analyzes available information on sulfur enzymes in normal and leukemic cell lines, providing valuable insights and identifying new research pathways in this field.
Collapse
Affiliation(s)
- Konrad Kaleta
- Students’ Scientific Group of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
| | - Klaudia Janik
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Leszek Rydz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| |
Collapse
|
4
|
Bronowicka-Adamska P, Kaczor-Kamińska M, Wróbel M, Bentke-Imiolek A. Differences in nonoxidative sulfur metabolism between normal human breast MCF-12A and adenocarcinoma MCF-7 cell lines. Anal Biochem 2024; 687:115434. [PMID: 38141799 DOI: 10.1016/j.ab.2023.115434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Recent studies have revealed the role of endogenous hydrogen sulfide (H2S) in the development of breast cancer. The capacity of cells to generate H2S and the activity and expression of the main enzymes (cystathionine beta synthase; CBS, cystathionase γ-lyase; CGL, 3-mercaptopyruvate sulfurtransferase; MPST and thiosulfate sulfurtransferase; TST) involved in H2S metabolism were analyzed using an in vitro model of a non-tumourigenic breast cell line (MCF-12A) and a human breast adenocarcinoma cell line (MCF-7). In both cell lines, MPST, CGL, and TST expression was confirmed at the mRNA (RT-PCR) and the protein (Western Blot) level, while CBS expression was detected only in MCF-7 cells. Elevated levels of GSH, sulfane sulfur and increased CBS and TST activity were presented in the MCF-7 compared to the MCF-12A cells. It appears that cysteine might be mainly a substrate for GSH synthesis in breast adenocarcinoma. Increased capacity of the cells to generate H2S was shown for MCF-12A compared to MCF-7 cell line. Results suggest an important function of CBS in H2S metabolism in breast adenocarcinoma. The presented work may contribute to further research on new therapeutic possibilities for breast cancer - one of the most frequently diagnosed types of cancer among women.
Collapse
Affiliation(s)
| | - Marta Kaczor-Kamińska
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, Poland(1)
| | - Maria Wróbel
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, Poland(1)
| | - Anna Bentke-Imiolek
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, Poland(1)
| |
Collapse
|
5
|
Zhang J, Han T, Sun H, Han Z, Shi X, Gao J, Liu X, Zhang H. A self-immolative near-infrared fluorescent probe for identification of cancer cells and facilitating its apoptosis. Anal Bioanal Chem 2024; 416:1529-1540. [PMID: 38342788 DOI: 10.1007/s00216-024-05180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
Hydrogen sulfide (H2S) plays a significant role in the onset and progression of cancer. It has led to increased interest in its potential as a diagnostic tool owing to its overexpression in cancer. However, research into the anti-cancer activity of H2S, particularly its ability to promote apoptosis, is hindered by the lack of effective detection tools. To gain a comprehensive understanding of the targeted efficacy of H2S in promoting cancer cell apoptosis, we designed and synthesized a self-immolative near-infrared fluorescent diagnostic probe, named YH-NO2. The activation of this self-immolative reaction is dependent on the presence of nitroreductase (NTR) overexpressed in tumor cells. The design of YH-NO2 involves releasing fluorophores through the activated self-immolative reaction for detection, while simultaneously releasing H2S-loaded self-immolative spacers to promote cancer cell apoptosis. Consequently, YH-NO2 achieves a seamless integration of recognizing and promoting cancer cell apoptosis through its self-immolative structure. This dual function allows YH-NO2 to recognize NTR activity in cells under varying hypoxia levels and differentiate between normal cells and cancer cells using imaging technology. Notably, YH-NO2 exhibits remarkable stability in cellular environments, providing controlled and selective H2S release, thereby targeting the elimination of cancer cells through the promotion of apoptosis. Furthermore, in vivo experiments have demonstrated that YH-NO2 can accurately identify tumor tissue and effectively reduce its size by utilizing its apoptosis-promoting properties. These findings not only provide further evidence for the anti-cancer activity of H2S but also offer valuable tools for understanding the complex relationship between H2S and cancer.
Collapse
Affiliation(s)
- Jinlong Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Taihe Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Huipeng Sun
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zehua Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xuezhao Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jun Gao
- GanSu Analysis and Research Center, Lanzhou, 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Rydz L, Wróbel M, Janik K, Jurkowska H. Hypoxia-Induced Changes in L-Cysteine Metabolism and Antioxidative Processes in Melanoma Cells. Biomolecules 2023; 13:1491. [PMID: 37892173 PMCID: PMC10604596 DOI: 10.3390/biom13101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
This study was performed on human primary (WM115) and metastatic (WM266-4) melanoma cell lines developed from the same individual. The expression of proteins involved in L-cysteine metabolism (sulfurtransferases, and cystathionine β-synthase) and antioxidative processes (thioredoxin, thioredoxin reductase-1, glutathione peroxidase, superoxide dismutase 1) as well as the level of sufane sulfur, and cell proliferation under hypoxic conditions were investigated. Hypoxia in WM115 and WM266-4 cells was confirmed by induced expression of carbonic anhydrase IX and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 by the RT-PCR and Western blot methods. It was shown that, under hypoxic conditions the inhibition of WM115 and WM266-4 melanoma cell proliferation was associated with decreased expression of thioredoxin reductase-1 and cystathionine β-synthase. These two enzymes may be important therapeutic targets in the treatment of melanoma. Interestingly, it was also found that in normoxia the expression and activity of 3-mercaptopyruvate sulfurtransferase in metastatic WM266-4 melanoma cells was significantly higher than in primary melanoma WM115 cells.
Collapse
Affiliation(s)
| | | | | | - Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7 St., 31-034 Krakow, Poland; (L.R.); (M.W.); (K.J.)
| |
Collapse
|
7
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
8
|
Almammadov T, Dirak M, Saymaz A, Acari A, Kolemen S. A hydrogen sulfide and tyrosinase responsive dual-locked fluorophore for selective imaging of melanoma cells. Chem Commun (Camb) 2023; 59:9972-9975. [PMID: 37503543 DOI: 10.1039/d3cc02676k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A resorufin-based dual-locked fluorescent probe (RHT) was introduced to image melanoma cells selectively. RHT was shown to function as an AND molecular logic gate as it emitted a signal only in the presence of both hydrogen sulfide (H2S) and tyrosinase (Tyr), which are known to be overexpressed in melanoma cells. In vitro cell culture studies revealed that RHT can be activated with endogenous H2S and Tyr and allows selective imaging of B16-F10 cancer cells under confocal microscopy. RHT marks the first ever example of a fluorescent probe that is sequentially activated by H2S and Tyr.
Collapse
Affiliation(s)
- Toghrul Almammadov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey.
| | - Musa Dirak
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey.
| | - Ayca Saymaz
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey.
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul 34450, Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul 34450, Turkey
- Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
9
|
Peng H, Zhu M, Kong W, Tang C, Du J, Huang Y, Jin H. L-cystathionine protects against oxidative stress and DNA damage induced by oxidized low-density lipoprotein in THP-1-derived macrophages. Front Pharmacol 2023; 14:1161542. [PMID: 37560474 PMCID: PMC10408194 DOI: 10.3389/fphar.2023.1161542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction: Oxidative stress in monocyte-derived macrophages is a significant pathophysiological process in atherosclerosis. L-cystathionine (L-Cth) acts as a scavenger for oxygen free radicals. However, the impact of L-Cth on macrophage oxidative stress during atherogenesis has remained unclear. This study aimed to investigate whether L-Cth affects oxidative stress in THP-1-derived macrophages and its subsequent effects on DNA damage and cell apoptosis. Methods: We established a cellular model of oxLDL-stimulated macrophages. The content of superoxide anion, H2O2, NO, and H2S in the macrophage were in situ detected by the specific fluorescence probe, respectively. The activities of SOD, GSH-Px, and CAT were measured by colorimetrical assay. The protein expressions of SOD1, SOD2, and iNOS were detected using western blotting. The DNA damage and apoptosis in the macrophage was evaluated using an fluorescence kit. Results: The results demonstrated that oxLDL significantly increased the content of superoxide anion and H2O2, the expression of iNOS protein, and NO production in macrophages. Conversely, oxLDL decreased the activity of antioxidants GSH-Px, SOD, and CAT, and downregulated the protein expressions of SOD1 and SOD2 in macrophages. However, treatment with L-Cth reduced the levels of superoxide anion, H2O2, and NO, as well as the protein expression of iNOS induced by oxLDL. Moreover, L-Cth treatment significantly enhanced GSH-Px, SOD, and CAT activity, and upregulated the expressions of SOD1 and SOD2 proteins in macrophages treated with oxLDL. Furthermore, both L-Cth supplementation and activation of endogenous L-Cth production suppressed DNA damage and cell apoptosis in oxLDL-injured macrophages, whereas inhibition of endogenous L-Cth exacerbated the deleterious effects of oxLDL. Conclusion: These findings suggest that L-Cth exerts a pronounced inhibitory effect on the oxidative stress, subsequent DNA damage and cell apoptosis in oxLDL-stimulated THP-1 monocytes. This study deepens our understanding of the pathogenesis of macrophage-related cardiovascular pathology.
Collapse
Affiliation(s)
- Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Mingzhu Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Rao SP, Dobariya P, Bellamkonda H, More SS. Role of 3-Mercaptopyruvate Sulfurtransferase (3-MST) in Physiology and Disease. Antioxidants (Basel) 2023; 12:antiox12030603. [PMID: 36978851 PMCID: PMC10045210 DOI: 10.3390/antiox12030603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
3-mercaptopyruvate sulfurtransferase (3-MST) plays the important role of producing hydrogen sulfide. Conserved from bacteria to Mammalia, this enzyme is localized in mitochondria as well as the cytoplasm. 3-MST mediates the reaction of 3-mercaptopyruvate with dihydrolipoic acid and thioredoxin to produce hydrogen sulfide. Hydrogen sulfide is also produced through cystathionine beta-synthase and cystathionine gamma-lyase, along with 3-MST, and is known to alleviate a variety of illnesses such as cancer, heart disease, and neurological conditions. The importance of cystathionine beta-synthase and cystathionine gamma-lyase in hydrogen sulfide biogenesis is well-described, but documentation of the 3-MST pathway is limited. This account compiles the current state of knowledge about the role of 3-MST in physiology and pathology. Attempts at targeting the 3-MST pathway for therapeutic benefit are discussed, highlighting the potential of 3-MST as a therapeutic target.
Collapse
|
11
|
The Role of Hydrogen Sulfide in the Development and Progression of Lung Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249005. [PMID: 36558139 PMCID: PMC9787608 DOI: 10.3390/molecules27249005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Lung cancer is one of the 10 most common cancers in the world, which seriously affects the normal life and health of patients. According to the investigation report, the 3-year survival rate of patients with lung cancer is less than 20%. Heredity, the environment, and long-term smoking or secondhand smoke greatly promote the development and progress of the disease. The mechanisms of action of the occurrence and development of lung cancer have not been fully clarified. As a new type of gas signal molecule, hydrogen sulfide (H2S) has received great attention for its physiological and pathological roles in mammalian cells. It has been found that H2S is widely involved in the regulation of the respiratory system and digestive system, and plays an important role in the occurrence and development of lung cancer. H2S has the characteristics of dissolving in water and passing through the cell membrane, and is widely expressed in body tissues, which determines the possibility of its participation in the occurrence of lung cancer. Both endogenous and exogenous H2S may be involved in the inhibition of lung cancer cells by regulating mitochondrial energy metabolism, mitochondrial DNA integrity, and phosphoinositide 3-kinase/protein kinase B co-pathway hypoxia-inducible factor-1α (HIF-1α). This article reviews and discusses the molecular mechanism of H2S in the development of lung cancer, and provides novel insights for the prevention and targeted therapy of lung cancer.
Collapse
|
12
|
Zhang Q, Gao Y, Zhang Y, Jing M, Wang D, Wang Y, Khattak S, Qi H, Cai C, Zhang J, Ngowi EE, Khan NH, Li T, Ji A, Jiang Q, Ji X, Li Y, Wu D. Cystathionine γ-lyase mediates cell proliferation, migration, and invasion of nasopharyngeal carcinoma. Oncogene 2022; 41:5238-5252. [PMID: 36310322 DOI: 10.1038/s41388-022-02512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelia-derived malignancy with a distinctive geographic distribution. Cystathionine γ-lyase (CSE) is involved in cancer development and progression. Nevertheless, the role of CSE in the growth of NPC is unknown. In this study, we found that CSE levels in human NPC cells were higher than those in normal nasopharyngeal cells. CSE overexpression enhanced the proliferative, migrative, and invasive abilities of NPC cells and CSE downregulation exerted reverse effects. Overexpression of CSE decreased the expressions of cytochrome C, cleaved caspase (cas)-3, cleaved cas-9, and cleaved poly-ADP-ribose polymerase, whereas CSE knockdown exhibited reverse effects. CSE overexpression decreased reactive oxygen species (ROS) levels and the expressions of phospho (p)-extracellular signal-regulated protein kinase 1/2, p-c-Jun N-terminal kinase, and p-p38, but promoted the expressions of p-phosphatidylinositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR), whereas CSE knockdown showed oppose effects. In addition, CSE overexpression promoted NPC xenograft tumor growth and CSE knockdown decreased tumor growth by modulating proliferation, angiogenesis, cell cycle, and apoptosis. Furthermore, DL-propargylglycine (an inhibitor of CSE) dose-dependently inhibited NPC cell growth via ROS-mediated mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR pathways without significant toxicity. In conclusion, CSE could regulate the growth of NPC cells through ROS-mediated MAPK and PI3K/AKT/mTOR cascades. CSE might be a novel tumor marker for the diagnosis and prognosis of NPC. Novel donors/drugs that inhibit the expression/activity of CSE can be developed in the treatment of NPC.
Collapse
Affiliation(s)
- Qianqian Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Yingran Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Yanxia Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Mirong Jing
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Di Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Yizhen Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China.,School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Huiwen Qi
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Chunbo Cai
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, 475004, China.,Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, 2329, Tanzania
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China.,School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Ailing Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Qiying Jiang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China. .,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China. .,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, 475004, China.
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China. .,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China.
| | - Dongdong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China. .,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, Henan, 475004, China. .,School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
13
|
Fahmy SA, Dawoud A, Zeinelabdeen YA, Kiriacos CJ, Daniel KA, Eltahtawy O, Abdelhalim MM, Braoudaki M, Youness RA. Molecular Engines, Therapeutic Targets, and Challenges in Pediatric Brain Tumors: A Special Emphasis on Hydrogen Sulfide and RNA-Based Nano-Delivery. Cancers (Basel) 2022; 14:5244. [PMID: 36358663 PMCID: PMC9657918 DOI: 10.3390/cancers14215244] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 09/11/2023] Open
Abstract
Pediatric primary brain tumors represent a real challenge in the oncology arena. Besides the psychosocial burden, brain tumors are considered one of the most difficult-to-treat malignancies due to their sophisticated cellular and molecular pathophysiology. Notwithstanding the advances in research and the substantial efforts to develop a suitable therapy, a full understanding of the molecular pathways involved in primary brain tumors is still demanded. On the other hand, the physiological nature of the blood-brain barrier (BBB) limits the efficiency of many available treatments, including molecular therapeutic approaches. Hydrogen Sulfide (H2S), as a member of the gasotransmitters family, and its synthesizing machinery have represented promising molecular targets for plentiful cancer types. However, its role in primary brain tumors, generally, and pediatric types, particularly, is barely investigated. In this review, the authors shed the light on the novel role of hydrogen sulfide (H2S) as a prominent player in pediatric brain tumor pathophysiology and its potential as a therapeutic avenue for brain tumors. In addition, the review also focuses on the challenges and opportunities of several molecular targeting approaches and proposes promising brain-delivery strategies for the sake of achieving better therapeutic results for brain tumor patients.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Capital City, Cairo 11835, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Yousra Ahmed Zeinelabdeen
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Omar Eltahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Miriam Mokhtar Abdelhalim
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| |
Collapse
|
14
|
Buonvino S, Arciero I, Melino S. Thiosulfate-Cyanide Sulfurtransferase a Mitochondrial Essential Enzyme: From Cell Metabolism to the Biotechnological Applications. Int J Mol Sci 2022; 23:ijms23158452. [PMID: 35955583 PMCID: PMC9369223 DOI: 10.3390/ijms23158452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Thiosulfate: cyanide sulfurtransferase (TST), also named rhodanese, is an enzyme widely distributed in both prokaryotes and eukaryotes, where it plays a relevant role in mitochondrial function. TST enzyme is involved in several biochemical processes such as: cyanide detoxification, the transport of sulfur and selenium in biologically available forms, the restoration of iron–sulfur clusters, redox system maintenance and the mitochondrial import of 5S rRNA. Recently, the relevance of TST in metabolic diseases, such as diabetes, has been highlighted, opening the way for research on important aspects of sulfur metabolism in diabetes. This review underlines the structural and functional characteristics of TST, describing the physiological role and biomedical and biotechnological applications of this essential enzyme.
Collapse
|
15
|
Cai FF, Xu HR, Yu SH, Li P, Lu YY, Chen J, Bi ZQ, Sun HS, Cheng J, Zhuang HQ, Hua ZC. ADT-OH inhibits malignant melanoma metastasis in mice via suppressing CSE/CBS and FAK/Paxillin signaling pathway. Acta Pharmacol Sin 2022; 43:1829-1842. [PMID: 34795411 PMCID: PMC9253130 DOI: 10.1038/s41401-021-00799-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is widely recognized as the third endogenous gas signaling molecule and may play a key role in cancer biological processes. ADT-OH (5-(4-hydroxyphenyl)-3H-1,2-dithiocyclopentene-3-thione) is one of the most widely used organic donors for the slow release of H2S and considered to be a potential anticancer compound. In this study, we investigated the antimetastatic effects of ADT-OH in highly metastatic melanoma cells. A tail-vein-metastasis model was established by injecting B16F10 and A375 cells into the tail veins of mice, whereas a mouse footpad-injection model was established by injecting B16F10 cells into mouse footpads. We showed that administration of ADT-OH significantly inhibited the migration and invasion of melanoma cells in the three different animal models. We further showed that ADT-OH dose-dependently inhibited the migration and invasion of B16F10, B16F1 and A375 melanoma cells as evaluated by wound healing and Transwell assays in vitro. LC-MS/MS and bioinformatics analyses revealed that ADT-OH treatment inhibited the EMT process in B16F10 and A375 cells by reducing the expression of FAK and the downstream response protein Paxillin. Overexpression of FAK reversed the inhibitory effects of ADT-OH on melanoma cell migration. Moreover, after ADT-OH treatment, melanoma cells showed abnormal expression of the H2S-producing enzymes CSE/CBS and the AKT signaling pathways. In addition, ADT-OH significantly suppressed the proliferation of melanoma cells. Collectively, these results demonstrate that ADT-OH inhibits the EMT process in melanoma cells by suppressing the CSE/CBS and FAK signaling pathways, thereby exerting its antimetastatic activity. ADT-OH may be used as an antimetastatic agent in the future.
Collapse
Affiliation(s)
- Fang-Fang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huang-Ru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Shi-Hui Yu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Ping Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Yan-Yan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Jia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Zhi-Qian Bi
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Hui-Song Sun
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Jian Cheng
- Institute of Neuroscience, Soochow University, Suzhou, 215031, China.
| | - Hong-Qin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China.
| |
Collapse
|
16
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
17
|
Li M, Song X, Jin Q, Chen Y, Zhang J, Gao J, Cen L, Lin Y, Xu C, He X, Li Y, Yu C. 3-Mercaptopyruvate sulfurtransferase represses tumour progression and predicts prognosis in hepatocellular carcinoma. Liver Int 2022; 42:1173-1184. [PMID: 35243746 DOI: 10.1111/liv.15228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS: The prognosis of hepatocellular carcinoma (HCC) remains dismal, and its molecular pathogenesis has not been completely defined. The enzyme 3-mercaptopyruvate sulfurtransferase (MPST) regulates endogenous hydrogen sulfide (H2 S) biosynthesis. However, the role of MPST in HCC has never been intensively investigated. METHODS MPST protein expression was analysed in HCC tumour tissues and matched adjacent tissues. The effect of MPST on HCC progression was studied in vitro and in vivo. RESULTS The mRNA and protein expression of MPST was significantly downregulated in HCC samples compared with their paired nontumour counterparts. A low MPST expression was associated with larger tumour size and a worse overall survival. Overexpression of MPST in HCC cells inhibited cell proliferation and induced apoptosis. MPST overexpression also significantly suppressed the growth of tumour xenografts in nude mice, whereas silencing MPST by intratumour delivery of siRNA substantially promoted tumour growth. Moreover, diethylnitrosamine-induced mouse HCC was aggravated by MPST gene knockout. Mechanistically, MPST suppressed the cell cycle associated with H2 S production and inhibition of the AKT/FOXO3a/Rb signalling pathway in HCC development. In addition, MPST expression negatively correlated with that of pRb in HCC specimens and the combination of these two parameters is a more powerful predictor of poor prognosis. CONCLUSIONS MPST may function as a tumour suppressor gene that plays an essential role in HCC proliferation and liver tumorigenesis. It is a candidate predictor of clinical outcome in patients with HCC and may be used as a biomarker and intervention target for new therapeutic strategies.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xin Song
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Qi Jin
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yishu Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jianguo Gao
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Li Cen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yiming Lin
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xinjue He
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
18
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
19
|
Jurkowska H, Wróbel M, Jasek-Gajda E, Rydz L. Sulfurtransferases and Cystathionine Beta-Synthase Expression in Different Human Leukemia Cell Lines. Biomolecules 2022; 12:148. [PMID: 35204649 PMCID: PMC8961552 DOI: 10.3390/biom12020148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
The studies concerned the expression of sulfurtransferases and cystathionine beta-synthase in six human leukemia cell lines: B cell acute lymphoblastic leukemia-B-ALL (REH cells), T cell acute lymphoblastic leukemia-T-ALL (DND-41 and MOLT-4 cells), acute myeloid leukemia-AML (MV4-11 and MOLM-14 cells), and chronic myeloid leukemia-CML (K562 cells). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis were performed to determine the expression of thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, gamma-cystathionase, and cystathionine beta-synthase on the mRNA and protein level. Interestingly, we found significant differences in the mRNA and protein levels of sulfurtransferases and cystathionine beta-synthase in the studied leukemia cells. The obtained results may contribute to elucidating the significance of the differences between the studied cells in the field of sulfur compound metabolism and finding new promising ways to inhibit the proliferation of various types of leukemic cells by modulating the activity of sulfurtransferases, cystathionine beta-synthase, and, consequently, the change of intracellular level of sulfane sulfur as well as H2S and reactive oxygen species production.
Collapse
Affiliation(s)
- Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (M.W.); (L.R.)
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (M.W.); (L.R.)
| | - Ewa Jasek-Gajda
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland;
| | - Leszek Rydz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (M.W.); (L.R.)
| |
Collapse
|
20
|
Kaczor-Kamińska M, Kaminski K, Wróbel M. The Expression and Activity of Rhodanese, 3-Mercaptopyruvate Sulfurtransferase, Cystathionine γ-Lyase in the Most Frequently Chosen Cellular Research Models. Biomolecules 2021; 11:biom11121859. [PMID: 34944503 PMCID: PMC8699783 DOI: 10.3390/biom11121859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
This paper provides information concerning the activity and expression levels of three sulfurtransferases (STRs): rhodanese (TST, EC: 2.8.1.1), 3-mercaptopyruvate sulfurtransferase (MPST, EC: 2.8.1.2) and cystathionine γ-lyase (CTH, EC: 4.4.1.1) in various cell lines. Since very limited data are available in the scientific literature on this subject, the available data are included in this paper. These shortages often force the researchers to carry out their own screening tests that allow them to choose an appropriate model for their further studies. This work supplements the existing deficiencies in this area and presents the activity and expression of STRs in the eight most frequently chosen cell lines: the mouse mammary gland cell line (NMuNG, ATCC: CRL-1636), mouse mammary gland tumor (4T1, ATCC: CRL-2539), mouse fibroblast (MEF, ATCC: SCRC-1008), mouse melanoma (B16-F1, ATCC: CRL-6323), human colorectal adenocarcinoma (Caco-2, ATCC: HTB-37), human embryonic kidney (HEK-293, ATCC: CRL-1573), human osteosarcoma (MG-63, ATCC: CRL-1427) and rat myocardium (H9c2, ATCC: CRL-1446). Changes in STRs activity are directly related to the bioavailability of cysteine and the sulfane sulfur level, and thus the present authors also measured these parameters, as well as the level of glutathione (its reduced (GSH) and oxidized (GSSG) form) and the [GSH]/[GSSG] ratio that determines the antioxidant capacity of the cells. STRs demonstrate diverse functionality and clinical relevance; therefore, we also performed an analysis of genetic variation of STRs genes that revealed a large number of polymorphisms. Although STRs still provide challenges in several fields, responding to them could not only improve the understanding of various diseases, but may also provide a way to treat them.
Collapse
Affiliation(s)
- Marta Kaczor-Kamińska
- Faculty of Medicine, Medical College, Chair of Medical Biochemistry, Jagiellonian University, Kopernika 7 St., 31-034 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-422-7400
| | - Kamil Kaminski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., 30-387 Krakow, Poland;
| | - Maria Wróbel
- Faculty of Medicine, Medical College, Chair of Medical Biochemistry, Jagiellonian University, Kopernika 7 St., 31-034 Krakow, Poland;
| |
Collapse
|
21
|
Wang RH, Chu YH, Lin KT. The Hidden Role of Hydrogen Sulfide Metabolism in Cancer. Int J Mol Sci 2021; 22:ijms22126562. [PMID: 34207284 PMCID: PMC8235762 DOI: 10.3390/ijms22126562] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen Sulfide (H2S), an endogenously produced gasotransmitter, is involved in various important physiological and disease conditions, including vasodilation, stimulation of cellular bioenergetics, anti-inflammation, and pro-angiogenesis. In cancer, aberrant up-regulation of H2S-producing enzymes is frequently observed in different cancer types. The recognition that tumor-derived H2S plays various roles during cancer development reveals opportunities to target H2S-mediated signaling pathways in cancer therapy. In this review, we will focus on the mechanism of H2S-mediated protein persulfidation and the detailed information about the dysregulation of H2S-producing enzymes and metabolism in different cancer types. We will also provide an update on mechanisms of H2S-mediated cancer progression and summarize current options to modulate H2S production for cancer therapy.
Collapse
Affiliation(s)
- Rong-Hsuan Wang
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (R.-H.W.); (Y.-H.C.)
| | - Yu-Hsin Chu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (R.-H.W.); (Y.-H.C.)
- Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (R.-H.W.); (Y.-H.C.)
- Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
- Correspondence:
| |
Collapse
|
22
|
Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020; 25:molecules25173984. [PMID: 32882966 PMCID: PMC7504796 DOI: 10.3390/molecules25173984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - João B. Vicente
- Institute of Technology, Chemistry and Biology António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
- Correspondence: (J.B.V.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
- Correspondence: (J.B.V.); (J.S.)
| |
Collapse
|
23
|
Serpa J. Cysteine as a Carbon Source, a Hot Spot in Cancer Cells Survival. Front Oncol 2020; 10:947. [PMID: 32714858 PMCID: PMC7344258 DOI: 10.3389/fonc.2020.00947] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer cells undergo a metabolic rewiring in order to fulfill the energy and biomass requirements. Cysteine is a pivotal organic compound that contributes for cancer metabolic remodeling at three different levels: (1) in redox control, free or as a component of glutathione; (2) in ATP production, via hydrogen sulfide (H2S) production, serving as a donor to electron transport chain (ETC), and (3) as a carbon source for biomass and energy production. In the present review, emphasis will be given to the role of cysteine as a carbon source, focusing on the metabolic reliance on cysteine, benefiting the metabolic fitness and survival of cancer cells. Therefore, the interplay between cysteine metabolism and other metabolic pathways, as well as the regulation of cysteine metabolism related enzymes and transporters, will be also addressed. Finally, the usefulness of cysteine metabolic route as a target in cancer treatment will be highlighted.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
24
|
Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation, Migration, and Bioenergetics in Murine Colon Cancer Cells. Biomolecules 2020; 10:biom10030447. [PMID: 32183148 PMCID: PMC7175125 DOI: 10.3390/biom10030447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
3-mercaptopyruvate sulfurtransferase (3-MST) has emerged as one of the significant sources of biologically active sulfur species in various mammalian cells. The current study was designed to investigate the functional role of 3-MST’s catalytic activity in the murine colon cancer cell line CT26. The novel pharmacological 3-MST inhibitor HMPSNE was used to assess cancer cell proliferation, migration and bioenergetics in vitro. Methods included measurements of cell viability (MTT and LDH assays), cell proliferation and in vitro wound healing (IncuCyte) and cellular bioenergetics (Seahorse extracellular flux analysis). 3-MST expression was detected by Western blotting; H2S production was measured by the fluorescent dye AzMC. The results show that CT26 cells express 3-MST protein and mRNA, as well as several enzymes involved in H2S degradation (TST, ETHE1). Pharmacological inhibition of 3-MST concentration-dependently suppressed H2S production and, at 100 and 300 µM, attenuated CT26 proliferation and migration. HMPSNE exerted a bell-shaped effect on several cellular bioenergetic parameters related to oxidative phosphorylation, while other bioenergetic parameters were either unaffected or inhibited at the highest concentration of the inhibitor tested (300 µM). In contrast to 3-MST, the expression of CBS (another H2S producing enzyme which has been previously implicated in the regulation of various biological parameters in other tumor cells) was not detectable in CT26 cells and pharmacological inhibition of CBS exerted no significant effects on CT26 proliferation or bioenergetics. In summary, 3-MST catalytic activity significantly contributes to the regulation of cellular proliferation, migration and bioenergetics in CT26 murine colon cancer cells. The current studies identify 3-MST as the principal source of biologically active H2S in this cell line.
Collapse
|
25
|
Hydrogen Sulfide: Emerging Role in Bladder, Kidney, and Prostate Malignancies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2360945. [PMID: 31781328 PMCID: PMC6875223 DOI: 10.1155/2019/2360945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is the latest member of the gasotransmitter family and known to play essential roles in cancer pathophysiology. H2S is produced endogenously and can be administered exogenously. Recent studies showed that H2S in cancers has both pro- and antitumor roles. Understanding the difference in the expression and localization of tissue-specific H2S-producing enzymes in healthy and cancer tissues allows us to develop tools for cancer diagnosis and treatment. Urological malignancies are some of the most common cancers in both men and women, and their early detection is vital since advanced cancers are recurrent, metastatic, and often resistant to treatment. This review summarizes the roles of H2S in cancer and looks at current studies investigating H2S activity and expression of H2S-producing enzymes in urinary cancers. We specifically focused on urothelial carcinoma, renal cell carcinoma, and prostate cancer, as they form the majority of newly diagnosed urinary cancers. Recent studies show that besides the physiological activity of H2S in cancer cells, there are patterns between the development and prognosis of urinary cancers and the expression of H2S-producing enzymes and indirectly the H2S levels. Though controversial and not completely understood, studying the expression of H2S-producing enzymes in cancer tissue may represent an avenue for novel diagnostic and therapeutic strategies for addressing urological malignancies.
Collapse
|
26
|
Reis AKCA, Stern A, Monteiro HP. S-nitrosothiols and H 2S donors: Potential chemo-therapeutic agents in cancer. Redox Biol 2019; 27:101190. [PMID: 30981679 PMCID: PMC6859576 DOI: 10.1016/j.redox.2019.101190] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric Oxide (NO) and Hydrogen Sulfide (H2S) are components of an "interactome", which is defined as a redox system involving the interactions of RSS, RNS and ROS. Chemical interaction by these species is common and is characterized by one and two electron oxidation, nitrosylation, nitration and sulfuration/polysulfidation reactions. NO and H2S are gases that penetrate cell membranes, are synthesized by specific enzymes, are ubiquitous, regulate protein activities through post-translational modifications and participate in cell signaling. The two molecules at high concentrations compared to physiological concentrations may result in cellular damage particularly through their interaction with other reactive species. NO and H2S can interact with each other and form a variety of molecular species which may have constructive or destructive behavior depending on the cell type, the cellular environment (ex. oxygen tension, pH, redox state), where the products are produced and in what concentrations. Cross talk exists between NO and H2S, whereby they can influence the generation and signaling behavior of each other. Given the above mentioned properties of NO and H2S and studies in cancer cells and animal models employing NO and H2S donors that generate higher than physiological concentrations of NO and H2S and are effective in killing cancer cells but not normal cells, lend credence to the possibility of the utility of these donors in an approach to the treatment of cancer.
Collapse
Affiliation(s)
- Adriana Karla Cardoso Amorim Reis
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences - Universidade Federal de São Paulo - Campus Diadema, São Paulo, Brazil
| | - Arnold Stern
- New York University, School of Medicine, New York, NY, USA.
| | - Hugo Pequeno Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy - Universidade Federal de São Paulo - Campus São Paulo, São Paulo, Brazil.
| |
Collapse
|
27
|
Zuhra K, Tomé CS, Masi L, Giardina G, Paulini G, Malagrinò F, Forte E, Vicente JB, Giuffrè A. N-Acetylcysteine Serves as Substrate of 3-Mercaptopyruvate Sulfurtransferase and Stimulates Sulfide Metabolism in Colon Cancer Cells. Cells 2019; 8:cells8080828. [PMID: 31382676 PMCID: PMC6721681 DOI: 10.3390/cells8080828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of H2S, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the H2S biological effects. Reprogramming of H2S metabolism was reported to support cellular proliferation and energy metabolism in cancer cells. As oxidative stress is a cancer hallmark and N-acetylcysteine (NAC) was recently suggested to act as an antioxidant by increasing intracellular levels of sulfane sulfur species, here we evaluated the effect of prolonged exposure to NAC on the H2S metabolism of SW480 colon cancer cells. Cells exposed to NAC for 24 h displayed increased expression and activity of MST and SQR. Furthermore, NAC was shown to: (i) persist at detectable levels inside the cells exposed to the drug for up to 24 h and (ii) sustain H2S synthesis by human MST more effectively than cysteine, as shown working on the isolated recombinant enzyme. We conclude that prolonged exposure of colon cancer cells to NAC stimulates H2S metabolism and that NAC can serve as a substrate for human MST.
Collapse
Affiliation(s)
- Karim Zuhra
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Letizia Masi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giulia Paulini
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Francesca Malagrinò
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Alessandro Giuffrè
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
28
|
Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? Antioxid Redox Signal 2019; 31:1-38. [PMID: 29790379 PMCID: PMC6551999 DOI: 10.1089/ars.2017.7058] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
Abstract
Significance: Hydrogen sulfide (H2S) has been recognized as the third gaseous transmitter alongside nitric oxide and carbon monoxide. In the past decade, numerous studies have demonstrated an active role of H2S in the context of cancer biology. Recent Advances: The three H2S-producing enzymes, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3MST), have been found to be highly expressed in numerous types of cancer. Moreover, inhibition of CBS has shown anti-tumor activity, particularly in colon cancer, ovarian cancer, and breast cancer, whereas the consequence of CSE or 3MST inhibition remains largely unexplored in cancer cells. Intriguingly, H2S donation at high amounts or a long time duration has also been observed to induce cancer cell apoptosis in vitro and in vivo while sparing noncancerous fibroblast cells. Therefore, a bell-shaped model has been proposed to explain the role of H2S in cancer development. Specifically, endogenous H2S or a relatively low level of exogenous H2S may exhibit a pro-cancer effect, whereas exposure to H2S at a higher amount or for a long period may lead to cancer cell death. This indicates that inhibition of H2S biosynthesis and H2S supplementation serve as two distinct ways for cancer treatment. This paradoxical role of H2S has stimulated the enthusiasm for the development of novel CBS inhibitors, H2S donors, and H2S-releasing hybrids. Critical Issues: A clear relationship between H2S level and cancer progression remains lacking. The possibility that the altered levels of these byproducts have influenced the cell viability of cancer cells has not been excluded in previous studies when modulating H2S producing enzymes. Future Directions: The consequence of CSE or 3MST inhibition in cancer cells need to be examined in the future. Better portrayal of the crosstalk among these gaseous transmitters may not only lead to an in-depth understanding of cancer progression but also shed light on novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-zhong Xie
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yong Yang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | | | - Philip K. Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Expression and activity of hydrogen sulfide generating enzymes in murine macrophages stimulated with lipopolysaccharide and interferon-γ. Mol Biol Rep 2019; 46:2791-2798. [DOI: 10.1007/s11033-019-04725-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
|
30
|
Augsburger F, Szabo C. Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H 2S) pathway in cancer cells. Pharmacol Res 2018; 154:104083. [PMID: 30500457 DOI: 10.1016/j.phrs.2018.11.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide (H2S), produced by various endogenous enzyme systems, serves various biological regulatory roles in mammalian cells in health and disease. Over recent years, a new concept emerged in the field of H2S biology, showing that various cancer cells upregulate their endogenous H2S production, and utilize this mediator in autocrine and paracrine manner to stimulate proliferation, bioenergetics and tumor angiogenesis. Initial work identified cystathionine-beta-synthase (CBS) in many tumor cells as the key source of H2S. In other cells, cystathionine-gamma-lyase (CSE) has been shown to play a pathogenetic role. However, until recently, less attention has been paid to the third enzymatic source of H2S, 3-mercaptopyruvate sulfurtransferase (3-MST), even though several of its biological and biochemical features - e.g. its partial mitochondrial localization, its ability to produce polysulfides, which, in turn, can induce functionally relevant posttranslational protein modifications - makes it a potential candidate. Indeed, several lines of recent data indicate the potential role of the 3-MST system in cancer biology. In many cancers (e.g. colon adenocarcinoma, lung adenocarcinoma, urothelial cell carcinoma, various forms of oral carcinomas), 3-MST is upregulated compared to the surrounding normal tissue. According to in vitro studies, 3-MST upregulation is especially prominent in cancer cells that recover from oxidative damage and/or develop a multidrug-resistant phenotype. Emerging data with newly discovered pharmacological inhibitors of 3-MST, as well as data using 3-MST silencing approaches suggest that the 3-MST/H2S system plays a role in maintaining cancer cell proliferation; it may also regulate bioenergetic and cell-signaling functions. Many questions remain open in the field of 3-MST/cancer biology; the last section of current article highlights these open questions and lays out potential experimental strategies to address them.
Collapse
Affiliation(s)
- Fiona Augsburger
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
31
|
Gao M, Wang R, Yu F, Li B, Chen L. Imaging of intracellular sulfane sulfur expression changes under hypoxic stress via a selenium-containing near-infrared fluorescent probe. J Mater Chem B 2018; 6:6637-6645. [PMID: 32254872 DOI: 10.1039/c8tb01794h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hypoxia is a significant global issue affecting the health of organisms. Oxygen homeostasis is critical for mammalian cell survival and cellular activities. Hypoxic stress can lead to cell injury and death, which contributes to many diseases. Sulfane sulfur is involved in crucial roles in physiological processes of maintaining intracellular redox state and ameliorating oxidative damage. Therefore, real-time imaging of changes in sulfane sulfur levels is important for understanding their biofunctions in cells. In this study, we develop a new near-infrared (NIR) fluorescent probe BD-diSeH for imaging of sulfane sulfur changes in cells and in vivo under hypoxic stress. The probe includes two moieties: an NIR azo-BODIPY fluorophore equipped with a strong nucleophilic phenylselenol group (-SeH). The probe is capable of tracing dynamic changes of endogenous sulfane sulfur based on a fast and spontaneous intramolecular cyclization reaction. The probe has been successfully used for imaging sulfane sulfur in 3D-multicellular spheroid and mouse hippocampus under hypoxic stress. The overall levels of sulfane sulfur are affected by the degree and length of hypoxic stress. The results reveal a close relationship between sulfane sulfur and hypoxia in living cells and in vivo, allowing better understanding of physiological and pathological processes involving sulfane sulfur. Moreover, to investigate the effects of environmental hypoxia on aquatic animals, this probe has been applied for sulfane sulfur detection in hypoxic zebrafish.
Collapse
Affiliation(s)
- Min Gao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | | | | | | | | |
Collapse
|
32
|
Meram AT, Chen J, Patel S, Kim DD, Shirley B, Covello P, Coppola D, Wei EX, Ghali G, Kevil CG, Shackelford RE. Hydrogen Sulfide Is Increased in Oral Squamous Cell Carcinoma Compared to Adjacent Benign Oral Mucosae. Anticancer Res 2018; 38:3843-3852. [PMID: 29970504 PMCID: PMC7771275 DOI: 10.21873/anticanres.12668] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Hydrogen sulfide (H2S) and the enzymes that synthesize it, cystathionine-b-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate, are increased in different human malignancies. Due to its short half-life, H2S concentrations have not been directly measured in a human malignancy. Here we directly measured in vivo H2S levels within oral squamous cell carcinoma (OSCC). PATIENTS AND METHODS Punch biopsies of OSCC and benign mucosae from 15 patients were analyzed by HPLC, western blotting, and tissue microarray analyses. RESULTS H2S concentrations were significantly higher in OSCC compared to adjacent benign oral mucosae. Western blot and tissue microarray studies revealed significantly increased cystathionine-b-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate, phopho-Stat3, mitoNEET, hTERT, and MAPK protein levels in OSCC. CONCLUSION H2S concentrations and the enzymes that synthesize it are significantly increased in OSCC. Here, for the first time H2S concentrations within a living human malignancy were measured and compared to adjacent counterpart benign tissue.
Collapse
Affiliation(s)
- Andrew T Meram
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Jie Chen
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Stavan Patel
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Dongsoo D Kim
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Brett Shirley
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Paul Covello
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Eric X Wei
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Ghali Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Rodney E Shackelford
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A.
| |
Collapse
|
33
|
Gao M, Wang R, Yu F, Chen L. Evaluation of sulfane sulfur bioeffects via a mitochondria-targeting selenium-containing near-infrared fluorescent probe. Biomaterials 2018; 160:1-14. [DOI: 10.1016/j.biomaterials.2018.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/27/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
|
34
|
Kashfi K. The dichotomous role of H 2S in cancer cell biology? Déjà vu all over again. Biochem Pharmacol 2018; 149:205-223. [PMID: 29397935 PMCID: PMC5866221 DOI: 10.1016/j.bcp.2018.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) a gaseous free radical is one of the ten smallest molecules found in nature, while hydrogen sulfide (H2S) is a gas that bears the pungent smell of rotten eggs. Both are toxic yet they are gasotransmitters of physiological relevance. There appears to be an uncanny resemblance between the general actions of these two gasotransmitters in health and disease. The role of NO and H2S in cancer has been quite perplexing, as both tumor promotion and inflammatory activities as well as anti-tumor and antiinflammatory properties have been described. These paradoxes have been explained for both gasotransmitters in terms of each having a dual or biphasic effect that is dependent on the local flux of each gas. In this review/commentary, I have discussed the major roles of NO and H2S in carcinogenesis, evaluating their dual nature, focusing on the enzymes that contribute to this paradox and evaluate the pros and cons of inhibiting or inducing each of these enzymes.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| |
Collapse
|
35
|
Gao M, Wang R, Yu F, You J, Chen L. Imaging and evaluation of sulfane sulfur in acute brain ischemia using a mitochondria-targeted near-infrared fluorescent probe. J Mater Chem B 2018; 6:2608-2619. [DOI: 10.1039/c7tb03200e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Imaging and evaluation of sulfane sulfur in acute brain ischemia using a mitochondria-targeted near-infrared fluorescent probe
Collapse
Affiliation(s)
- Min Gao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Centre for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Rui Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Centre for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Fabiao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Centre for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Research Centre for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| |
Collapse
|
36
|
Jurkowska H, Wróbel M, Kaczor-Kamińska M, Jasek-Gajda E. A possible mechanism of inhibition of U87MG and SH-SY5Y cancer cell proliferation by diallyl trisulfide and other aspects of its activity. Amino Acids 2017; 49:1855-1866. [PMID: 28852876 PMCID: PMC5646106 DOI: 10.1007/s00726-017-2484-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/18/2017] [Indexed: 01/15/2023]
Abstract
The study was conducted to elucidate the mechanism of antiproliferative and antioxidative action of diallyl trisulfide (DATS), a garlic-derived organosulfur compound. Changes in the l-cysteine desulfuration, and the levels of cystathionine and non-protein thiols in DATS-treated human glioblastoma (U87MG) and neuroblastoma (SH-SY5Y) cells were investigated. The inhibition of proliferation of the investigated cells by DATS was correlated with an increase in the inactivated form of Bcl-2. In U87MG cells, an increased level of sulfane sulfur and an increased activity of 3-mercaptopyruvate sulfurtransferase (MPST) and rhodanese, the enzymes involved in sulfane sulfur generation and transfer, suggest that DATS can function as a donor of sulfane sulfur atom, transferred by sulfurtransferases, to sulfhydryl groups of cysteine residues of Bcl-2 and in this way lower the level of active form of Bcl-2 by S-sulfuration. Diallyl trisulfide antioxidative effects result from an increased level of cystathionine, a precursor of cysteine, and an increased glutathione level. MPST and rhodanese, the level of which is increased in the presence of DATS, can serve as antioxidant proteins.
Collapse
Affiliation(s)
- Halina Jurkowska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland.
| | - Maria Wróbel
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| |
Collapse
|
37
|
Hanaoka K, Sasakura K, Suwanai Y, Toma-Fukai S, Shimamoto K, Takano Y, Shibuya N, Terai T, Komatsu T, Ueno T, Ogasawara Y, Tsuchiya Y, Watanabe Y, Kimura H, Wang C, Uchiyama M, Kojima H, Okabe T, Urano Y, Shimizu T, Nagano T. Discovery and Mechanistic Characterization of Selective Inhibitors of H 2S-producing Enzyme: 3-Mercaptopyruvate Sulfurtransferase (3MST) Targeting Active-site Cysteine Persulfide. Sci Rep 2017; 7:40227. [PMID: 28079151 PMCID: PMC5228037 DOI: 10.1038/srep40227] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/01/2016] [Indexed: 11/15/2022] Open
Abstract
Very recent studies indicate that sulfur atoms with oxidation state 0 or −1, called sulfane sulfurs, are the actual mediators of some physiological processes previously considered to be regulated by hydrogen sulfide (H2S). 3-Mercaptopyruvate sulfurtransferase (3MST), one of three H2S-producing enzymes, was also recently shown to produce sulfane sulfur (H2Sn). Here, we report the discovery of several potent 3MST inhibitors by means of high-throughput screening (HTS) of a large chemical library (174,118 compounds) with our H2S-selective fluorescent probe, HSip-1. Most of the identified inhibitors had similar aromatic ring-carbonyl-S-pyrimidone structures. Among them, compound 3 showed very high selectivity for 3MST over other H2S/sulfane sulfur-producing enzymes and rhodanese. The X-ray crystal structures of 3MST complexes with two of the inhibitors revealed that their target is a persulfurated cysteine residue located in the active site of 3MST. Precise theoretical calculations indicated the presence of a strong long-range electrostatic interaction between the persulfur anion of the persulfurated cysteine residue and the positively charged carbonyl carbon of the pyrimidone moiety of the inhibitor. Our results also provide the experimental support for the idea that the 3MST-catalyzed reaction with 3-mercaptopyruvate proceeds via a ping-pong mechanism.
Collapse
Affiliation(s)
- Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyoshi Sasakura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Suwanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sachiko Toma-Fukai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhito Shimamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoko Takano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Norihiro Shibuya
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Takuya Terai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,PRESTO (Japan) Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yukihiro Tsuchiya
- High Technology Research Center, Pharmacology, Showa Pharmaceutical University, Machidashi 194-8543, Tokyo, Japan
| | - Yasuo Watanabe
- High Technology Research Center, Pharmacology, Showa Pharmaceutical University, Machidashi 194-8543, Tokyo, Japan
| | - Hideo Kimura
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Chao Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Advanced Elements Chemistry Research Team, RIKEN Center for Sustainable Resource Science, and Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Advanced Elements Chemistry Research Team, RIKEN Center for Sustainable Resource Science, and Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,CREST (Japan) Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuo Nagano
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
38
|
Abstract
The three endogenous gaseous transmitters - nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) - regulate a number of key biological functions. Emerging data have revealed several new mechanisms for each of these three gasotransmitters in tumour biology. It is now appreciated that they show bimodal pharmacological character in cancer, in that not only the inhibition of their biosynthesis but also elevation of their concentration beyond a certain threshold can exert anticancer effects. This Review discusses the role of each gasotransmitter in cancer and the effects of pharmacological agents - some of which are in early-stage clinical studies - that modulate the levels of each gasotransmitter. A clearer understanding of the pharmacological character of these three gases and the mechanisms underlying their biological effects is expected to guide further clinical translation.
Collapse
|
39
|
Giustarini D, Galvagni F, Tesei A, Farolfi A, Zanoni M, Pignatta S, Milzani A, Marone IM, Dalle-Donne I, Nassini R, Rossi R. Glutathione, glutathione disulfide, and S-glutathionylated proteins in cell cultures. Free Radic Biol Med 2015; 89:972-81. [PMID: 26476010 DOI: 10.1016/j.freeradbiomed.2015.10.410] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 09/15/2015] [Accepted: 10/12/2015] [Indexed: 11/28/2022]
Abstract
The analysis of the global thiol-disulfide redox status in tissues and cells is a challenging task since thiols and disulfides can undergo artificial oxido-reductions during sample manipulation. Because of this, the measured values, in particular for disulfides, can have a significant bias. Whereas this methodological problem has already been addressed in samples of red blood cells and solid tissues, a reliable method to measure thiols and disulfides in cell cultures has not been previously reported. Here, we demonstrate that the major artifact occurring during thiol and disulfide analysis in cultured cells is represented by glutathione disulfide (GSSG) and S-glutathionylated proteins (PSSG) overestimation, due to artificial oxidation of glutathione (GSH) during sample manipulation, and that this methodological problem can be solved by the addition of N-ethylmaleimide (NEM) immediately after culture medium removal. Basal levels of GSSG and PSSG in different lines of cultured cells were 3-5 and 10-20 folds higher, respectively, when the cells were processed without NEM. NEM pre-treatment also prevented the artificial reduction of disulfides that occurs during the pre-analytical phase when cells are exposed to an oxidant stimulus. In fact, in the absence of NEM, after medium removal, GSH, GSSG and PSSG levels restored their initial values within 15-30 min, due to the activity of reductases and the lack of the oxidant. The newly developed protocol was used to measure the thiol-disulfide redox status in 16 different line cells routinely used for biomedical research both under basal conditions and after treatment with disulfiram, a thiol-specific oxidant (0-200 μM concentration range). Our data indicate that, in most cell lines, treatment with disulfiram affected the levels of GSH and GSSG only at the highest concentration. On the other hand, PSSG levels increased significantly also at the lower concentrations of the drug, and the rise was remarkable (from 100 to 1000 folds at 200 μM concentration) and dose-dependent for almost all the cell lines. These data support the suitability of the analysis of PSSG in cultured cells as a biomarker of oxidative stress.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Anna Tesei
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, Meldola 47014, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, Meldola 47014, Italy
| | - Michele Zanoni
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, Meldola 47014, Italy
| | - Sara Pignatta
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, Meldola 47014, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Ilaria M Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Isabella Dalle-Donne
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
40
|
Hydrogen sulfide in cancer: Friend or foe? Nitric Oxide 2015; 50:38-45. [PMID: 26297862 DOI: 10.1016/j.niox.2015.08.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/26/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023]
Abstract
Hydrogen sulfide (H2S) is the third gaseous signaling molecule that plays important roles in cancer biological processes. Recent studies indicate that H2S has both pro-cancer and anti-cancer effects. Endogenous H2S can exert pro-cancer functions through induction of angiogenesis regulation of mitochondrial bioenergetics, acceleration of cell cycle progression, and anti-apoptosis mechanisms. Thus, the inhibition of the production of H2S in cancer cells may be a new cancer treatment strategy. In contrast to the pro-cancer effect of H2S, relatively high concentrations of exogenous H2S could suppress the growth of cancer cells by inducing uncontrolled intracellular acidification, inducing cell cycle arrest, and promoting apoptosis. Therefore, H2S donors and H2S-releasing hybrids could be designed and developed as novel anti-cancer drugs. In this review, the production and metabolism of H2S in cancer cells are summarized and the role and mechanism of H2S in cancer development and progression are further discussed.
Collapse
|
41
|
Rashid S, Heer JK, Garle MJ, Alexander SPH, Roberts RE. Hydrogen sulphide-induced relaxation of porcine peripheral bronchioles. Br J Pharmacol 2015; 168:1902-10. [PMID: 23215842 DOI: 10.1111/bph.12084] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/29/2012] [Accepted: 11/26/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H2S) is an endogenous gasotransmitter. Although it has been shown to elicit responses in vascular and other smooth muscle preparations, a role for endogenously produced H2S in mediating airway tone has yet to be demonstrated. Therefore, the aim of this study was to determine whether H2S is produced within the airways and to determine the functional effect on airway tone. EXPERIMENTAL APPROACH Small peripheral airways (<5 mm in diameter) from porcine lungs were set up in isolated tissue baths, pre-contracted with the muscarinic agonist carbachol, and then exposed to either the H2S donor sodium hydrosulphide (NaHS), or the precursor L-cysteine. H2S production from L-cysteine or 3-mercaptopyruvate in tissue homogenates was measured by the methylene blue assay. Expression of the H2S-synthesizing enzymes cystathionine β-synthase (CBS), cystathionine γ lyase (CSE) and 3-mercaptopyruvate sulphurtransferase (3-MST) were measured by Western blotting. KEY RESULTS NaHS caused a large relaxation of the airways, which was inhibited partially by pre-contraction with KCl or exposure to tetraethylammonium, but not glibenclamide, paxilline or 4-aminopyridine. L-cysteine also caused a relaxation of the airways which was inhibited by the CBS inhibitor aminooxyacetic acid. Tissue homogenates from airways exposed to L-cysteine or 3-mercaptopyruvate in vitro showed a significant production of H2S. Western blotting demonstrated immunoreactivity to CBS, CSE and 3-MST enzymes in the airways. CONCLUSIONS AND IMPLICATIONS These data demonstrate that H2S can be produced endogenously within porcine airways causing relaxation. The mechanism of relaxation depends, in part, on K(+) channel activity.
Collapse
Affiliation(s)
- S Rashid
- Cardiovascular Research Group, School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | | | | | | |
Collapse
|
42
|
Is development of high-grade gliomas sulfur-dependent? Molecules 2014; 19:21350-62. [PMID: 25532835 PMCID: PMC6270701 DOI: 10.3390/molecules191221350] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/04/2014] [Accepted: 12/12/2014] [Indexed: 01/23/2023] Open
Abstract
We characterized γ-cystathionase, rhodanese and 3-mercaptopyruvate sulfurtransferase activities in various regions of human brain (the cortex, thalamus, hypothalamus, hippocampus, cerebellum and subcortical nuclei) and human gliomas with II to IV grade of malignancy (according to the WHO classification). The human brain regions, as compared to human liver, showed low γ-cystathionase activity. The activity of rhodanese was also much lower and it did not vary significantly between the investigated brain regions. The activity of 3-mercaptopyruvate sulfurtransferase was the highest in the thalamus, hypothalamus and subcortical nuclei and essentially the same level of sulfane sulfur was found in all the investigated brain regions. The investigations demonstrated that the level of sulfane sulfur in gliomas with the highest grades was high in comparison to various human brain regions, and was correlated with a decreased activity of γ-cystathionase, 3-mercaptopyruvate sulfurtransferase and rhodanese. This can suggest sulfane sulfur accumulation and points to its importance for malignant cell proliferation and tumor growth. In gliomas with the highest grades of malignancy, despite decreased levels of total free cysteine and total free glutathione, a high ratio of GSH/GSSG was maintained, which is important for the process of malignant cells proliferation. A high level of sulfane sulfur and high GSH/GSSG ratio could result in the elevated hydrogen sulfide levels. Because of the disappearance of γ-cystathionase activity in high-grade gliomas, it seems to be possible that 3-mercaptopyruvate sulfurtransferase could participate in hydrogen sulfide production. The results confirm sulfur dependence of malignant brain tumors.
Collapse
|
43
|
Panza E, De Cicco P, Armogida C, Scognamiglio G, Gigantino V, Botti G, Germano D, Napolitano M, Papapetropoulos A, Bucci M, Cirino G, Ianaro A. Role of the cystathionineγlyase/hydrogen sulfide pathway in human melanoma progression. Pigment Cell Melanoma Res 2014; 28:61-72. [DOI: 10.1111/pcmr.12312] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Elisabetta Panza
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Paola De Cicco
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Chiara Armogida
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Giosuè Scognamiglio
- Unit of Pathology; Istituto Nazionale per lo Studio e la cura dei tumori Fondazione G. Pascale IRCCS; Naples Italy
| | - Vincenzo Gigantino
- Unit of Pathology; Istituto Nazionale per lo Studio e la cura dei tumori Fondazione G. Pascale IRCCS; Naples Italy
| | - Gerardo Botti
- Unit of Pathology; Istituto Nazionale per lo Studio e la cura dei tumori Fondazione G. Pascale IRCCS; Naples Italy
| | | | - Maria Napolitano
- Department of Oncological Immunology; Istituto Nazionale per lo Studio e la cura dei tumori Fondazione Giovanni Pascale IRCCS; Naples Italy
| | | | | | - Giuseppe Cirino
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| | - Angela Ianaro
- Department of Pharmacy; University of Naples Federico II; Naples Italy
| |
Collapse
|
44
|
Zhang J, Guo W. A new fluorescent probe for gasotransmitter H2S: high sensitivity, excellent selectivity, and a significant fluorescence off–on response. Chem Commun (Camb) 2014; 50:4214-7. [DOI: 10.1039/c3cc49605h] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescentoff–onprobe for H2S was exploited by coupling the azide-based strategy with the excited-state intramolecular proton transfer (ESIPT) sensing mechanism.
Collapse
Affiliation(s)
- Jingyu Zhang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006, China
| |
Collapse
|
45
|
Ramalho RT, Aydos RD, Schettert I, Cassino PC. Histopathological evaluation of tumor necrosis and volume after cyanogenic chemotherapy. Acta Cir Bras 2014; 29 Suppl 2:38-42. [DOI: 10.1590/s0102-8650201400140008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Ramalho RT, Aydos RD, Schettert I, Assis PVD, Cassino PC. Sulfane sulfur deficiency in malignant cells, increasing the inhibiting action of acetone cyanohydrin in tumor growth. Acta Cir Bras 2013; 28:728-32. [DOI: 10.1590/s0102-86502013001000007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/12/2013] [Indexed: 11/22/2022] Open
|
47
|
Sulpizio M, Falone S, Amicarelli F, Marchisio M, Di Giuseppe F, Eleuterio E, Di Ilio C, Angelucci S. Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells. J Cell Biochem 2011; 112:3797-806. [DOI: 10.1002/jcb.23310] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Wróbel M, Stipanuk MH, Nagahara N. Sulfur- and seleno-containing amino acids. Amino Acids 2011; 41:1-2. [PMID: 21547360 PMCID: PMC3092933 DOI: 10.1007/s00726-011-0930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maria Wróbel
- Jagiellonian University Medical College, Kopernika 7 St, 31-034 Kraków, Poland
| | - Martha H. Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853 USA
| | - Noriuki Nagahara
- Department of Environmental Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|