1
|
García-Valencia LE, Garza-Aguilar SM, Ramos-Parra PA, Díaz de la Garza RI. Planting resilience: One-Carbon metabolism and stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109966. [PMID: 40319586 DOI: 10.1016/j.plaphy.2025.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
One-carbon (1C) metabolism is a central biochemical pathway that plays a crucial role in methylation reactions, amino acid synthesis, and nucleotide production, making it essential for plant growth. Recent advances in omics technologies, including transcriptomics, proteomics, and metabolomics, have provided comprehensive insights into the regulation of 1C metabolism in wheat, one of the world's main crops, and in the model plant Arabidopsis. Genetic manipulation through overexpression and loss-of-function studies has further revealed the roles of specific genes in modulating 1C fluxes and regulating key intermediates, such as methionine, S-adenosyl methionine, and folates. These studies have also demonstrated changes in methylation patterns as well as disruptions in growth and nutrient homeostasis. The integration of these analyses has highlighted complex feedback mechanisms within 1C metabolism that coordinate responses to environmental and developmental signals. Notably, enzymes such as serine hydroxymethyltransferase and S-adenosylmethionine synthetase have emerged as critical nodes, linking 1C metabolism with broader metabolic networks, including nitrogen and sulfur metabolism. This review synthesizes findings from recent omics and genetic studies to outline the dynamic regulation of 1C metabolism, offering a comprehensive framework for exploring its potential applications in crop improvement.
Collapse
Affiliation(s)
- Liliana E García-Valencia
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico
| | - Sara M Garza-Aguilar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico
| | - Perla A Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico
| | - Rocío I Díaz de la Garza
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, 6 64849, NL, Mexico.
| |
Collapse
|
2
|
Hacham Y, Kaplan A, Cohen E, Gal M, Amir R. Sulfur metabolism under stress: Oxidized glutathione inhibits methionine biosynthesis by destabilizing the enzyme cystathionine γ-synthase. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:87-100. [PMID: 39441545 DOI: 10.1111/jipb.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Cysteine is the precursor for the biosynthesis of glutathione, a key stress-protective metabolite, and methionine, which is imperative for cell growth and protein synthesis. The exact mechanism that governs the routing of cysteine toward glutathione or methionine during stresses remains unclear. Our study reveals that under oxidative stress, methionine and glutathione compete for cysteine and that the increased oxidized glutathione (GSSG) levels under stress hinder methionine biosynthesis. Moreover, we find that inhibition occurs as GSSG binds to and accelerates the degradation of cystathionine γ-synthase, a key enzyme in the methionine synthesis pathway. Consequently, this leads to a reduction in the flux toward methionine-derived metabolites and redirects cysteine utilization toward glutathione, thereby enhancing plant protection. Our study suggests a novel regulatory feedback loop involving glutathione, methionine, and cysteine, shedding light on the plant stress response and the adaptive rerouting of cysteine. These findings offer new insights into the intricate balance of growth and protection in plants and its impact on their nutritional value due to low methionine levels under stress.
Collapse
Affiliation(s)
- Yael Hacham
- Laboratory of Plant Science, Migal, Galilee Research Institute, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 11016, Israel
| | - Alex Kaplan
- Laboratory of Plant Science, Migal, Galilee Research Institute, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 11016, Israel
| | - Elad Cohen
- Laboratory of Plant Science, Migal, Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Maayan Gal
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal, Galilee Research Institute, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 11016, Israel
| |
Collapse
|
3
|
Gamarra Reinoso L, Majláth I, Dernovics M, Fábián A, Jose J, Jampoh EA, Hamow KÁ, Soós V, Sági L, Éva C. Root-based inorganic carbon uptake increases the growth of Arabidopsis thaliana and changes transporter expression and nitrogen and sulfur metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1448432. [PMID: 39309181 PMCID: PMC11412874 DOI: 10.3389/fpls.2024.1448432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Root-based uptake of inorganic carbon has been suggested as an additional carbon source. Our study aimed to characterize and understand the root-based uptake and fixation mechanisms and their impact on plant growth. 13C-labeled bicarbonate fed to Arabidopsis roots was assimilated into aspartic acid but mainly into sucrose, indicating that the added inorganic carbon was transported to the leaves. A hydroponic treatment was also established for A. thaliana using 2 mM NaHCO3 at pH 5.6, which enhanced the photosynthetic and growth parameters. According to transcriptome sequencing data, the observed enhancement in growth may be orchestrated by trehalose-6-phosphate signaling and supported by augmented nitrogen and sulfur assimilation. The analysis also revealed regulatory and transporter activities, including several nitrate (NRT2.1), and sulfate transporter (SULTR1;1 and SULTR1;2) candidates that could participate in bicarbonate uptake. Different transporters and carbon fixation mutants were assessed. Arabidopsis homologs of SLOW-TYPE ANION CHANNEL 1 (slah3) CARBONIC ANHYDRASE (βca4), and SULFATE TRANSPORTER (sultr1;2) mutants were shown to be inferior to the bicarbonate-treated wild types in several growth and root ultrastructural parameters. Besides, aquaporin genes PIP1;3 and PIP2;6 could play a negative role in the carbon uptake by venting carbon dioxide out of the plant. The findings support the hypothesis that the inorganic carbon is taken up by the root anion channels, mostly transported up to the shoots by the xylem, and fixed there by RuBisCo after the conversion to CO2 by carbonic anhydrases. The process boosts photosynthesis and growth by providing an extra carbon supply.
Collapse
Affiliation(s)
- Liesel Gamarra Reinoso
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- PhD School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Imre Majláth
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Mihály Dernovics
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Attila Fábián
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Jeny Jose
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Emmanuel Asante Jampoh
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Kamirán Áron Hamow
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Vilmos Soós
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - László Sági
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Csaba Éva
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
4
|
Ren W, Zeng Z, Wang S, Zhang J, Fang J, Wan L. Global Survey, Expressions and Association Analysis of CBLL Genes in Peanut. Front Genet 2022; 13:821163. [PMID: 35356435 PMCID: PMC8959419 DOI: 10.3389/fgene.2022.821163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Cystathionine γ-synthase (CGS), methionine γ-lyase (MGL), cystathionine β-lyase (CBL) and cystathionine γ-lyase (CGL) share the Cys_Met_Meta_PP domain and play important roles in plant stress response and development. In this study, we defined the genes containing the Cys_Met_Meta_PP domain (PF01053.20) as CBL-like genes (CBLL). Twenty-nine CBLL genes were identified in the peanut genome, including 12 from cultivated peanut and 17 from wild species. These genes were distributed unevenly at the ends of different chromosomes. Evolution, gene structure, and motif analysis revealed that CBLL proteins were composed of five different evolutionary branches. Chromosome distribution pattern and synteny analysis strongly indicated that whole-genome duplication (allopolyploidization) contributed to the expansion of CBLL genes. Comparative genomics analysis showed that there were three common collinear CBLL gene pairs among peanut, Arabidopsis, grape, and soybean, but no collinear CBLL gene pairs between peanut and rice. The prediction results of cis-acting elements showed that AhCBLLs, AdCBLLs, and AiCBLLs contained different proportions of plant growth, abiotic stress, plant hormones, and light response elements. Spatial expression profiles revealed that almost all AhCBLLs had significantly higher expression in pods and seeds. All AhCBLLs could respond to heat stress, and some of them could be rapidly induced by cold, salt, submergence, heat and drought stress. Furthermore, one polymorphic site in AiCBLL7 was identified by association analysis which was closely associated with pod length (PL), pod width (PW), hundred pod weight (HPW) and hundred seed weight (HSW). The results of this study provide a foundation for further research on the function of the CBLL gene family in peanut.
Collapse
Affiliation(s)
- Weifang Ren
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Nanchang, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zhaocong Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Nanchang, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Sijian Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Nanchang, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | | | - Jiahai Fang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Nanchang, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Liyun Wan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Nanchang, China.,College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Zhang Y, Li D, Feng X, Wang X, Wang M, Han W, Manzoor MA, Li G, Chen T, Wang H, Cai Y. Whole-genome analysis of CGS, SAHH, SAMS gene families in five Rosaceae species and their expression analysis in Pyrus bretschneideri. PeerJ 2022; 10:e13086. [PMID: 35313526 PMCID: PMC8934043 DOI: 10.7717/peerj.13086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Cystathionine γ-synthase (CGS), S-adenosyl-L-homocysteine hydrolase (SAHH), and S-adenosy-L-methionine synthetase (SAMS) play an important role in the regulation of plant growth, development, and secondary metabolism. In this study, a total of 6 CGS, 6 SAHH, and 28 SAMS genes were identified from five Rosaceae species (Pyrus bretschneideri, Prunus persica, Prunus mume, Fragaria vesca, and Malus domestica). The evolutionary relationship and microsynteny analysis in five Rosaceae species revealed that duplicated regions were conserved between three gene families (CGS, SAHH, SAMS). Moreover, the chromosomal locations, gene structures, conserved motifs, cis-elements, physicochemical properties, and Ka/Ks analysis were performed by using numerous bioinformatics tools. The expression of different organs showed that the CGS, SAHH and SAMS genes of pear have relatively high expression patterns in flowers and stems, except for PbCGS1. RNA-seq and qRT-PCR combined analysis showed that PbSAMS1 may be involved in the regulation of pear stone cell development. In summary, this study provides the basic information of CGS, SAHH and SAMS genes in five Rosaceae species, further revealing the expression patterns in the pear fruit, which provides the theoretical basis for the regulation of pear stone cells.
Collapse
Affiliation(s)
- Yang Zhang
- Anhui Agricultural University, Hefei, China
| | - Decong Li
- Anhui Agricultural University, Hefei, China
| | | | - Xinya Wang
- Anhui Agricultural University, Hefei, China
| | | | | | | | | | | | - Han Wang
- Anhui Agricultural University, Hefei, China
| | | |
Collapse
|
6
|
Xia L, Xiaodong M, Yunhe C, Junxiang L, Junzhu Z, Feifei Z, Zhenyuan S, Lei H. Transcriptomic and metabolomic insights into the adaptive response of Salix viminalis to phenanthrene. CHEMOSPHERE 2021; 262:127573. [PMID: 32745791 DOI: 10.1016/j.chemosphere.2020.127573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent environmental pollutants. They exert toxic effects at different developmental stages of plants. Plant defense mechanisms against PAHs are poorly understood. To this end, transcriptomics and widely targeted metabolomic sequencing were used to study the changes in gene expression and metabolites that occur in the roots of Salix viminalis subjected to phenanthrene stress. Significant variations in genes and metabolites were observed between treatment groups and the control group. Thirteen amino acids and key genes involved in their biosynthesis were upregulated exposed to phenanthrene. Cysteine biosynthesis was upregulated. Sucrose, inositol galactoside, and mellidiose were the main carbohydrates that were largely accumulated. Glutathione biosynthesis was enhanced in order to scavenge reactive oxygen species and detoxify the phenanthrene. Glucosinolate and flavonoid biosynthesis were upregulated. The production of pinocembrin, apigenin, and epigallocatechin increased, which may play a role in antioxidation to resist phenanthrene stress. In addition, levels of six amino acids and N,N'-(p-coumaroyl)-cinnamoyl-caffeoyl-spermidine were significantly increased, which may have helped protect the plant against phenanthrene stress. These results demonstrated that S. viminalis had a positive defense strategy in response to phenanthrene challenge. Subsequent defense-related reactions may have also occurred within 24 h of phenanthrene exposure. The findings of the present study would be useful in elucidating the molecular mechanisms regulating plant responses to PAH challenges and would help guide crop and plant breeders in enhancing PAH resistance.
Collapse
Affiliation(s)
- Li Xia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; College of Agriculture and Bioengineering (Peony Institute), Heze University, Heze, 274000, Shandong, China
| | - Ma Xiaodong
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cheng Yunhe
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Liu Junxiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zou Junzhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhai Feifei
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan, 454000, PR China
| | - Sun Zhenyuan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Han Lei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
7
|
Luo J, Havé M, Clément G, Tellier F, Balliau T, Launay-Avon A, Guérard F, Zivy M, Masclaux-Daubresse C. Integrating multiple omics to identify common and specific molecular changes occurring in Arabidopsis under chronic nitrate and sulfate limitations. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6471-6490. [PMID: 32687580 DOI: 10.1093/jxb/eraa337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.
Collapse
Affiliation(s)
- Jie Luo
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Marien Havé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Florence Guérard
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
8
|
Gururani K, Kumar A, Tiwari A, Agarwal A, Gupta S, Pandey D. Transcriptome wide identification and characterization of regulatory genes involved in EAA metabolism and validation through expression analysis in different developmental stages of finger millet spikes. 3 Biotech 2020; 10:347. [PMID: 32728514 DOI: 10.1007/s13205-020-02337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/12/2020] [Indexed: 12/27/2022] Open
Abstract
Finger millet is a rich source of seed storage proteins (SSPs). Various regulatory genes play an important role to maintain the quality and accumulation of SSPs in crop seeds. In the present study, nine regulatory genes of EAAs metabolic pathway, i.e., aspartate kinase, homoserine dehydrogenase, threonine synthase, threonine dehydratase, dihydrodipicolinate synthase, cystathionine γ synthase, anthranilate synthase, acetolactate synthase and lysine 2-oxoglutarato reductase/saccharopine dehydrogenase (LOR/SD) were identified from the transcriptomic data of developing spikes of two finger millet genotypes, i.e., GP-45 and GP-1. Results of sequence alignment search and motif/domain analysis showed high similarity of nucleotide sequences of identified regulatory genes with their respective homologs in rice. Results of promoter analysis revealed the presence of various cis-regulatory elements, like nitrogen responsive cis-elements (O2-site and GCN4), light responsive cis-elements, and stress responsive cis-elements. The presence of nine regulatory genes identified from the transcriptomic data of GP-45 and GP-1 was further confirmed by real time expression analysis in high and low protein containing genotypes, i.e., GE-3885 and GE-1437. Results of real time expression analysis showed significantly higher expression (p ≤ 0.01) of regulatory genes in GE-3885 rather than GE-1437 under control and treatment condition. Crude protein content of GE-3885 was found to be significantly higher (p ≤ 0.01) in comparison to GE-1437 under control condition, while under treatment condition GE-1437 was found to be more responsive to KNO3 treatment rather than GE-3885.
Collapse
Affiliation(s)
- Kavita Gururani
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| | - Anil Kumar
- Rani Laxmi Bai Central Agriculture University, Jhansi, Uttar Pradesh 284003 India
| | - Apoorv Tiwari
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 Uttar Pradesh India
| | - Aparna Agarwal
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| | - Supriya Gupta
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, U.S. Nagar, Pantnagar, 263145 Uttarakhand India
| |
Collapse
|
9
|
Liao Y, Cui R, Yuan T, Xie Y, Gao Y. Cysteine and methionine contribute differentially to regulate alternative oxidase in leaves of poplar (Populus deltoides x Populus euramericana 'Nanlin 895') seedlings exposed to different salinity. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153017. [PMID: 31376640 DOI: 10.1016/j.jplph.2019.153017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 05/25/2023]
Abstract
The effects of different doses of NaCl on the expression profiles of genes involved in the mitochondrial electron transport chain (miETC), H2O2 and O2- levels, and antioxidant enzymes and amino acid metabolism were investigated in the leaves of poplar (Populus deltoides x Populus euramericana 'Nanlin 895'). In the miETC, complexes II and III and bypasses of the cytochrome c pathway including AOX and UCP displayed higher transcript abundance, whereas COX6b encoding cytochrome c oxidase were suppressed at 200 and 400 mM. H2O2 accumulated at 200 mM NaCl but O2- was generated at 400 mM. Accordingly, CAT was enhanced at 200 and 400 mM, while G-POD strengthened only at 400 mM. In addition, cysteine was reduced at 400 mM but did not change at 200 mM, although methionine was accumulated at 200 mM but not altered at 400 mM. Exogenous cysteine accumulated H2S and methionine increased ACC at 200 mM NaCl. At 400 mM NaCl, cysteine elevated the expression of CGS encoding cystathionine gamma-synthase and MS2 encoding methionine synthase as well as ACC and H2S levels, and methionine increased ACC content with repressed CGS and MS2. Moreover, exogenous KCN decreased cysteine levels, with an augment in H2S and up-regulation of CYS C1 encoding β-cyanoalanine synthase at all salinity conditions, whereas antimycin A (AA) and salicylhydroxamic acid (SHAM) affected neither the levels of cysteine or H2S, nor the CYS C1 expression. However, neither KCN, AA nor SHAM affected ACC content. AOX1b was induced both by exogenous cysteine and methionine as well as KCN and AA but suppressed by SHAM at 200 and 400 mM NaCl, in negative correlation with MDA content. These results suggest that poplar leaf evolved diverse strategies in amino acid metabolism of manipulating the AOX pathway to defend against different levels of salt stress.
Collapse
Affiliation(s)
- Yangwenke Liao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Rongrong Cui
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tingting Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yongxin Gao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Pawełkowicz M, Pryszcz L, Skarzyńska A, Wóycicki RK, Posyniak K, Rymuszka J, Przybecki Z, Pląder W. Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. PLANT REPRODUCTION 2019; 32:193-216. [PMID: 30719568 PMCID: PMC6500512 DOI: 10.1007/s00497-019-00362-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 05/26/2023]
Abstract
Transcriptome data and qPCR analysis revealed new insight into genes regulatory mechanism related to cucumber sex determination. Cucumber (Cucumis sativus L.) is an economically important crop cultivated worldwide. Enhancing the genomic resources for cucumber may enable the regulation of traits relevant to crop productivity and quality. Sequencing technologies and bioinformatics tools provide opportunities for the development of such resources. The aims of this study were to identify and characterize the genes involved in sex determination and flower morphogenesis in cucumber isogenic lines that differed regarding flower sex type. We obtained transcripts for 933 genes related to shoot apex development, among which 310 were differentially expressed genes (DEGs) among the male, female, and hermaphroditic lines. We performed gene ontology and molecular network analyses and explored the DEGs related to already known processes like: hormone synthesis and signaling, lipid and sugar metabolism; and also newly discovered processes related to cell wall, membrane, and cytoskeleton modifications; ion homeostasis which appears to be important for ethylene perception and signaling, and genes expression mediated by transcription factors related to floral organ identities. We proposed a new model of regulatory mechanism network of sex development in cucumber. Our results may be useful for clarifying the molecular genetics and the functional mechanisms underlying the sex determination processes.
Collapse
Affiliation(s)
- Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Leszek Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Rafał K Wóycicki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
- Philip Morris International R&D, Philip Morris Products S.A., 2000, Neuchâtel, Switzerland
| | - Kacper Posyniak
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jacek Rymuszka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
11
|
Wang W, Xu M, Wang G, Galili G. New insights into the metabolism of aspartate-family amino acids in plant seeds. PLANT REPRODUCTION 2018; 31:203-211. [PMID: 29399717 DOI: 10.1007/s00497-018-0322-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 05/03/2023]
Abstract
Aspartate-family amino acids. Aspartate (Asp)-family pathway, via several metabolic branches, leads to four key essential amino acids: Lys, Met, Thr, and Ile. Among these, Lys and Met have received the most attention, as they are the most limiting amino acid in cereals and legumes crops, respectively. The metabolic pathways of these four essential amino acids and their interactions with regulatory networks have been well characterized. Using this knowledge, extensive efforts have been devoted to augmenting the levels of these amino acids in various plant organs, especially seeds, which serve as the main source of human food and livestock feed. Seeds store a number of storage proteins, which are utilized as nutrient and energy resources. Storage proteins are composed of amino acids, to guarantee the continuation of plant progeny. Thus, understanding the seed metabolism, especially with respect to the accumulation of aspartate-derived amino acids Lys and Met, is a crucial factor for sustainable agriculture. In this review, we summarized the Asp-family pathway, with some new examples of accumulated Asp-family amino acids, particularly Lys and Met, in plant seeds. We also discuss the recent advances in understanding the roles of Asp-family amino acids during seed development.
Collapse
Affiliation(s)
- Wenyi Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Department of Plant Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Mengyun Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Gad Galili
- Department of Plant Science, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
12
|
L-Met Activates Arabidopsis GLR Ca 2+ Channels Upstream of ROS Production and Regulates Stomatal Movement. Cell Rep 2017; 17:2553-2561. [PMID: 27926860 DOI: 10.1016/j.celrep.2016.11.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
Plant glutamate receptor homologs (GLRs) have long been proposed to function as ligand-gated Ca2+ channels, but no in planta evidence has been provided. Here, we present genetic evidence that Arabidopsis GLR3.1 and GLR3.5 form Ca2+ channels activated by L-methionine (L-Met) at physiological concentrations and regulate stomatal apertures and plant growth. The glr3.1/3.5 mutations resulted in a lower cytosolic Ca2+ level, defective Ca2+-induced stomatal closure, and Ca2+-deficient growth disorder, all of which involved L-Met. Patch-clamp analyses of guard cells showed that GLR3.1/3.5 Ca2+ channels are activated specifically by L-Met, with the activation abolished in glr3.1/3.5. Moreover, GLR3.1/3.5 Ca2+ channels are distinct from previously characterized ROS-activated Ca2+ channels and act upstream of ROS, providing Ca2+ transients necessary for the activation of NADPH oxidases. Our data indicate that GLR3.1/3.5 constitute L-Met-activated Ca2+ channels responsible for maintaining basal [Ca2+]cyt, play a pivotal role in plant growth, and act upstream of ROS, thereby regulating stomatal aperture.
Collapse
|
13
|
Hacham Y, Matityahu I, Amir R. Transgenic tobacco plants having a higher level of methionine are more sensitive to oxidative stress. PHYSIOLOGIA PLANTARUM 2017; 160:242-252. [PMID: 28233326 DOI: 10.1111/ppl.12557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 05/04/2023]
Abstract
Methionine is an essential amino acid the low level of which limits the nutritional quality of plants. We formerly produced transgenic tobacco (Nicotiana tabacum) plants overexpressing CYSTATHIONE γ-SYNTHASE (CGS) (FA plants), methionine's main regulatory enzyme. These plants accumulate significantly higher levels of methionine compared with wild-type (WT) plants. The aim of this study was to gain more knowledge about the effect of higher methionine content on the metabolic profile of vegetative tissue and on the morphological and physiological phenotypes. FA plants exhibit slightly reduced growth, and metabolic profiling analysis shows that they have higher contents of stress-related metabolites. Despite this, FA plants were more sensitive to short- and long-term oxidative stresses. In addition, compared with WT plants and transgenic plants expressing an empty vector, the primary metabolic profile of FA was altered less during oxidative stress. Based on morphological and metabolic phenotypes, we strongly proposed that FA plants having higher levels of methionine suffer from stress under non-stress conditions. This might be one of the reasons for their lesser ability to cope with oxidative stress when it appeared. The observation that their metabolic profiling is much less responsive to stress compared with control plants indicates that the delta changes in metabolite contents between non-stress and stress conditions is important for enabling the plants to cope with stress conditions.
Collapse
Affiliation(s)
- Yael Hacham
- Department of Plant Science, Migal Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 11016, Israel
| | - Ifat Matityahu
- Department of Plant Science, Migal Kiryat Shmona, 11016, Israel
| | - Rachel Amir
- Department of Plant Science, Migal Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 11016, Israel
| |
Collapse
|
14
|
Galili G, Amir R, Fernie AR. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:153-78. [PMID: 26735064 DOI: 10.1146/annurev-arplant-043015-112213] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel;
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
15
|
Kohl S, Hollmann J, Erban A, Kopka J, Riewe D, Weschke W, Weber H. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1397-411. [PMID: 25617470 PMCID: PMC4339599 DOI: 10.1093/jxb/eru492] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits.
Collapse
Affiliation(s)
- Stefan Kohl
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Julien Hollmann
- Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - David Riewe
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Winfriede Weschke
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Hans Weber
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| |
Collapse
|
16
|
Frank A, Cohen H, Hoffman D, Amir R. Methionine and S-methylmethionine exhibit temporal and spatial accumulation patterns during the Arabidopsis life cycle. Amino Acids 2014; 47:497-510. [PMID: 25488426 DOI: 10.1007/s00726-014-1881-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022]
Abstract
Methionine is a nutritionally essential sulfur-containing amino acid found at low levels in plant tissues. Yet, the factors that regulate its synthesis and accumulation in seeds are not fully known. Recent genetic studies demonstrate that Arabidopsis seeds are able to synthesize methionine de novo through the aspartate family pathway similarly to vegetative tissues; however, additional biochemical studies suggest that the S-methylmethionine (SMM) cycle also plays a major role in methionine synthesis in seeds. To better understand the contribution of these two pathways to methionine synthesis, we have sampled various vegetative and reproductive tissues during the Arabidopsis life cycle and determined the contents of soluble and protein-incorporated methionine, SMM, as well as the expression levels of the key genes involved in these two pathways. Our results strengthen the hypothesis that SMM that is produced in the rosette leaves from methionine contributes to methionine accumulation in seeds. However, the SMM cycle may have additional functions in plant tissues since its key genes were expressed in all of the examined tissues, although at different rates. The accumulation patterns of soluble and protein-incorporated methionine during the Arabidopsis life cycle were found to be similar to most of the other amino acids, especially to those belonging to the branched-chain and aromatic amino acids that are produced in chloroplasts together with methionine. This indicates that similar factors regulate the levels of amino acids during development.
Collapse
Affiliation(s)
- Alon Frank
- Laboratory of Plant Science, Migal, Galilee Research Institute Ltd., P.O.B. 831, 11016, Kiryat Shmona, Israel
| | | | | | | |
Collapse
|
17
|
Pratelli R, Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5535-56. [PMID: 25114014 DOI: 10.1093/jxb/eru320] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.
Collapse
Affiliation(s)
- Réjane Pratelli
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guillaume Pilot
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
18
|
Hacham Y, Koussevitzky S, Kirma M, Amir R. Glutathione application affects the transcript profile of genes in Arabidopsis seedling. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1444-51. [PMID: 25077999 DOI: 10.1016/j.jplph.2014.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 05/21/2023]
Abstract
Glutathione (GSH), a tripeptide thiol compound has multiple functions in plants. Recent works suggested that GSH plays a regulatory role in signaling in plants as part of their adaptation to stress. To better understand the role of GSH as a regulatory molecule, 14 days old Arabidopsis thaliana seedlings were treated with 5mM of GSH for 4h. Changes in gene expression patterns were studied by cDNA microarray analysis. The expression of 453 genes was significantly changed compared to the untreated control, of which 261 genes were up-regulated and 192 genes were down-regulated. Genes from several groups were affected, including those of sulfur metabolism, degradation and synthesis of macromolecules and transcription factors. Up-regulation of genes involved in responses to biotic stresses, or in jasmonate or salicylic acid synthesis and their signaling, suggests that GSH triggers genes that help protect the plants during stresses. In addition, GSH down regulated genes involved in plant growth and development, like those involved in cell wall synthesis and its extension, and genes associated with auxin and cytokinins response, which are related to growth and development of the plants. The results suggest that GSH might have a role in response to biotic stress by initiating defense responses and modifying plants' growth and development in an effort to tune their sessile lifestyle of plants to environmental constraints.
Collapse
Affiliation(s)
- Yael Hacham
- Laboratory of Plant Science, Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Shai Koussevitzky
- Laboratory of Plant Science, Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Menny Kirma
- Department of Plant Science, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 12100, Israel; Tel Hai College, Upper Galilee, Israel.
| |
Collapse
|