1
|
Xu Y, Zhang J, Pan D, Yan J, Chen C, Wang L, Wang X, Yang M, Xu Y. Development of Novel Peptide-Based Radiotracers for Detecting FGL1 Expression in Tumors. Mol Pharm 2025; 22:1605-1614. [PMID: 39893698 DOI: 10.1021/acs.molpharmaceut.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A novel immune checkpoint, FGL1, is a potentially viable target for tumor immunotherapy. The development of FGL1-targeted PET probes could provide significant insights into the immune system's status and the evaluation of treatment efficacy. A ClusPro 2.0 server was used to analyze the interaction between FGL1 and LAG3, and the candidate peptides were identified by using the Rosetta peptide derivate protocol. Three candidate peptides targeting FGL1, named FGLP21, FGLP22, and FGLP23, with a simulated affinity of -9.56, -8.55, and -8.71 kcal/mol, respectively, were identified. The peptides were readily conjugated with p-NCS-benzyl-NODA-GA, and the resulting compounds were successfully labeled with 68Ga in approximately 70% yields and radiochemical purity greater than 95%. In vitro competitive cell-binding assay demonstrated that all probes bound to FGL1 with IC50 ranging from 100 nM to 160 nM. Among the probes, PET imaging revealed that 68Ga-NODA-FGLP21 exhibited the best tumor imaging performance in mice bearing FGL1 positive Huh7 tumor. At 60 min p.i., the tumor uptake of 68Ga-NODA-FGLP21 was significantly higher than those of 68Ga-NODA-FGLP22 and 68Ga-NODA-FGLP23, respectively (2.51 ± 0.11% ID/g vs 1.00 ± 0.16% ID/g and 1.49 ± 0.05% ID/g). Simultaneously, the tumor-to-muscle uptake ratios of the former were also higher than those of the latter, respectively (19.40 ± 2.30 vs 9.65 ± 0.62 and 12.45 ± 0.72). In the presence of unlabeled FGLP21, the uptake of 68Ga-NODA-FGLP21 in Huh7 xenograft decreased to 0.81 ± 0.09% ID/g at 60 min p.i., which is similar to that observed in the FGL1 negative U87 MG tumor (0.46 ± 0.03% ID/g). The results were consistent with the immunohistochemical analysis and ex vivo autoradiography. No significant radioactivity was accumulated in normal organs, except for kidneys. In summary, a preclinical study confirmed that the tracer 68Ga-NODA-FGLP21 has the potential to specifically detect FGL1 expression in tumors with good contrast to the background.
Collapse
Affiliation(s)
- Yue Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jinyuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Junjie Yan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chongyang Chen
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xinyu Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Min Yang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuping Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
2
|
Wu P, Xu L, Wang Q, Ma X, Wang X, Wang H, He S, Ru H, Zhao Y, Xiao Y, Zhang J, Wang X, An S, Hacker M, Li X, Zhang X, Wang Y, Yang M, Wu Z, Li S. Left Ventricular Remodelling Associated with the Transient Elevated [ 68Ga]Ga-Pentixafor Activity in the Remote Myocardium Following Acute Myocardial Infarction. Mol Imaging Biol 2024; 26:693-703. [PMID: 38641708 DOI: 10.1007/s11307-024-01912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Previous studies have initially reported accompanying elevated 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) inflammatory activity in the remote area and its prognostic value after acute myocardial infarction (AMI). Non-invasive characterization of the accompanying inflammation in the remote myocardium may be of potency in guiding future targeted theranostics. [68Ga]Ga-Pentixafor targeting chemokine receptor 4 (CXCR4) on the surface of inflammatory cells is currently one of the promising inflammatory imaging agents. In this study, we sought to focus on the longitudinal evolution of [68Ga]Ga-Pentixafor activities in the remote myocardium following AMI and its association with cardiac function. METHODS Twelve AMI rats and six Sham rats serially underwent [68Ga]Ga-Pentixafor imaging at pre-operation, and 5, 7, 14 days post-operation. Maximum and mean standard uptake value (SUV) and target-to-background ratio (TBR) were assessed to indicate the uptake intensity. Gated [18F]F-FDG imaging and immunofluorescent staining were performed to obtain cardiac function and responses of pro-inflammatory and reparative macrophages, respectively. RESULTS The uptake of [68Ga]Ga-Pentixafor in the infarcted myocardium peaked at day 5 (all P = 0.003), retained at day 7 (all P = 0.011), and recovered at day 14 after AMI (P > 0.05), paralleling with the rise-fall pro-inflammatory M1 macrophages (P < 0.05). Correlated with the peak activity in the infarct territory, [68Ga]Ga-Pentixafor uptake in the remote myocardium on day 5 early after AMI significantly increased (AMI vs. Sham: SUVmean, SUVmax, and TBRmean: all P < 0.05), and strongly correlated with contemporaneous EDV and/or ESV (SUVmean and TBRmean: both P < 0.05). The transitory remote activity recovered as of day 7 post-AMI (AMI vs. Sham: P > 0.05). CONCLUSIONS Corresponding with the peaked [68Ga]Ga-Pentixafor activity in the infarcted myocardium, the activity in the remote region elevated accordingly and led to contemporaneous left ventricular remodelling early after AMI. Further studies are warranted to clarify its clinical application potential.
Collapse
Affiliation(s)
- Ping Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Li Xu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofang Ma
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Xinzhu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Sheng He
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huibin Ru
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Yuting Zhao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Yuxin Xiao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Jingying Zhang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Xinchao Wang
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Shaohui An
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Xiaoli Zhang
- Laboratory for Molecular Imaging, Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Minfu Yang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Tan S, Ding X, Pan D, Xu Y, Wang C, Yan J, Chen C, Wang L, Wang X, Yang M, Xu Y. Synthesis and Characterization of a Novel PET Tracer for Noninvasive Evaluation of FGL1 Status in Tumors. Mol Pharm 2024; 21:3425-3433. [PMID: 38836286 DOI: 10.1021/acs.molpharmaceut.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fibrinogen-like protein 1 (FGL1) is a potential novel immune checkpoint target for malignant tumor diagnosis and therapy. Accurate detection of FGL1 levels in tumors via noninvasive PET imaging might be beneficial for managing the disease. To achieve this, multiple FGL1-targeting peptides (FGLP) were designed, and a promising candidate, 68Ga-NOTA-FGLP2, was identified through a high-throughput screening approach using microPET imaging of 68Ga-labeled peptides. Subsequent in vitro cell experiments showed that uptake values of 68Ga-NOTA-FGLP2 in FGL1 positive Huh7 tumor cells were significantly higher than those in FGL1 negative U87 MG tumor cells. Further microPET imaging showed that the Huh7 xenografts were clearly visualized with a favorable contrast. ROI analysis showed that the uptake values of the tracer in Huh7 xenografts were 2.63 ± 0.07% ID/g at 30 min p.i.. After treatment with an excess of unlabeled FGLP2, the tumor uptake significantly decreased to 0.54 ± 0.05% ID/g at 30 min p.i.. Moreover, the uptake in U87 MG xenografts was 0.44 ± 0.06% ID/g at the same time point. The tracer was excreted mainly through the renal system. 18F-FDG PET imaging was also performed in mice bearing Huh7 and U87 MG xenografts, respectively. However, there was no significant difference in the uptake between the tumors with different FGL1 expressions. Preclinical data indicated that 68Ga-NOTA-FGLP2 might be a suitable radiotracer for in vivo noninvasive visualization of tumors with abundant expression of FGL1. Further investigation of 68Ga-NOTA-FGLP2 for tumor diagnosis and therapy is undergoing.
Collapse
Affiliation(s)
- Siyi Tan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Ding
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yue Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ce Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Junjie Yan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chongyang Chen
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xinyu Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Min Yang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuping Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
4
|
Kurth J, Potratz M, Heuschkel M, Krause BJ, Schwarzenböck SM. GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals. Nuklearmedizin 2022; 61:247-261. [PMID: 35668669 DOI: 10.1055/a-1759-4189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.
Collapse
Affiliation(s)
- Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Madlin Potratz
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Heuschkel
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
5
|
Wang X, Rong G, Yan J, Pan D, Wang L, Xu Y, Yang M, Cheng Y. In Vivo Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45763-45771. [PMID: 32940028 DOI: 10.1021/acsami.0c11967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorinated polymers have attracted increasing attention in gene delivery and cytosolic protein delivery in recent years. In vivo tracking of fluorinated polymers will be of great importance to evaluate their biodistribution, clearance, and safety. However, tracking of polymeric carriers without changing their chemical structures remains a huge challenge. Herein, we reported a series of fluorinated poly-l-(lysine) (F-PLL) with high gene transfection efficiency and excellent biodegradation. Radionuclide 18F was radiolabeled on F-PLL by halogen replacement without chemical modification. The radiolabeling of F-PLL offers positron emission tomography (PET) imaging for in vivo tracking of the polymers. The biodistribution of F-PLL and the DNA complexes revealed by micro-PET imaging illustrated the rapid clearance of fluorinated polymers from liver and intestine after intravenous administration. The results demonstrated that the polymer F-PLL will not be accumulated in the liver and spleen when administrated as a gene carrier. This work presents a new strategy for in vivo tracking fluorinated polymers via PET imaging.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|
7
|
Pan Y, Yang Z, Xu Y, Bai Z, Pan D, Yang R, Wang L, Guan W, Yang M. Targeting HER2-positive gastric cancer with a novel 18F-labeled Z HER2:342 probe. RSC Adv 2019; 9:10990-10998. [PMID: 35515328 PMCID: PMC9062611 DOI: 10.1039/c8ra10271f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/17/2019] [Indexed: 11/21/2022] Open
Abstract
To realize the diagnosis of HER2-positive gastric cancer via PET imaging, herein, a new kind of 18F-labeled HER2 affibody probe was created; the bifunctional maleimide derivative 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA-MAL) was first coupled to a polypeptide, and the resulting compound was subsequently labeled with the 18FAl complex. The binding characteristics of the probe were assessed using both in vitro studies and in vivo microPET imaging and biodistribution experiments. Immunohistochemical staining was performed to confirm the expression level of HER2 in the studied cell lines and tumors. The probe was successfully produced with the radiochemical purity of more than 95%. The NCI N87 cell-associated radioactivity was 19.31 ± 1.01% AD, and it decreased to 0.83 ± 0.04% AD per 106 cells after blocking HER2 as early as 15 minutes post-incubation (p < 0.05). A competition binding assay between radiolabeled and non-radioactive affibody molecules with NCI N87 indicated that the IC50 was 8.10 nM. The microPET imaging and biodistribution of human gastric cancer xenografts demonstrated that the probe could specifically accumulate in tumors at early time points. Protein detection confirmed a strong HER2 expression in NCIN87 and a weak HER2 expression in SGC7901. In conclusion, 18FAl-NOTA-MAL-Cys-GGGRDN(M0)-ZHER2:342 was successfully prepared via a one-step method. The favorable preclinical data showed specific and effective tumor targeting capacity of the proposed probe; this revealed that the probe proposed herein might have potential application in gastric cancer imaging.
Collapse
Affiliation(s)
- Yunyun Pan
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing China 210008
| | - Zhengyang Yang
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing China 210008
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China 214063
| | - Zhicheng Bai
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China 214063
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China 214063
| | - Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China 214063
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China 214063
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing China 210008
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China 214063
| |
Collapse
|
8
|
Baratto L, Jadvar H, Iagaru A. Prostate Cancer Theranostics Targeting Gastrin-Releasing Peptide Receptors. Mol Imaging Biol 2019; 20:501-509. [PMID: 29256046 DOI: 10.1007/s11307-017-1151-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gastrin-releasing peptide receptors (GRPRs), part of the bombesin (BBN) family, are aberrantly overexpressed in many cancers, including those of the breast, prostate, pancreas, and lung, and therefore present an attractive target for cancer diagnosis and therapy. Different bombesin analogs have been radiolabeled and used for imaging diagnosis, staging, evaluation of biochemical recurrence, and assessment of metastatic disease in patients with prostate cancer. Recently, interest has shifted from BBN-like receptor agonists to antagonists, because the latter does not induce adverse effects and demonstrate superior in vivo pharmacokinetics. We review the preclinical and clinical literatures on the use of GRPRs as targets for imaging and therapy of prostate cancer, with a focus on the newer developments and theranostic potential of GRPR peptides.
Collapse
Affiliation(s)
- Lucia Baratto
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Hossein Jadvar
- Department of Radiology, University of Southern California, 2250 Alcazar Street, CSC 102, Los Angeles, CA, 90033, USA.
| | - Andrei Iagaru
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Wang L, Liu Y, Xu Y, Sheng J, Pan D, Wang X, Yan J, Yang R, Yang M. Age-related change of GLP-1R expression in rats can be detected by [ 18F]AlF-NOTA-MAL-Cys 39-exendin-4. Brain Res 2018; 1698:213-219. [PMID: 30144405 DOI: 10.1016/j.brainres.2018.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/16/2018] [Accepted: 08/22/2018] [Indexed: 12/25/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) has been demonstrated as a potential therapeutic target for some neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. Besides, its distribution and density in brain regions are closely associated with cognition, motor function, learning and memory. Given the relationship between age and these neurological diseases, we firstly examined the influences of age on GLP-1R expression using [18F]AlF-NOTA-MAL-Cys39-exendin-4 microPET imaging. The image showed that GLP-1R expression in nearly all regions of the brain of aged rats was evidently lower than that of normal rats. Significant differences were found in olfactory, striatum, hypothalamus, substantial nigra, and hippocampus, which have inseparable relations with some mental and neurological diseases such as PD and AD. Data obtained from biodistribution and immunohistochemistry staining also confirmed the image results. Taken together, these results illustrated decreased expression of GLP-1R in the brain of aged rats can be detected by [18F]AlF-NOTA-MAL-Cys39-exendin-4, which implied GLP-1R as a reliable target and GLP-1R PET imaging could be a promising technology in the field of neurological diseases.
Collapse
Affiliation(s)
- Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
| | - Yu Liu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jie Sheng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
| | - Xinyu Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
| | - Junjie Yan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
| | - Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China.
| |
Collapse
|
10
|
Peptide-Based Radiopharmaceuticals for Molecular Imaging of Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:135-158. [DOI: 10.1007/978-3-319-99286-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Abstract
PURPOSE The purpose of this study was to apply an analogue of bombesin, NOTA-AMBA, labeled with Co-55 or Ga-68, for preclinical imaging of prostate cancer. PROCEDURES The peptide NOTA-AMBA was labeled with Ga-68 or Co-55 by microwave irradiation. Biodistribution in xenograft mice (PC3) was performed at 1, 4, and 24 h (only cobalt at 24 h) using a fixed amount of peptide. Four weeks post-inoculation, xenograft mice were positron emission tomography/X-ray computed tomography scanned after tail vein injection of [(68)Ga]NOTA-AMBA or [(55)Co]NOTA-AMBA. RESULTS Labeling with Ga-68 and Co-55/57 was achieved in yields greater than 90 %. A radiochemical purity (RCP) of 95 and 90 % were obtained for Ga-68 and Co-55, respectively. Both radiopeptides showed high uptake in the intestines, stomach, pancreas, and in the tumor ([(68)Ga]NOTA-AMBA, 10.3 %ID/g at 1 h to 6.4 %ID/g at 4 h; [(57)Co]NOTA-AMBA, 8.2 %ID/g at 1 h to 5.3%ID/g at 24 h). Normal tissue cleared over time improving tumor-to-background ratios. CONCLUSIONS NOTA-AMBA was labeled in high yields and RCP with Ga-68 and Co-55/57. High tumor uptake in a subcutaneous mouse prostate cancer model was observed. At 24 h, [(55/57)Co]NOTA-AMBA showed better tumor-to-organ ratios than [(68)Ga]NOTA-AMBA at both 1 and 4 h post-injection. Hence, for imaging, [(55)Co]NOTA-AMBA was found to be superior compared to [(68)Ga]NOTA-AMBA.
Collapse
|
12
|
Schwarzenböck SM, Schmeja P, Kurth J, Souvatzoglou M, Nawroth R, Treiber U, Kundt G, Berndt S, Graham K, Senekowitsch-Schmidtke R, Schwaiger M, Ziegler SI, Dinkelborg L, Wester HJ, Krause BJ. Comparison of [(11)C]Choline ([(11)C]CHO) and [(18)F]Bombesin (BAY 86-4367) as Imaging Probes for Prostate Cancer in a PC-3 Prostate Cancer Xenograft Model. Mol Imaging Biol 2017; 18:393-401. [PMID: 26483088 DOI: 10.1007/s11307-015-0901-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Carbon-11- and fluorine-18-labeled choline derivatives are commonly used in prostate cancer imaging in the clinical setting for staging and re-staging of prostate cancer. Due to a limited detection rate of established positron emission tomography (PET) tracers, there is a clinical need for innovative tumor-specific PET compounds addressing new imaging targets. The aim of this study was to compare the properties of [(18)F]Bombesin (BAY 86-4367) as an innovative biomarker for prostate cancer imaging targeting the gastrin-releasing peptide receptor and [(11)C]Choline ([(11)C]CHO) in a human prostate tumor mouse xenograft model by small animal PET/X-ray computed tomography (CT). PROCEDURES We carried out a dual-tracer small animal PET/CT study comparing [(18)F]Bombesin and [(11)C]CHO. The androgen-independent human prostate tumor cell line PC-3 was implanted subcutaneously in the flanks of nu/nu NMRI mice (n = 10) (PET/CT measurements of two [(11)C]Choline mice could not be analyzed due to technical reasons). [(18)F]Bombesin and [(11)C]CHO PET/CT imaging was performed about 3-4 weeks after the implantation of PC-3 cells on two separate days. After the intravenous tail vein injection of 14 MBq [(18)F]Bombesin and 37 MBq [(11)C]CHO, respectively, a dynamic study over 60 min was acquired in list mode using an Inveon animal PET/CT scanner (Siemens Medical Solutions). The sequence of [(18)F]Bombesin and [(11)C]CHO was randomized. Image analysis was performed using summed images as well as dynamic data. To calculate static and dynamic tumor-to-muscle (T/M), tumor-to-blood (T/B), liver-to-blood (L/B), and kidney-to-blood (K/B) ratios, 4 × 4 × 4 mm(3) volumes of interest (VOIs) of tumor, muscle (thigh), liver, kidney, and blood derived from transversal slices were used. RESULTS The mean T/M ratio of [(18)F]Bombesin and [(11)C]CHO was 6.54 ± 2.49 and 1.35 ± 0.30, respectively. The mean T/B ratio was 1.83 ± 0.79 for [(18)F]Bombesin and 0.55 ± 0.10 for [(11)C]CHO. The T/M ratio as well as the T/B ratio for [(18)F]Bombesin were significantly higher compared to those for [(11)C]CHO (p < 0.001, respectively). Kidney and liver uptake was statistically significantly lower for [(18)F]Bombesin (K/B 3.41 ± 0.81, L/B 1.99 ± 0.38) compared to [(11)C]CHO [K/B 7.91 ± 1.85 (p < 0.001), L/B 6.27 ± 1.99 (p < 0.001)]. The magnitudes of the time course of T/M and T/B ratios (T/M and T/Bdyn ratios) were statistically significantly different (showing a higher uptake of [(18)F]Bombesin compared to [(11)C]CHO); additionally, also the change of the T/M and T/B ratios over time was significantly different between both tracers in the dynamic analysis (p < 0.001, respectively). Furthermore, there was a statistically significantly different change of the K/B and L/B ratios over time between the two tracers in the dynamic analysis (p = 0.026 and p < 0.001, respectively). CONCLUSIONS [(18)F]Bombesin (BAY 86-4367) visually and semi-quantitatively outperforms [(11)C]CHO in the PC-3 prostate cancer xenograft model. [(18)F]Bombesin tumor uptake was significantly higher compared to [(11)C]CHO. [(18)F]Bombesin showed better imaging properties compared to the clinically utilized [(11)C]CHO due to a higher tumor uptake as well as a lower liver and kidney uptake.
Collapse
Affiliation(s)
- Sarah Marie Schwarzenböck
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,Department of Nuclear Medicine, Rostock University Medical Centre, Gertrudenplatz 1, 18057, Rostock, Germany.
| | - Philipp Schmeja
- Department of Nuclear Medicine, Rostock University Medical Centre, Gertrudenplatz 1, 18057, Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Centre, Gertrudenplatz 1, 18057, Rostock, Germany
| | - Michael Souvatzoglou
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Uwe Treiber
- Department of Urology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Guenther Kundt
- Department of Biostatistics and Informatics, Rostock University Medical Centre, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany
| | - Sandra Berndt
- Global Drug Discovery, Bayer Healthcare, Muellerstr. 178, 13353, Berlin, Germany
| | - Keith Graham
- Global Drug Discovery, Bayer Healthcare, Muellerstr. 178, 13353, Berlin, Germany
| | - Reingard Senekowitsch-Schmidtke
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | | | - Hans-Jürgen Wester
- Institution of Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, 85748, Garching, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Rostock University Medical Centre, Gertrudenplatz 1, 18057, Rostock, Germany
| |
Collapse
|
13
|
Xu Y, Bai Z, Huang Q, Pan Y, Pan D, Wang L, Yan J, Wang X, Yang R, Yang M. PET of HER2 Expression with a Novel 18FAl Labeled Affibody. J Cancer 2017; 8:1170-1178. [PMID: 28607591 PMCID: PMC5463431 DOI: 10.7150/jca.18070] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/24/2017] [Indexed: 12/27/2022] Open
Abstract
Background: Human epidermal growth factor receptor type 2 (HER2) is abundant in a wide variety of tumors and associated with the poor prognosis. Radiolabeled affibodies are potential candidates for detecting HER2-positive lesions. However, laborious multiple-step synthetic procedure and high abdomen background may hinder the widespread use. Herein, cysteinylated ZHER2:342 modified with a new hydrophilic linker (denoted as MZHER2:342) was designed and labeled using 18FAl-NOTA strategies. The biologic efficacy of the novel tracer and its feasibilities for in vivo monitoring HER2 levels were also investigated in xenograft models with different HER2 expressions. Method: MZHER2:342 was conjugated with MAL-NOTA under standard reaction conditions. The affibody molecule was then radiolabeled with 18FAl complex. The binding specificity of the tracer, 18FAl-NOTA-MAL-MZHER2:342, with HER2 was primarily characterized via in vitro studies. MicroPET imaging were performed in nude mice bearing tumors (SKOV-3, JIMT-1 and MCF-7) after injection. The HER2 levels of xenografts were determined using Western blotting analysis. Results:18FAl-NOTA-MAL-MZHER2:342 can be efficiently produced within 30 min with a non-decaycorrected yield of about 10% and a radiochemical purity of more than 95%. In vitro experiments revealed that the modified affibody retained the specific affinity to HER2. PET imaging showed that SKOV-3 and JIMT-1 xenografts were clearly visualized with excellent contrast and low abdomen backgrounds. On the contrary, the signals of MCF-7 tumor were difficult to visualize. The ROI values ranged from16.54±2.69% ID/g for SKOV-3 to 8.42±1.20 %ID/g for JIMT-1 tumors at 1h postinjection respectively. Poor uptake was observed from MCF-7 tumors with 1.71±0.34% ID/g at the same time point. Besides, a significant linear correlation between % ID/g values and relative HER2 expression levels was also found. Conclusions:18FAl-NOTA-MAL-MZHER2:342 is a promising tracer for in vivo detecting HER2 status with the advantages of facile synthesis and favorable pharmacokinetics. It may be useful in differential diagnosis, molecularly targeted therapy and prognosis of the cancers.
Collapse
Affiliation(s)
- Yuping Xu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Zhicheng Bai
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qianhuan Huang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yunyun Pan
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Junjie Yan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Xinyu Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Min Yang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| |
Collapse
|
14
|
|
15
|
Mansour N, Dumulon-Perreault V, Ait-Mohand S, Paquette M, Lecomte R, Guérin B. Impact of dianionic and dicationic linkers on tumor uptake and biodistribution of [64Cu]Cu/NOTA peptide-based gastrin-releasing peptide receptors antagonists. J Labelled Comp Radiopharm 2017; 60:200-212. [DOI: 10.1002/jlcr.3491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Nematallah Mansour
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Véronique Dumulon-Perreault
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Samia Ait-Mohand
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Michel Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences; Université de Sherbrooke and Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS (CRCHUS); Sherbrooke Canada
| |
Collapse
|
16
|
Abstract
Conventional anatomical imaging with CT and MRI has limitations in the evaluation of prostate cancer. PET is a powerful imaging technique, which can be directed toward molecular targets as diverse as glucose metabolism, density of prostate-specific membrane antigen receptors, and skeletal osteoblastic activity. Although 2-deoxy-2-18F-FDG-PET is the mainstay of molecular imaging, FDG has limitations in typically indolent prostate cancer. Yet, there are many useful and emerging PET tracers beyond FDG, which provide added value. These include radiotracers interrogating prostate cancer via molecular mechanisms related to the biology of choline, acetate, amino acids, bombesin, and dihydrotestosterone, among others. Choline is used for cell membrane synthesis and its metabolism is upregulated in prostate cancer. 11C-choline and 18F-choline are in wide clinical use outside the United States, and they have proven most beneficial for detection of recurrent prostate cancer. 11C-acetate is an indirect biomarker of fatty acid synthesis, which is also upregulated in prostate cancer. Imaging of prostate cancer with 11C-acetate is overall similar to the choline radiotracers yet is not as widely used. Upregulation of amino acid transport in prostate cancer provides the biologic basis for amino acid-based radiotracers. Most recent progress has been made with the nonnatural alicyclic amino acid analogue radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid (FACBC or fluciclovine) also proven most useful for the detection of recurrent prostate cancer. Other emerging PET radiotracers for prostate cancer include the bombesin group directed to the gastrin-releasing peptide receptor, 16β-18F-fluoro-5α-dihydrotestosterone (FDHT) that binds to the androgen receptor, and those targeting the vasoactive intestinal polypeptide receptor 1 (VPAC-1) and urokinase plasminogen activator receptor (uPAR), which are also overexpressed in prostate cancer.
Collapse
Affiliation(s)
- David M Schuster
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA.
| | - Cristina Nanni
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| | - Stefano Fanti
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 2016; 20:1055-1073. [PMID: 26981612 PMCID: PMC5067074 DOI: 10.1517/14728222.2016.1164694] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite remarkable advances in tumor treatment, many patients still die from common tumors (breast, prostate, lung, CNS, colon, and pancreas), and thus, new approaches are needed. Many of these tumors synthesize bombesin (Bn)-related peptides and over-express their receptors (BnRs), hence functioning as autocrine-growth-factors. Recent studies support the conclusion that Bn-peptides/BnRs are well-positioned for numerous novel antitumor treatments, including interrupting autocrine-growth and the use of over-expressed receptors for imaging and targeting cytotoxic-compounds, either by direct-coupling or combined with nanoparticle-technology. AREAS COVERED The unique ability of common neoplasms to synthesize, secrete, and show a growth/proliferative/differentiating response due to BnR over-expression, is reviewed, both in general and with regard to the most frequently investigated neoplasms (breast, prostate, lung, and CNS). Particular attention is paid to advances in the recent years. Also considered are the possible therapeutic approaches to the growth/differentiation effect of Bn-peptides, as well as the therapeutic implication of the frequent BnR over-expression for tumor-imaging and/or targeted-delivery. EXPERT OPINION Given that Bn-related-peptides/BnRs are so frequently ectopically-expressed by common tumors, which are often malignant and become refractory to conventional treatments, therapeutic interventions using novel approaches to Bn-peptides and receptors are being explored. Of particular interest is the potential of reproducing with BnRs in common tumors the recent success of utilizing overexpression of somatostatin-receptors by neuroendocrine-tumors to provide the most sensitive imaging methods and targeted delivery of cytotoxic-compounds.
Collapse
Affiliation(s)
- Paola Moreno
- Digestive Diseases Branch, Cell Biology Section, NIDDK, and Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, Cell Biology Section, NIDDK, and Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Terry W. Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert T. Jensen
- Digestive Diseases Branch, Cell Biology Section, NIDDK, and Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Semin Nucl Med 2016; 46:373-94. [DOI: 10.1053/j.semnuclmed.2016.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Sun Y, Ma X, Zhang Z, Sun Z, Loft M, Ding B, Liu C, Xu L, Yang M, Jiang Y, Liu J, Xiao Y, Cheng Z, Hong X. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer. Bioconjug Chem 2016; 27:1857-64. [PMID: 27399868 DOI: 10.1021/acs.bioconjchem.6b00279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastrin-releasing peptide receptor (GRPR) targeted positron emission tomography (PET) is a highly promising approach for imaging of prostate cancer (PCa) in small animal models and patients. Developing a GRPR-targeted PET probe with excellent in vivo performance such as high tumor uptake, high contrast, and optimal pharmacokinetics is still very challenging. Herein, a novel bombesin (BBN) analogue (named SCH1) based on JMV594 peptide modified with an 8-amino octanoic acid spacer (AOC) was thus designed and conjugated with the metal chelator 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA). The resulting NODAGA-SCH1 was then radiolabeled with (68)Ga and evaluated for PET imaging of PCa. Compared with (68)Ga-NODAGA-JMV594 probe, (68)Ga-NODAGA-SCH1 exhibited excellent PET/CT imaging properties on PC-3 tumor-bearing nude mice, such as high tumor uptake (5.80 ± 0.42 vs 3.78 ± 0.28%ID/g, 2 h) and high tumor/muscle contrast (16.6 ± 1.50 vs 8.42 ± 0.61%ID/g, 2 h). Importantly, biodistribution data indicated a relatively similar accumulation of (68)Ga-NODAGA-SCH1 was observed in the liver (4.21 ± 0.42%ID/g) and kidney (3.41 ± 0.46%ID/g) suggesting that the clearance is through both the kidney and the liver. Overall, (68)Ga-NODAGA-SCH1 showed promising in vivo properties and is a promising candidate for translation into clinical PET-imaging of PCa patients.
Collapse
Affiliation(s)
- Yao Sun
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Xiaowei Ma
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Zhe Zhang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Ziyan Sun
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Mathias Loft
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Bingbing Ding
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, China
| | - Changhao Liu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Liying Xu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Meng Yang
- Chinese Academy of Medical Science, Peking Union Medical College Hospital , Department of Ultrasound, Beijing, 100730, China
| | - Yuxin Jiang
- Chinese Academy of Medical Science, Peking Union Medical College Hospital , Department of Ultrasound, Beijing, 100730, China
| | - Jianfeng Liu
- Chinese Academy of Medical Science , Institute of Radiation Medicine, Department of Molecular Nuclear Medicine, Tianjin, 300192, China
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, China
| |
Collapse
|
20
|
Richter S, Wuest M, Bergman CN, Krieger S, Rogers BE, Wuest F. Metabolically Stabilized (68)Ga-NOTA-Bombesin for PET Imaging of Prostate Cancer and Influence of Protease Inhibitor Phosphoramidon. Mol Pharm 2016; 13:1347-57. [PMID: 26973098 DOI: 10.1021/acs.molpharmaceut.5b00970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide receptor-based targeted molecular imaging and therapy of cancer is on the current forefront of nuclear medicine preclinical research and clinical practice. The frequent overexpression of gastrin-releasing peptide (GRP) receptors in prostate cancer stimulated the development of radiolabeled bombesin derivatives as high affinity peptide ligands for selective targeting of the GRP receptor. In this study, we have evaluated a novel (68)Ga-labeled bombesin derivative for PET imaging of prostate cancer in vivo. In addition, we were interested in testing the recently proposed "serve-and-protect" strategy to improve metabolic stability of radiolabeled peptides in vivo and to enhance tumor uptake. GRP receptor targeting peptides NOTA-BBN2 and (nat)Ga-NOTA-BBN2 demonstrated a characteristic antagonistic profile and high binding affinity toward the GRP receptor in PC3 cells (IC50 4.6-8.2 nM). Radiolabeled peptide (68)Ga-NOTA-BBN2 was obtained from NOTA-BBN2 in radiochemical yields greater than 62% (decay-corrected). Total synthesis time was 35 min, including purification using solid-phase extraction. (68)Ga-NOTA-BBN2 exhibited favorable resistance against metabolic degradation by peptidases in vivo within the investigated time frame of 60 min. Interestingly, metabolic stability was not further enhanced in the presence of protease inhibitor phosphoramidon. Dynamic PET studies showed high tumor uptake in both PC3- and LNCaP-bearing BALB/c nude mice (SUV5min > 0.6; SUV60min > 0.5). Radiotracer (68)Ga-NOTA-BBN2 represents a novel radiometal-based bombesin derivative suitable for GRP receptor targeting in PC3 and LNCaP mouse xenografts. Further increase of metabolic stability in vivo and enhanced tumor uptake were not observed upon administration of protease inhibitor phosphoramidon. This led to the conclusion that the recently proposed "serve-and-protect" strategy may not be valid for peptides exhibiting favorable intrinsic metabolic stability in vivo.
Collapse
Affiliation(s)
- Susan Richter
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| | - Cody N Bergman
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| | - Stephanie Krieger
- Department of Radiation Oncology, Washington University School of Medicine , St. Louis, Missouri 63108, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine , St. Louis, Missouri 63108, United States
| | - Frank Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute , Edmonton, Alberta T6G 2X4, Canada
| |
Collapse
|
21
|
Xu YP, Yang M. Advancement in treatment and diagnosis of pancreatic cancer with radiopharmaceuticals. World J Gastrointest Oncol 2016; 8:165-172. [PMID: 26909131 PMCID: PMC4753167 DOI: 10.4251/wjgo.v8.i2.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is a major health problem. Conventional imaging modalities show limited accuracy for reliable assessment of the tumor. Recent researches suggest that molecular imaging techniques with tracers provide more biologically relevant information and are benefit for the diagnosis of the cancer. In addition, radiopharmaceuticals also play more important roles in treatment of the disease. This review summaries the advancement of the radiolabeled compounds in the theranostics of PC.
Collapse
|
22
|
The Synthesis and Evaluations of the (6 8) Ga-Lissamine Rhodamine B (LRB) as a New Radiotracer for Imaging Tumors by Positron Emission Tomography. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8549635. [PMID: 26949707 PMCID: PMC4754471 DOI: 10.1155/2016/8549635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/13/2016] [Indexed: 01/26/2023]
Abstract
PURPOSE The aim of this study is to synthesize and evaluate (68)Ga-labeled Lissamine Rhodamine B (LRB) as a new radiotracer for imaging MDA-MB-231 and MCF-7 cells induced tumor mice by positron emission tomography (PET). METHODS Firstly, we performed the radio synthesis and microPET imaging of (68)Ga(DOTA-LRB) in athymic nude mice bearing MDA-MB-231 and MCF-7 human breast cancer xenografts. Additionally, the evaluations of (18)F-fluorodeoxyglucose (FDG), as a glucose metabolism radiotracer for imaging tumors in the same xenografts, have been conducted as a comparison. RESULTS The radiochemical purity of (68)Ga(DOTA-LRB) was >95%. MicroPET dynamic imaging revealed that the uptake of (68)Ga(DOTA-LRB) was mainly in normal organs, such as kidney, heart, liver, and brain and mainly excreted from kidney. The MDA-MB-231 and MCF-7 tumors were not clearly visible in PET images at 5, 15, 30, 40, 50, and 60 min after injection of (68)Ga(DOTA-LRB). The tumor uptake values of (18)F-FDG were 3.79 ± 0.57 and 1.93 ± 0.48%ID/g in MDA-MB-231 and MCF-7 tumor xenografts, respectively. CONCLUSIONS (68)Ga(DOTA-LRB) can be easily synthesized with high radiochemical purity and stability; however, it may be not an ideal PET radiotracer for imaging of MDR-positive tumors.
Collapse
|
23
|
Zhu C, Xu Q, Pan D, Xu Y, Liu P, Yang R, Wang L, Sun X, Luo S, Yang M. Prostate cancer imaging of FSHR antagonist modified with a hydrophilic linker. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:99-105. [DOI: 10.1002/cmmi.1662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 07/02/2015] [Accepted: 07/21/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Chen Zhu
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Qing Xu
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Ping Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Xinchen Sun
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Shineng Luo
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Min Yang
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| |
Collapse
|
24
|
Carlucci G, Kuipers A, Ananias HJK, de Paula Faria D, Dierckx RAJO, Helfrich W, Rink R, Moll GN, de Jong IJ, Elsinga PH. GRPR-selective PET imaging of prostate cancer using [(18)F]-lanthionine-bombesin analogs. Peptides 2015; 67:45-54. [PMID: 25797109 DOI: 10.1016/j.peptides.2015.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 01/20/2023]
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in a variety of human malignancies, including prostate cancer. Bombesin (BBN) is a 14 amino acids peptide that selectively binds to GRPR. In this study, we developed two novel Al(18)F-labeled lanthionine-stabilized BBN analogs, designated Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN, for positron emission tomography (PET) imaging of GRPR expression using xenograft prostate cancer models. (Methyl)lanthionine-stabilized 4,7-lanthionine-BBN and 2,6-lanthionine-BBN analogs were conjugated with a NOTA chelator and radiolabeled with Al(18)F using the aluminum fluoride strategy. Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN was labeled with Al(18)F with good radiochemical yield and specific activity>30 GBq/μmol for both radiotracers. The logD values measured for Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN were -2.14 ± 0.14 and -2.34 ± 0.15, respectively. In athymic nude PC-3 xenografts, at 120 min post injection (p.i.), the uptake of Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN in prostate cancer (PC-3) mouse models was 0.82 ± 0.23% ID/g and 1.40 ± 0.81% ID/g, respectively. An excess of unlabeled ɛ-aminocaproic acid-BBN(7-14) (300-fold) was co-injected to assess GRPR binding specificity. Tumor uptake of Al(18)F-NOTA-4,7-lanthionine-BBN and Al(18)F-NOTA-2,6-lanthionine-BBN in PC-3 tumors was evaluated by microPET (μPET) imaging at 30, 60 and 120 min p.i. Blocking studies showed decreased uptake in PC-3 bearing mice. Stabilized 4,7-lanthionine-BBN and 2,6-lanthionine-BBN peptides were rapidly and successfully labeled with (18)F. Both tracers may have potential for GRPR-positive tumor imaging.
Collapse
Affiliation(s)
- G Carlucci
- Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A Kuipers
- Lanthio Pharma, Groningen, The Netherlands
| | - H J K Ananias
- Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - D de Paula Faria
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - W Helfrich
- Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R Rink
- Lanthio Pharma, Groningen, The Netherlands
| | - G N Moll
- Lanthio Pharma, Groningen, The Netherlands; Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - I J de Jong
- Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Velikyan I. Continued rapid growth in68Ga applications: update 2013 to June 2014. J Labelled Comp Radiopharm 2015; 58:99-121. [PMID: 25689590 DOI: 10.1002/jlcr.3250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Irina Velikyan
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; SE-75183 Uppsala Sweden
- Department of Radiology, Oncology and Radiation Science; Uppsala University; SE-75285 Uppsala Sweden
- PET-Centre, Centre for Medical Imaging; Uppsala University Hospital; SE-75185 Uppsala Sweden
| |
Collapse
|
26
|
Guo M, Qu X, Qin XQ. Bombesin-like peptides and their receptors: recent findings in pharmacology and physiology. Curr Opin Endocrinol Diabetes Obes 2015; 22:3-8. [PMID: 25517020 DOI: 10.1097/med.0000000000000126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW To highlight the research progress of roles of bombesin-like peptides and their receptors in pharmacology and physiology. RECENT FINDINGS Several new bombesin-derived radioactive or nonradioactive compounds were designed for the diagnosis and therapy of tumors that are overexpressing bombesin receptors. Both gastrin-releasing peptide receptor and neuromedin B receptor activation were shown to induce membrane depolarization and excite neurons in brain. Bombesin receptor subtype-3 was found to be downregulated in the muscle cells and myocytes from obese and type 2 diabetes patients, and its relevant cell signaling events in glucose homeostasis were also investigated. The molecular events triggered by bombesin receptors activation in different types of malignancies is being explored recently and new clues were provided for a better understanding of the biological roles of abnormal expression of bombesin receptors in tumors. Novel cross-talk between gastrin-releasing peptide receptor cell signaling and Sonic hedgehog pathways was identified in small-cell lung carcinoma. SUMMARY Increasing evidence shows bombesin-like peptides and their receptors play important roles in both physiological state and diseases. More specific and safe tumor targeting Bombesin derivatives are being developed for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Man Guo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | | | | |
Collapse
|
27
|
⁸⁹Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2014; 41:2093-105. [PMID: 25143071 DOI: 10.1007/s00259-014-2830-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/02/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Given the bone tropism of prostate cancer, conventional imaging modalities poorly identify or quantify metastatic disease. (89)Zr-huJ591 positron emission tomography (PET) imaging was performed in patients with metastatic prostate cancer to analyze and validate this as an imaging biomarker for metastatic disease. The purpose of this initial study was to assess safety, biodistribution, normal organ dosimetry, and optimal imaging time post-injection for lesion detection. METHODS Ten patients with metastatic prostate cancer received 5 mCi of (89)Zr-huJ591. Four whole-body scans with multiple whole-body count rate measurements and serum activity concentration measurements were obtained in all patients. Biodistribution, clearance, and lesion uptake by (89)Zr-huJ591 immuno-PET imaging was analyzed and dosimetry was estimated using MIRD techniques. Initial assessment of lesion targeting of (89)Zr-huJ591 was done. Optimal time for imaging post-injection was determined. RESULTS The dose was well tolerated with mild chills and rigors seen in two patients. The clearance of (89)Zr-huJ591 from serum was bi-exponential with biological half-lives of 7 ± 4.5 h (range 1.1-14 h) and 62 ± 13 h (range 51-89 h) for initial rapid and later slow phase. Whole-body biological clearance was 219 ± 48 h (range 153-317 h). The mean whole-body and liver residence time was 78.7 and 25.6 h, respectively. Dosimetric estimates to critical organs included liver 7.7 ± 1.5 cGy/mCi, renal cortex 3.5 ± 0.4 cGy/mCi, and bone marrow 1.2 ± 0.2 cGy/mCi. Optimal time for patient imaging after injection was 7 ± 1 days. Lesion targeting of bone or soft tissue was seen in all patients. Biopsies were performed in 8 patients for a total 12 lesions, all of which were histologically confirmed as metastatic prostate cancer. One biopsy-proven lesion was not positive on (89)Zr-huJ591, while the remaining 11 lesions were (89)Zr-huJ591 positive. Two biopsy-positive nodal lesions were noted only on (89)Zr-huJ591 study, while the conventional imaging modality was negative. CONCLUSION (89)Zr-huJ591 PET imaging of prostate-specific membrane antigen expression is safe and shows good localization of disease in prostate cancer patients. Liver is the critical organ for dosimetry, and 7 ± 1 days is the optimal imaging time. A larger study is underway to determine lesion detection in an expanded cohort of patients with metastatic prostate cancer.
Collapse
|