1
|
Singh A, Prakash A, Mishra J, Luthra PM. Discovery of novel A 2AR antagonist via 3D-QSAR pharmacophore modeling: neuroprotective effects in 6-OHDA-induced SH-SY5Y cells and haloperidol-induced Parkinsonism in C57 bl/6 mice. Mol Divers 2025:10.1007/s11030-025-11120-x. [PMID: 39899125 DOI: 10.1007/s11030-025-11120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder which is caused by abrupt degeneration of dopaminergic neuronal cells in the substantia nigra pars compacta (SNPc) area of the midbrain. Adenosine A2A receptors have become promising therapeutic targets for PD; however, many A2A receptor antagonists face challenges, such as limited accessibility or failure in clinical trials due to poor selectivity and bioavailability. To identify novel A2A receptor antagonists, a 3D-QSAR-pharmacophore modeling approach was employed, involving virtual screening of ZINC, NCI, and MayBridge databases. The virtual hits were filtered via ADMET criteria to select compounds with favorable bioavailability and solubility profiles. From the MayBridge database, a potent monocyclic A2A receptor antagonist, AW00032 (N-(furan-2-ylmethyl)-5-methylthiazole-4-yl) thiophene-2-sulfonamide, was identified. AW00032 possessed key pharmacophoric features: two lipophilic hydrogen bond acceptors, one hydrophobic aliphatic/aromatic group, and one aromatic ring. Docking analysis revealed AW00032 had a strong binding affinity for A2A receptors (1.23 nM, ∆G - 10.49 kcal/mol), and its ADMET profile indicated good bioavailability. In 6-OHDA induced SH-SY5Y cells, AW00032 increased dopamine levels and tyrosine hydroxylase (TH) expression, demonstrating its potential as an A2A receptor antagonist. AW00032, discovered through 3D-QSAR pharmacophore modeling, also reduced reactive oxygen species (ROS) levels and showed depletion in mitochondrial dysfunction in 6-OHDA-induced SH-SY5Y cells. It exhibited A2A receptor antagonist activity comparable to the standard antagonist ZM241385, partially restoring dopamine and TH levels. Furthermore, AW00032 improved behavioral symptoms in haloperidol-induced C-57 bl/6 mice.
Collapse
Affiliation(s)
- Ankit Singh
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Amresh Prakash
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Jyoti Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Nandi R, Bhowmik D, Srivastava R, Prakash A, Kumar D. Discovering potential inhibitors against SARS-CoV-2 by targeting Nsp13 Helicase. J Biomol Struct Dyn 2022; 40:12062-12074. [PMID: 34455933 DOI: 10.1080/07391102.2021.1970024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rise in the incidence of COVID-19 as a result of SARS-CoV-2 infection has threatened public health globally. Till now, there have been no proper prophylactics available to fight COVID-19, necessitating the advancement and evolution of effective curative against SARS-CoV-2. This study aimed at the nonstructural protein 13 (nsp13) helicase as a promising target for drug development against COVID-19. A unique collection of nucleoside analogs was screened against the SARS-CoV-2 helicase protein, for which a molecular docking experiment was executed to depict the selected ligand's binding affinity with the SARS-CoV-2 helicase proteins. Simultaneously, molecular dynamic simulations were performed to examine the protein's binding site's conformational stability, flexibility, and interaction with the ligands. Key nucleoside ligands were selected for pharmacokinetic analysis based on their docking scores. Selected ligands (cordycepin and pritelivir) showed excellent pharmacokinetics and were well stabilized at the proteins' binding site throughout the MD simulation. We have also performed binding free energy analysis or the binding characteristics of ligands with Nsp13 by using MM-PBSA and MM-GBSA. Free energy calculation by MM-PBSA and MM-GBSA analysis suggests that pritelivir may work as viable therapeutics for efficient drug advancement against SARS-CoV-2 Nsp13 helicase, potentially arresting the SARS-CoV-2 replication.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajat Nandi
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Deep Bhowmik
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Rakesh Srivastava
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
3
|
Kumar N, Srivastava R, Mongre RK, Mishra CB, Kumar A, Khatoon R, Banerjee A, Ashraf-Uz-Zaman M, Singh H, Lynn AM, Lee MS, Prakash A. Identifying the Novel Inhibitors Against the Mycolic Acid Biosynthesis Pathway Target "mtFabH" of Mycobacterium tuberculosis. Front Microbiol 2022; 13:818714. [PMID: 35602011 PMCID: PMC9121832 DOI: 10.3389/fmicb.2022.818714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Mycolic acids are the key constituents of mycobacterial cell wall, which protect the bacteria from antibiotic susceptibility, helping to subvert and escape from the host immune system. Thus, the enzymes involved in regulating and biosynthesis of mycolic acids can be explored as potential drug targets to kill Mycobacterium tuberculosis (Mtb). Herein, Kyoto Encyclopedia of Genes and Genomes is used to understand the fatty acid metabolism signaling pathway and integrative computational approach to identify the novel lead molecules against the mtFabH (β-ketoacyl-acyl carrier protein synthase III), the key regulatory enzyme of the mycolic acid pathway. The structure-based virtual screening of antimycobacterial compounds from ChEMBL library against mtFabH results in the selection of 10 lead molecules. Molecular binding and drug-likeness properties of lead molecules compared with mtFabH inhibitor suggest that only two compounds, ChEMBL414848 (C1) and ChEMBL363794 (C2), may be explored as potential lead molecules. However, the spatial stability and binding free energy estimation of thiolactomycin (TLM) and compounds C1 and C2 with mtFabH using molecular dynamics simulation, followed by molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) indicate the better activity of C2 (ΔG = -14.18 kcal/mol) as compared with TLM (ΔG = -9.21 kcal/mol) and C1 (ΔG = -13.50 kcal/mol). Thus, compound C1 may be explored as promising drug candidate for the structure-based drug designing of mtFabH inhibitors in the therapy of Mtb.
Collapse
Affiliation(s)
- Niranjan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Srivastava
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Raj Kumar Mongre
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women’s University, Seoul, South Korea
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Chandra Bhushan Mishra
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| | - Amit Kumar
- Indian Council of Medical Research–Computational Genomics Centre, All India Institute of Medical Research, New Delhi, India
- Amity Institute of Integrative Sciences and Health, Amity University, Gurugram, India
| | - Rosy Khatoon
- Amity Institute of Biotechnology, Amity University, Gurugram, India
| | - Atanu Banerjee
- Amity Institute of Biotechnology, Amity University, Gurugram, India
| | - Md Ashraf-Uz-Zaman
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| | - Harpreet Singh
- Indian Council of Medical Research–Computational Genomics Centre, All India Institute of Medical Research, New Delhi, India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women’s University, Seoul, South Korea
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University, Gurugram, India
| |
Collapse
|
4
|
Yalcin-Ozkat G, Ersan RH, Ulger M, Ulger ST, Burmaoglu S, Yildiz I, Algul O. Design, synthesis, and computational studies of benzimidazole derivatives as new antitubercular agents. J Biomol Struct Dyn 2022; 41:2667-2686. [PMID: 35132948 DOI: 10.1080/07391102.2022.2036241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The increase in the drug-resistant strains of Mycobacterium tuberculosis has led researchers to new drug targets. The development of new compounds that have effective inhibitory properties with the selective vital structure of Mycobacterium tuberculosis is required in new scientific approaches. The most important of these approaches is the development of inhibitor molecules for Mycobacterium cell wall targets. In this study, first of all, the antitubercular activity of 23 benzimidazole derivatives was experimentally determined. And then molecular docking studies were carried out with 4 different targets: Arabinosyltransferase C (EmbC), Filamentous Temperature Sensitive Mutant Z (FtsZ), Protein Tyrosine Phosphatase B (PtpB), and Decaprenylphosphoryl-β-D-ribose-2'-oxidase (DprE1). It has been determined that benzimidazole derivatives show activity through the DprE1 enzyme. It is known that DprE1, which has an important role in the synthesis of the cell envelope from Arabinogalactan, is also effective in the formation of drug resistance. Due to this feature, the DprE1 enzyme has become an important target for drug development studies. Also, it was chosen as a target for this study. This study aims to identify molecules that inhibit DprE1 for the development of more potent and selective antitubercular drugs. For this purpose, molecular docking studies by AutoDock Vina, and CDOCKER and molecular dynamics (MD) simulations and in silico ADME/Tox analysis were implemented for 23 molecules. The molecules exhibited binding affinity values of less than -8.0 kcal/mol. After determining the compound's anti-TB activities by a screening test, the best-docked results were detected using compounds 20, 21, and 30. It was found that 21, was the best molecule with its binding affinity value, which was supported by MD simulations and in silico ADME modeling results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gozde Yalcin-Ozkat
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Magdeburg, Germany
- Faculty of Engineering, Bioengineering Department, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ronak H. Ersan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
- Department of Medical Laboratory, Cihan University, Duhok, Iraq
| | - Mahmut Ulger
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seda T. Ulger
- Department of Medical Microbiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ilkay Yildiz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
5
|
Khater S, Kumar P, Dasgupta N, Das G, Ray S, Prakash A. Combining SARS-CoV-2 Proofreading Exonuclease and RNA-Dependent RNA Polymerase Inhibitors as a Strategy to Combat COVID-19: A High-Throughput in silico Screening. Front Microbiol 2021; 12:647693. [PMID: 34354677 PMCID: PMC8329495 DOI: 10.3389/fmicb.2021.647693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people worldwide. Currently, many clinical trials in search of effective COVID-19 drugs are underway. Viral RNA-dependent RNA polymerase (RdRp) remains the target of choice for prophylactic or curative treatment of COVID-19. Nucleoside analogs are the most promising RdRp inhibitors and have shown effectiveness in vitro, as well as in clinical settings. One limitation of such RdRp inhibitors is the removal of incorporated nucleoside analogs by SARS-CoV-2 exonuclease (ExoN). Thus, ExoN proofreading activity accomplishes resistance to many of the RdRp inhibitors. We hypothesize that in the absence of highly efficient antivirals to treat COVID-19, combinatorial drug therapy with RdRp and ExoN inhibitors will be a promising strategy to combat the disease. To repurpose drugs for COVID-19 treatment, 10,397 conformers of 2,240 approved drugs were screened against the ExoN domain of nsp14 using AutoDock VINA. The molecular docking approach and detailed study of interactions helped us to identify dexamethasone metasulfobenzoate, conivaptan, hesperidin, and glycyrrhizic acid as potential inhibitors of ExoN activity. The results were further confirmed using molecular dynamics (MD) simulations and molecular mechanics combined with generalized Born model and solvent accessibility method (MM-GBSA) calculations. Furthermore, the binding free energy of conivaptan and hesperidin, estimated using MM-GBSA, was -85.86 ± 0.68 and 119.07 ± 0.69 kcal/mol, respectively. Based on docking, MD simulations and known antiviral activities, and conivaptan and hesperidin were identified as potential SARS-CoV-2 ExoN inhibitors. We recommend further investigation of this combinational therapy using RdRp inhibitors with a repurposed ExoN inhibitor as a potential COVID-19 treatment.
Collapse
Affiliation(s)
- Shradha Khater
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- miBiome Therapeutics LLP, Mumbai, India
| | - Pawan Kumar
- National Institute of Immunology, New Delhi, India
| | | | | | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| |
Collapse
|
6
|
Mishra CB, Pandey P, Sharma RD, Malik MZ, Mongre RK, Lynn AM, Prasad R, Jeon R, Prakash A. Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: an integrated computational approach. Brief Bioinform 2021; 22:1346-1360. [PMID: 33386025 PMCID: PMC7799228 DOI: 10.1093/bib/bbaa378] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023] Open
Abstract
The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic. Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, whichare crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection. Virtual screening of 75 FDA-approved potential antiviral drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target proteins. Further, the molecular interactions determined by molecular dynamics simulation revealed that among the 75 drug molecules, catechin can effectively bind to 3CLpro, CTSL, RBD of S protein, NSP6 and nucleocapsid protein. It is more conveniently involved in key molecular interactions, showing binding free energy (ΔGbind) in the range of -5.09 kcal/mol (CTSL) to -26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized by the hydrophobic interactions, displays ΔEvdW values: -7.59 to -37.39 kcal/mol. Thus, the structural insights of better binding affinity and favorable molecular interaction of catechin toward multiple target proteins signify that catechin can be potentially explored as a multi-targeted agent against COVID-19.
Collapse
Affiliation(s)
| | - Preeti Pandey
- Department of Chemistry & Biochemistry, University of Oklahoma, OK, USA
| | | | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Raj Kumar Mongre
- College of Pharmacy, Sookmyung Women’s University, Seoul, South Korea
| | - Andrew M Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology and is the dean of Faculty of Science Engineering and Technology, Amity University Haryana, Haryana 122413, India
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women’s University, Seoul, South Korea
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity Institute of Integrative Sciences and Health, Amity University, Haryana
| |
Collapse
|
7
|
Saha S, Nandi R, Vishwakarma P, Prakash A, Kumar D. Discovering Potential RNA Dependent RNA Polymerase Inhibitors as Prospective Drugs Against COVID-19: An in silico Approach. Front Pharmacol 2021; 12:634047. [PMID: 33716752 PMCID: PMC7952625 DOI: 10.3389/fphar.2021.634047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
COVID-19, caused by Severe Acute Respiratory Syndrome Corona Virus 2, is declared a Global Pandemic by WHO in early 2020. In the present situation, though more than 180 vaccine candidates with some already approved for emergency use, are currently in development against SARS-CoV-2, their safety and efficacy data is still in a very preliminary stage to recognize them as a new treatment, which demands an utmost emergency for the development of an alternative anti-COVID-19 drug sine qua non for a COVID-19 free world. Since RNA-dependent RNA polymerase (RdRp) is an essential protein involved in replicating the virus, it can be held as a potential drug target. We were keen to explore the plant-based product against RdRp and analyze its inhibitory potential to treat COVID-19. A unique collection of 248 plant compounds were selected based on their antiviral activity published in previous literature and were subjected to molecular docking analysis against the catalytic sub-unit of RdRp. The docking study was followed by a pharmacokinetics analysis and molecular dynamics simulation study of the selected best-docked compounds. Tellimagrandin I, SaikosaponinB2, Hesperidin and (-)-Epigallocatechin Gallate were the most prominent ones that showed strong binding affinity toward RdRp. All the compounds mentioned showed satisfactory pharmacokinetics properties and remained stabilized at their respective binding sites during the Molecular dynamics simulation. Additionally, we calculated the free-binding energy/the binding properties of RdRp-ligand complexes with the connection of MM/GBSA. Interestingly, we observe that SaikosaponinB2 gives the best binding affinity (∆Gbinding = -42.43 kcal/mol) in the MM/GBSA assay. Whereas, least activity is observed for Hesperidin (∆Gbinding = -22.72 kcal/mol). Overall our study unveiled the feasibility of the SaikosaponinB2 to serve as potential molecules for developing an effective therapy against COVID-19 by inhibiting one of its most crucial replication proteins, RdRp.
Collapse
Affiliation(s)
- Satabdi Saha
- Department of Microbiology, Assam University, Silchar, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
8
|
Bhowmik D, Sharma RD, Prakash A, Kumar D. "Identification of Nafamostat and VR23 as COVID-19 drug candidates by targeting 3CL pro and PL pro.". J Mol Struct 2021; 1233:130094. [PMID: 33612858 PMCID: PMC7884051 DOI: 10.1016/j.molstruc.2021.130094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023]
Abstract
The sudden increase in the COVID-19 epidemic affected by novel coronavirus 2019 has jeopardized public health worldwide. Hence the necessities of a drug or therapeutic agent that heal SARS-CoV-2 infections are essential requirements. The viral genome encodes a large Polyprotein, further processed by the main protease/ 3C-like protease (3CLpro) and papain-like proteases (PLpro) into 16 nonstructural proteins to form a viral replication complex. These essential functions of 3CLpro and PLpro in virus duplication make these proteases a promising target for discovering potential therapeutic candidates and possible treatment for SARS-CoV-2 infection. This study aimed to screen a unique set of protease inhibitors library against 3CLpro and PLpro of the SARS-CoV-2. A molecular docking study was performed using PyRx to reveal the binding affinity of the selected ligands and molecular dynamic simulations were executed to assess the three-dimensional stability of protein-ligand complexes. The pharmacodynamics parameters of the inhibitors were predicted using admetSAR. The top two ligands (Nafamostat and VR23) based on docking scores were selected for further studies. Selected ligands showed excellent pharmacokinetic properties with proper absorption, bioavailability and minimal toxicity. Due to the emerging and efficiency of remdesivir and dexamethasone in healing COVID-19 patients, ADMET properties of the selected ligands were thus compared with it. MD Simulation studies up to 100 ns revealed the ligands' stability at the target proteins' binding site residues. Therefore, Nafamostat and VR23 may provide potential treatment options against SARS-CoV-2 infections by potentially inhibiting virus duplication though more research is warranted.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar-788011, Assam, India
| | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon-122413, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon-122413, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
9
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
10
|
Virtual screening and free energy estimation for identifying Mycobacterium tuberculosis flavoenzyme DprE1 inhibitors. J Mol Graph Model 2020; 102:107770. [PMID: 33065513 DOI: 10.1016/j.jmgm.2020.107770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023]
Abstract
In Mycobacterium tuberculosis (MTB), the cell wall synthesis flavoenzyme decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) plays a crucial role in host pathogenesis, virulence, lethality and survival under stress. The emergence of different variants of drug resistant MTB are a major threat worldwide which essentially requires more effective new drug molecules with no major side effects. Here, we used structure based virtual screening of bioactive molecules from the ChEMBL database targeting DprE1, having bioactive 78,713 molecules known for anti-tuberculosis activity. An extensive molecular docking, binding affinity and pharmacokinetics profile filtering results in the selection four compounds, C5 (ChEMBL2441313), C6 (ChEMBL2338605), C8 (ChEMBL441373) and C10 (ChEMBL1607606) which may explore as potential drug candidates. The obtained results were validated with thirteen known DprE1 inhibitors. We further estimated the free-binding energy, solvation and entropy terms underlying the binding properties of DprE1-ligand interactions with the implication of MD simulation, MM/GBSA, MM/PBSA and MM/3D-RISM. Interestingly, we find that C6 shows the highest ΔG scores (-41.28 ± 3.51, -22.36 ± 3.17, -10.33 ± 5.70 kcal mol-1) in MM/GBSA, MM/PBSA and MM/3D-RISM assay, respectively. Whereas, the lowest ΔG scores (-35.31 ± 3.44, -13.67 ± 2.65, -3.40 ± 4.06 kcal mol-1) observed for CT319, the inhibitor co-crystallized with DprE1. Collectively, the results demonstrated that hit-molecules: C5, C6, C8 and C10 having better binding free energy and molecular affinity as compared to CT319. Thus, we proposed that selected compounds may be explored as lead molecules in MTB therapy.
Collapse
|
11
|
Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, Ray S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn 2020; 39:6306-6316. [PMID: 32698689 PMCID: PMC7441770 DOI: 10.1080/07391102.2020.1796811] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spike glycoprotein, a class I fusion protein harboring the surface of SARS-CoV-2
(SARS-CoV-2S), plays a seminal role in the viral infection starting from recognition of
the host cell surface receptor, attachment to the fusion of the viral envelope with the
host cells. Spike glycoprotein engages host Angiotensin-converting enzyme 2 (ACE2)
receptors for entry into host cells, where the receptor recognition and attachment of
spike glycoprotein to the ACE2 receptors is a prerequisite step and key determinant of the
host cell and tissue tropism. Binding of spike glycoprotein to the ACE2 receptor triggers
a cascade of structural transitions, including transition from a metastable pre-fusion to
a post-fusion form, thereby allowing membrane fusion and internalization of the virus.
From ancient times people have relied on naturally occurring substances like
phytochemicals to fight against diseases and infection. Among these phytochemicals,
flavonoids and non-flavonoids have been the active sources of different anti-microbial
agents. We performed molecular docking studies using 10 potential naturally occurring
compounds (flavonoids/non-flavonoids) against the SARS-CoV-2 spike protein and compared
their affinity with an FDA approved repurposed drug hydroxychloroquine (HCQ). Further, our
molecular dynamics (MD) simulation and energy landscape studies with fisetin, quercetin,
and kamferol revealed that these molecules bind with the hACE2-S complex with low binding
free energy. The study provided an indication that these molecules might have the
potential to perturb the binding of hACE2-S complex. In addition, ADME analysis also
suggested that these molecules consist of drug-likeness property, which may be further
explored as anti-SARS-CoV-2 agents. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Preeti Pandey
- Department of Chemistry & Biochemistry, University of Oklahoma, OK, USA
| | - Jitendra Subhash Rane
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Aroni Chatterjee
- Indian Council of Medical Research (ICMR)-Virus Research Laboratory, NICED, Kolkata, India
| | - Abhijeet Kumar
- Department of Chemistry, Mahatma Gandhi Central University, Motihari, India
| | - Rajni Khan
- Motihari College of Engineering, Motihari, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
12
|
Rane JS, Pandey P, Chatterjee A, Khan R, Kumar A, Prakash A, Ray S. Targeting virus-host interaction by novel pyrimidine derivative: an in silico approach towards discovery of potential drug against COVID-19. J Biomol Struct Dyn 2020; 39:5768-5778. [PMID: 32684109 PMCID: PMC7441775 DOI: 10.1080/07391102.2020.1794969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The entire human population over the globe is currently facing appalling conditions due
to the spread of infection from coronavirus disease-2019 (COVID-19). The spike
glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present on
the surface of the virion mediates the virus entry into the host cells and therefore is
targeted by several scientific groups as a novel drug target site. The spike glycoprotein
binds to the human angiotensin-converting enzyme-2 (hACE2) cell surface receptor
abundantly expressed in lung tissues, and this binding phenomenon is a primary determinant
of cell tropism and pathogenesis. The binding and internalization of the virus is the
primary and most crucial step in the process of infection, and therefore the molecules
targeting the inhibition of this process certainly hold a significant therapeutic value.
Thus, we systematically applied the computational techniques to identify the plausible
inhibitor from a chosen set of well characterized diaryl pyrimidine analogues which may
disrupt interfacial interaction of spike glycoprotein (S) at the surface of hACE2. Using
molecular docking, molecular dynamics (MD) simulation and binding free energy calculation,
we have identified AP-NP (2-(2-amino-5-(naphthalen-2-yl)pyrimidin-4-yl)phenol),
AP-3-OMe-Ph (2-(2-amino-5-(3-methoxyphenyl)pyrimidin-4-yl)phenol) and AP-4-Me-Ph
(2-(2-amino-5-(p-tolyl) pyrimidin-4-yl)phenol) from a group of diaryl pyrimidine
derivatives which appears to bind at the interface of the hACE2-S complex with low binding
free energy. Thus, pyrimidine derivative AP-NP may be explored as an effective inhibitor
for hACE2-S complex. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as
suitable drug candidates against SARS-COV-2. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Jitendra Subhash Rane
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Preeti Pandey
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Aroni Chatterjee
- Indian Council of Medical Research (ICMR)-Virus Research Laboratory, NICED, Kolkata, India
| | - Rajni Khan
- Motihari College of Engineering, Motihari, India
| | - Abhijeet Kumar
- Department of Chemistry, Mahatma Gandhi Central University, Motihari, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
13
|
Singh R, Meena NK, Das T, Sharma RD, Prakash A, Lynn AM. Delineating the conformational dynamics of intermediate structures on the unfolding pathway of β-lactoglobulin in aqueous urea and dimethyl sulfoxide. J Biomol Struct Dyn 2019; 38:5027-5036. [PMID: 31744390 DOI: 10.1080/07391102.2019.1695669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The funnel shaped energy landscape model of the protein folding suggests that progression of folding proceeds through multiple pathways, having the multiple intermediates which leads to multidimensional free-energy surface. Herein, we applied all-atom MD simulation to conduct a comparative study on the structure of β-lactoglobulin (β-LgA) in aqueous mixture of 8 M urea and 8 M dimethyl sulfoxide (DMSO), at different temperatures. The cumulative results of multiple simulations suggest a common unfolding pathway of β-LgA, occurred through the stable and meta-stable intermediates (I), in both urea and DMSO. However, the free-energy landscape (FEL) analyses show that the structural transitions of I-states are energetically different. In urea, FEL shows distinct ensemble of intermediates, I1 and I2, separated by the energy barrier of ∼3.0 kcal mol-1. Similarly, we find the population of two distinct I1 and I2 states in DMSO, however, the I1 appeared transiently around ∼30-35 ns and is short-lived. But, the I2 ensemble is observed structurally compact and long-lived (∼50-150 ns) as compared to unfolding in urea. Furthermore, the I1 and I2 are separated through a high energy barrier of ∼6.0 kcal mol-1. Thus, our results provide the structural insights of intermediates which essentially bear the signature of a different unfolding pathway of β-LgA in urea and DMSO.Abbreviationsβ-LgAβ-lactoglobulinDMSOdimethyl sulfoxideFELfree-energy landscapeGdmClguanidinium chlorideIintermediate stateMGmolten globule statePMEparticle mesh EwaldQfraction of native contactsRMSDroot mean square deviationRMSFroot mean square fluctuationRgradius of gyrationSASAsolvent Accessible Surface AreascSASAthe side chain SASATrptryptophanCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ruhar Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naveen Kumar Meena
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Trishala Das
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University, Haryana, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University, Haryana, India
| | - Andrew M Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
14
|
Pandey P, Meena NK, Prakash A, Kumar V, Lynn AM, Ahmad F. Characterization of heterogeneous intermediate ensembles on the guanidinium chloride-induced unfolding pathway of β-lactoglobulin. J Biomol Struct Dyn 2019; 38:1042-1053. [PMID: 30880641 DOI: 10.1080/07391102.2019.1593245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Folding pathway of β-LgA (β-lactoglobulin) evolves through the conformational α→β transition. The α→β transition is a molecular hallmark of various neurodegenerative diseases. Thus, β-LgA may serve as a good model for understanding molecular mechanism of protein aggregation involved in neurodegenerative diseases. Here, we studied the conformational dynamics of β-LgA in 6 M GdmCl at different temperatures using MD simulations. Structural order parameters such as RMSD, Rg, SASA, native contacts (Q), hydrophobic distal-matrix and free-energy landscape (FEL) were used to investigate the conformational transitions. Our results show that GdmCl destabilizes secondary and tertiary structure of β-LgA by weakening the hydrophobic interactions and hydrogen bond network. Multidimensional FEL shows the presence of different unfolding intermediates at 400 K. I1 is long-lived intermediate which has mostly intact native secondary structure, but loose tertiary structure. I2 is structurally compact intermediate formed after the partial loss of secondary structure. The transiently and infrequently buried evolution of W19 shows that intermediate conformational ensembles are structurally heterogeneous. We observed that the intermediate conformations are largely stabilized by non-native H-bonds. The outcome of this work provides the molecular details of intermediates trapped due to non-native interactions that may be regarded as pathogenic conformations involved in neurodegenerative diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Pandey
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naveen Kumar Meena
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amresh Prakash
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Andrew M Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Faizan Ahmad
- Jamia Millia Islamia, Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| |
Collapse
|
15
|
Liao C, Zhao X, Liu J, Schneebeli ST, Shelley JC, Li J. Capturing the multiscale dynamics of membrane protein complexes with all-atom, mixed-resolution, and coarse-grained models. Phys Chem Chem Phys 2018; 19:9181-9188. [PMID: 28317993 DOI: 10.1039/c7cp00200a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The structures and dynamics of protein complexes are often challenging to model in heterogeneous environments such as biological membranes. Herein, we meet this fundamental challenge at attainable cost with all-atom, mixed-resolution, and coarse-grained models of vital membrane proteins. We systematically simulated five complex models formed by two distinct G protein-coupled receptors (GPCRs) in the lipid-bilayer membrane on the ns-to-μs timescales. These models, which suggest the swinging motion of an intracellular loop, for the first time, provide the molecular details for the regulatory role of such a loop. For the models at different resolutions, we observed consistent structural stability but various levels of speed-ups in protein dynamics. The mixed-resolution and coarse-grained models show two and four times faster protein diffusion than the all-atom models, in addition to a 4- and 400-fold speed-up in the simulation performance. Furthermore, by elucidating the strengths and challenges of combining all-atom models with reduced resolution models, this study can serve as a guide to simulating other complex systems in heterogeneous environments efficiently.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA.
| | - Xiaochuan Zhao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA.
| | - Jiyuan Liu
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA.
| | | | - John C Shelley
- Schrödinger, Inc., 101 SW Main Street, Suite 1300, Portland, OR 97204, USA
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
16
|
Prakash A, Dixit G, Meena NK, Singh R, Vishwakarma P, Mishra S, Lynn AM. Elucidation of stable intermediates in urea-induced unfolding pathway of human carbonic anhydrase IX. J Biomol Struct Dyn 2017; 36:2391-2406. [DOI: 10.1080/07391102.2017.1355847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amresh Prakash
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gunjan Dixit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Naveen Kumar Meena
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ruhar Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Smriti Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
17
|
Abstract
The limited sequence similarity of protein sequences with known structures has led to an indispensable need for computational technology to predict their structures. Structural bioinformatics (SB) has become integral in elucidating the sequence-structure-function relationship of a protein. This report focuses on the applications of SB within the context of protein engineering including its limitation and future challenges.
Collapse
Affiliation(s)
- Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia,
| | | | | |
Collapse
|