1
|
Dai L, Xie Z, Ai T, Jiao Y, Lian X, Long A, Zhang J, Yang G, Hong D. Zinc finger transcription factors BnaSTOP2s regulate sulfur metabolism and confer Sclerotinia sclerotiorum resistance in Brassica napus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:101-116. [PMID: 39503196 DOI: 10.1111/jipb.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Rapeseed (Brassica napus L.) exhibits high-sulfur requirements to achieve optimal growth, development, and pathogen resistance. Despite the importance of sulfur, the mechanisms regulating its metabolism and disease resistance are not fully understood. In this study, we found that the zinc finger transcription factors BnaSTOP2s play a pivotal role in sulfur metabolism and Sclerotinia sclerotiorum resistance. Our findings indicate that BnaSTOP2s are involved in sulfur metabolism, as evidenced by extensive protein interaction screening. BnaSTOP2s knockout reduced the content of essential sulfur-containing metabolites, including glucosinolate and glutathione, which is consistent with the significantly lowered transcriptional levels of BnaMYB28s and BnaGTR2s, key factors involved in glucosinolate synthesis and transportation, respectively. Comprehensive RNA-seq analysis revealed the substantial effect of BnaSTOP2s on sulfur metabolism from roots to siliques, which serve as pivotal sources and sinks for sulfur metabolism, respectively. Furthermore, we found that leaf lesion size significantly decreased and increased in the BnaSTOP2-OE and Bnastop2 mutants, respectively, compared with the wild-type during S. sclerotiorum infection, suggesting a vital role of BnaSTOP2s in plant defense response. In conclusion, BnaSTOP2s act as global regulators of sulfur metabolism and confer resistance to S. sclerotiorum infection in B. napus. Thus, they have potential implications for improving crop resilience.
Collapse
Affiliation(s)
- Lihong Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaoqi Xie
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Tianxu Ai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyi Lian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Angchen Long
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinyun Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| |
Collapse
|
2
|
Willems P, Ndah E, Jonckheere V, Van Breusegem F, Van Damme P. To New Beginnings: Riboproteogenomics Discovery of N-Terminal Proteoforms in Arabidopsis Thaliana. FRONTIERS IN PLANT SCIENCE 2022; 12:778804. [PMID: 35069635 PMCID: PMC8770321 DOI: 10.3389/fpls.2021.778804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Alternative translation initiation is a widespread event in biology that can shape multiple protein forms or proteoforms from a single gene. However, the respective contribution of alternative translation to protein complexity remains largely enigmatic. By complementary ribosome profiling and N-terminal proteomics (i.e., riboproteogenomics), we provide clear-cut evidence for ~90 N-terminal proteoform pairs shaped by (alternative) translation initiation in Arabidopsis thaliana. Next to several cases additionally confirmed by directed mutagenesis, identified alternative protein N-termini follow the enzymatic rules of co-translational N-terminal protein acetylation and initiator methionine removal. In contrast to other eukaryotic models, N-terminal acetylation in plants cannot generally be considered as a proxy of translation initiation because of its posttranslational occurrence on mature proteolytic neo-termini (N-termini) localized in the chloroplast stroma. Quantification of N-terminal acetylation revealed differing co- vs. posttranslational N-terminal acetylation patterns. Intriguingly, our data additionally hints to alternative translation initiation serving as a common mechanism to supply protein copies in multiple cellular compartments, as alternative translation sites are often in close proximity to cleavage sites of N-terminal transit sequences of nuclear-encoded chloroplastic and mitochondrial proteins. Overall, riboproteogenomics screening enables the identification of (differential localized) N-terminal proteoforms raised upon alternative translation.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Elvis Ndah
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Veronique Jonckheere
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Petra Van Damme
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Forieri I, Aref R, Wirtz M, Hell R. Micrografting Provides Evidence for Systemic Regulation of Sulfur Metabolism between Shoot and Root. PLANTS 2021; 10:plants10081729. [PMID: 34451773 PMCID: PMC8402062 DOI: 10.3390/plants10081729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
The uptake of sulfate by roots and its reductive assimilation mainly in the leaves are not only essential for plant growth and development but also for defense responses against biotic and abiotic stresses. The latter functions result in stimulus-induced fluctuations of sulfur demand at the cellular level. However, the maintenance and acclimation of sulfur homeostasis at local and systemic levels is not fully understood. Previous research mostly focused on signaling in response to external sulfate supply to roots. Here we apply micrografting of Arabidopsis wildtype knock-down sir1-1 mutant plants that suffer from an internally lowered reductive sulfur assimilation and a concomitant slow growth phenotype. Homografts of wildtype and sir1-1 confirm the hallmarks of non-grafted sir1-1 mutants, displaying substantial induction of sulfate transporter genes in roots and sulfate accumulation in shoots. Heterografts of wildtype scions and sir1-1 rootstocks and vice versa, respectively, demonstrate a dominant role of the shoot over the root with respect to sulfur-related gene expression, sulfate accumulation and organic sulfur metabolites, including the regulatory compound O-acetylserine. The results provide evidence for demand-driven control of the shoot over the sulfate uptake system of roots under sulfur-sufficient conditions, allowing sulfur uptake and transport to the shoot for dynamic responses.
Collapse
Affiliation(s)
- Ilaria Forieri
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
| | - Rasha Aref
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
| | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
- Correspondence: ; Tel.: +49-6221-54-5334
| |
Collapse
|
4
|
A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nat Commun 2021; 12:1392. [PMID: 33654102 PMCID: PMC7925690 DOI: 10.1038/s41467-021-21282-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway. Contamination of paddy soils can lead to toxic arsenic accumulation in rice grains and low levels of the micronutrient selenium. Here the authors show that a gain of function mutant affecting an O-acetylserine (thiol) lyase enhances sulfur and selenium assimilation while reducing arsenic accumulation in grains.
Collapse
|
5
|
Rashid MHU, Iwasaki H, Oogai S, Fukuta M, Parveen S, Hossain MA, Anai T, Oku H. Molecular characterization of cytosolic cysteine synthase in Mimosa pudica. JOURNAL OF PLANT RESEARCH 2018; 131:319-329. [PMID: 29181648 DOI: 10.1007/s10265-017-0986-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
In the cysteine and mimosine biosynthesis process, O-acetyl-L-serine (OAS) is the common substrate. In the presence of O-acetylserine (thiol) lyase (OASTL, cysteine synthase) the reaction of OAS with sulfide produces cysteine, while with 3-hydroxy-4-pyridone (3H4P) produces mimosine. The enzyme OASTL can either catalyze Cys synthesis or both Cys and mimosine. A cDNA for cytosolic OASTL was cloned from M. pudica for the first time containing 1,410 bp nucleotides. The purified protein product from overexpressed bacterial cells produced Cys only, but not mimosine, indicating it is Cys specific. Kinetic studies revealed that pH and temperature optima for Cys production were 6.5 and 50 °C, respectively. The measured Km, Kcat, and Kcat Km-1 values were 159 ± 21 µM, 33.56 s-1, and 211.07 mM-1s-1 for OAS and 252 ± 25 µM, 32.99 s-1, and 130.91 mM-1s-1 for Na2S according to the in vitro Cys assay. The Cy-OASTL of Mimosa pudica is specific to Cys production, although it contains sensory roles in sulfur assimilation and the reduction network in the intracellular environment of M. pudica.
Collapse
Affiliation(s)
- Md Harun-Ur- Rashid
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Hironori Iwasaki
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Shigeki Oogai
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Masakazu Fukuta
- Graduate School of Agriculture, University of the Ryukyus, Okinawa, Japan.
| | - Shahanaz Parveen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Amzad Hossain
- Graduate School of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
6
|
Rehman HM, Shah ZH, Nawaz MA, Ahmad MQ, Yang SH, Kho KH, Chung G. RETRACTED ARTICLE: Beta-cyanoalanine synthase pathway as a homeostatic mechanism for cyanide detoxification as well as growth and development in higher plants. PLANTA 2017; 245:235. [PMID: 27744484 DOI: 10.1007/s00425-016-2606-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Zahid Hussain Shah
- Department of Arid Land Agriculture, King Abdul-Aziz University, Jeddah, 21577, Saudi Arabia
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 6000, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Kang Hee Kho
- Department of Aquatic Biology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea.
| |
Collapse
|
7
|
Tahir J, Dijkwel P. β-Substituting alanine synthases: roles in cysteine metabolism and abiotic and biotic stress signalling in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:307-323. [PMID: 32480463 DOI: 10.1071/fp15272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/10/2015] [Indexed: 06/11/2023]
Abstract
Cysteine is required for the synthesis of proteins and metabolites, and is therefore an indispensable compound for growth and development. The β-substituting alanine synthase (BSAS) gene family encodes enzymes known as O-acetylserine thiol lyases (OASTLs), which carry out cysteine biosynthesis in plants. The functions of the BSAS isoforms have been reported to be crucial in assimilation of S and cysteine biosynthesis, and homeostasis in plants. In this review we explore the functional variation in this classic pyridoxal-phosphate-dependent enzyme family of BSAS isoforms. We discuss how specialisation and divergence in BSAS catalytic activities makes a more dynamic set of biological routers that integrate cysteine metabolism and abiotic and biotic stress signalling in Arabidopsis thaliana (L.) Heynh. and also other species. Our review presents a universal scenario in which enzymes modulating cysteine metabolism promote survival and fitness of the species by counteracting internal and external stress factors.
Collapse
Affiliation(s)
- Jibran Tahir
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paul Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
8
|
Wang L, Cui S, Ma L, Kong L, Geng X. Current advances in the novel functions of hypoxia-inducible factor and prolyl hydroxylase in invertebrates. INSECT MOLECULAR BIOLOGY 2015; 24:634-648. [PMID: 26387499 DOI: 10.1111/imb.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oxygen is essential for aerobic life, and hypoxia has very severe consequences. Organisms need to overcome low oxygen levels to maintain biological functions during normal development and in disease states. The mechanism underlying the hypoxic response has been widely investigated in model animals such as Drosophila melanogaster and Caenorhabditis elegans. Hypoxia-inducible factor (HIF), a key gene product in the response to oxygen deprivation, is primarily regulated by prolyl hydroxylase domain enzymes (PHDs). However, recent findings have uncovered novel HIF-independent functions of PHDs. This review provides an overview of how invertebrates are able to sustain hypoxic damages, and highlights some recent discoveries in the regulation of cellular signalling by PHDs. Given that some core genes and major pathways are evolutionarily conserved, these research findings could provide insight into oxygen-sensitive signalling in mammals, and have biomedical implications for human diseases.
Collapse
Affiliation(s)
- L Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - S Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Kong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - X Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
9
|
Dinh TV, Bienvenut WV, Linster E, Feldman-Salit A, Jung VA, Meinnel T, Hell R, Giglione C, Wirtz M. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling. Proteomics 2015; 15:2426-35. [PMID: 25951519 PMCID: PMC4692087 DOI: 10.1002/pmic.201500025] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/20/2015] [Accepted: 04/30/2015] [Indexed: 11/07/2022]
Abstract
Protein N(α) -terminal acetylation represents one of the most abundant protein modifications of higher eukaryotes. In humans, six N(α) -acetyltransferases (Nats) are responsible for the acetylation of approximately 80% of the cytosolic proteins. N-terminal protein acetylation has not been evidenced in organelles of metazoans, but in higher plants is a widespread modification not only in the cytosol but also in the chloroplast. In this study, we identify and characterize the first organellar-localized Nat in eukaryotes. A primary sequence-based search in Arabidopsis thaliana revealed seven putatively plastid-localized Nats of which AT2G39000 (AtNAA70) showed the highest conservation of the acetyl-CoA binding pocket. The chloroplastic localization of AtNAA70 was demonstrated by transient expression of AtNAA70:YFP in Arabidopsis mesophyll protoplasts. Homology modeling uncovered a significant conservation of tertiary structural elements between human HsNAA50 and AtNAA70. The in vivo acetylation activity of AtNAA70 was demonstrated on a number of distinct protein N(α) -termini with a newly established global acetylome profiling test after expression of AtNAA70 in E. coli. AtNAA70 predominately acetylated proteins starting with M, A, S and T, providing an explanation for most protein N-termini acetylation events found in chloroplasts. Like HsNAA50, AtNAA70 displays N(ε) -acetyltransferase activity on three internal lysine residues. All MS data have been deposited in the ProteomeXchange with identifier PXD001947 (http://proteomecentral.proteomexchange.org/dataset/PXD001947).
Collapse
Affiliation(s)
- Trinh V Dinh
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Willy V Bienvenut
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Eric Linster
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Hartmut Hoffmann-Berling International Graduate School, University of HeidelbergHeidelberg, Germany
| | - Anna Feldman-Salit
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies gGbmHHeidelberg, Germany
| | - Vincent A Jung
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Rüdiger Hell
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Markus Wirtz
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
10
|
Abstract
In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.
Collapse
Affiliation(s)
- Hannah Birke
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | | | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
11
|
Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. MOLECULAR PLANT 2014; 7:264-76. [PMID: 24285094 DOI: 10.1093/mp/sst168] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.
Collapse
Affiliation(s)
- Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Tahir J, Watanabe M, Jing HC, Hunter DA, Tohge T, Nunes-Nesi A, Brotman Y, Fernie AR, Hoefgen R, Dijkwel PP. Activation of R-mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic O-acetylserine (thiol) lyase in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:118-30. [PMID: 22974487 DOI: 10.1111/tpj.12021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 05/09/2023]
Abstract
O-acetylserine (thiol) lyases (OASTLs) are evolutionarily conserved proteins among many prokaryotes and eukaryotes that perform sulfur acquisition and synthesis of cysteine. A mutation in the cytosolic OASTL-A1 protein ONSET OF LEAF DEATH3 (OLD3) was previously shown to reduce the OASTL activity of the old3-1 protein in vitro and cause auto-necrosis in specific Arabidopsis accessions. Here we investigated why a mutation in this protein causes auto-necrosis in some but not other accessions. The auto-necrosis was found to depend on Recognition of Peronospora Parasitica 1 (RPP1)-like disease resistance R gene(s) from an evolutionarily divergent R gene cluster that is present in Ler-0 but not the reference accession Col-0. RPP1-like gene(s) show a negative epistatic interaction with the old3-1 mutation that is not linked to reduced cysteine biosynthesis. Metabolic profiling and transcriptional analysis further indicate that an effector triggered-like immune response and metabolic disorder are associated with auto-necrosis in old3-1 mutants, probably activated by an RPP1-like gene. However, the old3-1 protein in itself results in largely neutral changes in primary plant metabolism, stress defence and immune responses. Finally, we showed that lack of a functional OASTL-A1 results in enhanced disease susceptibility against infection with virulent and non-virulent Pseudomonas syringae pv. tomato DC3000 strains. These results reveal an interaction between the cytosolic OASTL and components of plant immunity.
Collapse
Affiliation(s)
- Jibran Tahir
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Mutsumi Watanabe
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Hai-Chun Jing
- Centre for Bioenergy Plants Research and Development, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China, and
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Takayuki Tohge
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Yariv Brotman
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Rainer Hoefgen
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Paul P Dijkwel
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
13
|
Álvarez C, García I, Romero LC, Gotor C. Mitochondrial sulfide detoxification requires a functional isoform O-acetylserine(thiol)lyase C in Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:1217-26. [PMID: 22511607 DOI: 10.1093/mp/sss043] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In non-cyanogenic species, the main source of cyanide derives from ethylene and camalexin biosyntheses. In mitochondria, cyanide is a potent inhibitor of the cytochrome c oxidase and is metabolized by the β-cyanoalanine synthase CYS-C1, catalyzing the conversion of cysteine and cyanide to hydrogen sulfide and β-cyanoalanine. The hydrogen sulfide released also inhibits the cytochrome c oxidase and needs to be detoxified by the O-acetylserine(thiol)lyase mitochondrial isoform, OAS-C, which catalyzes the incorporation of sulfide to O-acetylserine to produce cysteine, thus generating a cyclic pathway in the mitochondria. The loss of functional OAS-C isoforms causes phenotypic characteristics very similar to the loss of the CYS-C1 enzyme, showing defects in root hair formation. Genetic complementation with the OAS-C gene rescues the impairment of root hair elongation, restoring the wild-type phenotype. The mitochondria compromise their capacity to properly detoxify cyanide and the resulting sulfide because the latter cannot re-assimilate into cysteine in the oas-c null mutant. Consequently, we observe an accumulation of sulfide and cyanide and of the alternative oxidase, which is unable to prevent the production of reactive oxygen species probably due to the accumulation of both toxic molecules. Our results allow us to suggest that the significance of OAS-C is related to its role in the proper sulfide and cyanide detoxification in mitochondria.
Collapse
Affiliation(s)
- Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | | | | | | |
Collapse
|
14
|
Yi H, Jez JM. Assessing functional diversity in the soybean β-substituted alanine synthase enzyme family. PHYTOCHEMISTRY 2012; 83:15-24. [PMID: 22986002 DOI: 10.1016/j.phytochem.2012.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/12/2012] [Accepted: 08/10/2012] [Indexed: 05/08/2023]
Abstract
In plants, proteins of the β-substituted alanine synthase (BSAS) enzyme family perform a diverse range of reactions, including formation of cysteine from O-acetylserine and sulfide, detoxification of cyanide by its addition to cysteine, the breakdown of cysteine into pyruvate, ammonia, and sulfide, and the synthesis of S-sulfocysteine. With the completed genome sequence of soybean (Glycine max (L.) Merr. cv. Williams 82), the functional diversity of the BSAS in this highly duplicated plant species was examined to determine whether soybean BSAS enzymes catalyze the various reactions connected to cysteine metabolism. The 16 soybean BSAS can be grouped into clades that are similar to those observed in Arabidopsis. Biochemical analysis of soybean BSAS proteins demonstrate that enzymes of clades I and III function as O-acetylserine sulfhydrylases for cysteine synthesis, clade II encodes cysteine desulfhydrase activity, and that clade V proteins function as β-cyanoalanine synthase for cyanide detoxification. Although clade IV is similar to Arabidopsis S-sulfocysteine synthase, this activity was not detected in the soybean homolog. Overall, our results show that bioinformatics approach provides a useful method to assess the biochemical properties of BSAS enzymes in plant species.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | | |
Collapse
|
15
|
Bermúdez MÁ, Galmés J, Moreno I, Mullineaux PM, Gotor C, Romero LC. Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid lumen. PLANT PHYSIOLOGY 2012; 160:274-88. [PMID: 22829322 PMCID: PMC3440205 DOI: 10.1104/pp.112.201491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/20/2012] [Indexed: 05/20/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) chloroplasts contain two O-acetyl-serine(thiol)lyase (OASTL) homologs, OAS-B, which is an authentic OASTL, and CS26, which has S-sulfocysteine synthase activity. In contrast with OAS-B, the loss of CS26 function resulted in dramatic phenotypic changes, which were dependent on the light treatment. We have performed a detailed characterization of the photosynthetic and chlorophyll fluorescence parameters in cs26 plants compared with those of wild-type plants under short-day growth conditions (SD) and long-day growth conditions (LD). Under LD, the photosynthetic characterization, which was based on substomatal CO(2) concentrations and CO(2) concentration in the chloroplast curves, revealed significant reductions in most of the photosynthetic parameters for cs26, which were unchanged under SD. These parameters included net CO(2) assimilation rate, mesophyll conductance, and mitochondrial respiration at darkness. The analysis also showed that cs26 under LD required more absorbed quanta per driven electron flux and fixed CO(2). The nonphotochemical quenching values suggested that in cs26 plants, the excess electrons that are not used in photochemical reactions may form reactive oxygen species. A photoinhibitory effect was confirmed by the background fluorescence signal values under LD and SD, which were higher in young leaves compared with mature ones under SD. To hypothesize the role of CS26 in relation to the photosynthetic machinery, we addressed its location inside of the chloroplast. The activity determination and localization analyses that were performed using immunoblotting indicated the presence of an active CS26 enzyme exclusively in the thylakoid lumen. This finding was reinforced by the observation of marked alterations in many lumenal proteins in the cs26 mutant compared with the wild type.
Collapse
|
16
|
Wirtz M, Beard KFM, Lee CP, Boltz A, Schwarzländer M, Fuchs C, Meyer AJ, Heeg C, Sweetlove LJ, Ratcliffe RG, Hell R. Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants. J Biol Chem 2012; 287:27941-7. [PMID: 22730323 DOI: 10.1074/jbc.m112.372656] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine synthesis is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) in the cytosol, plastids, and mitochondria of plants. Biochemical analyses of recombinant plant SAT and OAS-TL indicate that the reversible association of the proteins in the cysteine synthase complex (CSC) controls cellular sulfur homeostasis. However, the relevance of CSC formation in each compartment for flux control of cysteine synthesis remains controversial. Here, we demonstrate the interaction between mitochondrial SAT3 and OAS-TL C in planta by FRET and establish the role of the mitochondrial CSC in the regulation of cysteine synthesis. NMR spectroscopy of isolated mitochondria from WT, serat2;2, and oastl-C plants showed the SAT-dependent export of OAS. The presence of cysteine resulted in reduced OAS export in mitochondria of oastl-C mutants but not in WT mitochondria. This is in agreement with the stronger in vitro feedback inhibition of free SAT by cysteine compared with CSC-bound SAT and explains the high OAS export rate of WT mitochondria in the presence of cysteine. The predominant role of mitochondrial OAS synthesis was validated in planta by feeding [(3)H]serine to the WT and loss-of-function mutants for OAS-TLs in the cytosol, plastids, and mitochondria. On the basis of these results, we propose a new model in which the mitochondrial CSC acts as a sensor that regulates the level of SAT activity in response to sulfur supply and cysteine demand.
Collapse
Affiliation(s)
- Markus Wirtz
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Birke H, Müller SJ, Rother M, Zimmer AD, Hoernstein SNW, Wesenberg D, Wirtz M, Krauss GJ, Reski R, Hell R. The relevance of compartmentation for cysteine synthesis in phototrophic organisms. PROTOPLASMA 2012; 249 Suppl 2:S147-55. [PMID: 22543690 DOI: 10.1007/s00709-012-0411-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/10/2012] [Indexed: 05/18/2023]
Abstract
In the vascular plant Arabidopsis thaliana, synthesis of cysteine and its precursors O-acetylserine and sulfide is distributed between the cytosol, chloroplasts, and mitochondria. This compartmentation contributes to regulation of cysteine synthesis. In contrast to Arabidopsis, cysteine synthesis is exclusively restricted to chloroplasts in the unicellular green alga Chlamydomonas reinhardtii. Thus, the question arises, whether specification of compartmentation was driven by multicellularity and specified organs and tissues. The moss Physcomitrella patens colonizes land but is still characterized by a simple morphology compared to vascular plants. It was therefore used as model organism to study evolution of compartmented cysteine synthesis. The presence of O-acetylserine(thiol)lyase (OAS-TL) proteins, which catalyze the final step of cysteine synthesis, in different compartments was applied as criterion. Purification and characterization of native OAS-TL proteins demonstrated the presence of five OAS-TL protein species encoded by two genes in Physcomitrella. At least one of the gene products is dual targeted to plastids and cytosol, as shown by combination of GFP fusion localization studies, purification of chloroplasts, and identification of N termini from native proteins. The bulk of OAS-TL protein is targeted to plastids, whereas there is no evidence for a mitochondrial OAS-TL isoform and only a minor part of OAS-TL protein is localized in the cytosol. This demonstrates that subcellular diversification of cysteine synthesis is already initialized in Physcomitrella but appears to gain relevance later during evolution of vascular plants.
Collapse
Affiliation(s)
- Hannah Birke
- Centre for Organismal Studies Heidelberg, Department Plant Molecular Biology, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ma DK, Vozdek R, Bhatla N, Horvitz HR. CYSL-1 interacts with the O2-sensing hydroxylase EGL-9 to promote H2S-modulated hypoxia-induced behavioral plasticity in C. elegans. Neuron 2012; 73:925-40. [PMID: 22405203 PMCID: PMC3305813 DOI: 10.1016/j.neuron.2011.12.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2011] [Indexed: 12/17/2022]
Abstract
The C. elegans HIF-1 proline hydroxylase EGL-9 functions as an O(2) sensor in an evolutionarily conserved pathway for adaptation to hypoxia. H(2)S accumulates during hypoxia and promotes HIF-1 activity, but how H(2)S signals are perceived and transmitted to modulate HIF-1 and animal behavior is unknown. We report that the experience of hypoxia modifies a C. elegans locomotive behavioral response to O(2) through the EGL-9 pathway. From genetic screens to identify novel regulators of EGL-9-mediated behavioral plasticity, we isolated mutations of the gene cysl-1, which encodes a C. elegans homolog of sulfhydrylases/cysteine synthases. Hypoxia-dependent behavioral modulation and H(2)S-induced HIF-1 activation require the direct physical interaction of CYSL-1 with the EGL-9 C terminus. Sequestration of EGL-9 by CYSL-1 and inhibition of EGL-9-mediated hydroxylation by hypoxia together promote neuronal HIF-1 activation to modulate behavior. These findings demonstrate that CYSL-1 acts to transduce signals from H(2)S to EGL-9 to regulate O(2)-dependent behavioral plasticity in C. elegans.
Collapse
Affiliation(s)
- Dengke K. Ma
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - Roman Vozdek
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Hell R, Wirtz M. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0154. [PMID: 22303278 PMCID: PMC3268551 DOI: 10.1199/tab.0154] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cysteine is one of the most versatile molecules in biology, taking over such different functions as catalysis, structure, regulation and electron transport during evolution. Research on Arabidopsis has contributed decisively to the understanding of cysteine synthesis and its role in the assimilatory pathways of S, N and C in plants. The multimeric cysteine synthase complex is present in the cytosol, plastids and mitochondria and forms the centre of a unique metabolic sensing and signaling system. Its association is reversible, rendering the first enzyme of cysteine synthesis active and the second one inactive, and vice-versa. Complex formation is triggered by the reaction intermediates of cysteine synthesis in response to supply and demand and gives rise to regulation of genes of sulfur metabolism to adjust cellular sulfur homeostasis. Combinations of biochemistry, forward and reverse genetics, structural- and cell-biology approaches using Arabidopsis have revealed new enzyme functions and the unique pattern of spatial distribution of cysteine metabolism in plant cells. These findings place the synthesis of cysteine in the centre of the network of primary metabolism.
Collapse
Affiliation(s)
- Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| |
Collapse
|