1
|
Xiang H, Fang Y, Tan Z, Zhong R. Haemonchus contortus Infection Alters Gastrointestinal Microbial Community Composition, Protein Digestion and Amino Acid Allocations in Lambs. Front Microbiol 2022; 12:797746. [PMID: 35222303 PMCID: PMC8874266 DOI: 10.3389/fmicb.2021.797746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
The objective of this study was to investigate associations between gastrointestinal microbiota and protein metabolism of lambs infected with Haemonchus contortus. Sixteen male Ujumqin lambs (initial body weight = 32.4 ± 3.9 kg) were dewormed and randomly assigned to 2 equal groups, to be infected or not infected with Haemonchus contortus (GIN and CON, respectively). The experiment lasted 77 days. The GIN lambs had lower packed cell volume (PCV) and increased wormegg count (WEC) after 14 days. Furthermore, in infected lambs, there were decreases in apparent digestibility of dry matter (P = 0.011), crude protein (P = 0.004) and ether extract (P = 0.007), as well as decreased ruminal pepsin (P < 0.001) and lipase (P = 0.032) activity but increased ruminal α-amylase (P = 0.004) and cellulase activity (P = 0.002), and decreased jejunal α-amylase activity (P = 0.033). In addition, infection with H. contortus decreased alpha diversity of the gastrointestinal microbial community in the rumen, abomasum and duodenum, although microbiota associated with carbohydrate and proteolytic metabolism were increased and up to 32 KEGG pathways in the duodenum were predicted to be significantly affected. In conclusion, H. contortus infection in lambs altered the gastrointestinal microbial community composition and disturbed protein digestion and allocation of absorbed amino acids. These results provided insights into consequences of H. contortus infection in lambs and could facilitate development of novel nutritional strategies to improve animal health.
Collapse
Affiliation(s)
- Hai Xiang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
2
|
Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K, Sun Z. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:11-16. [PMID: 33997326 PMCID: PMC8110859 DOI: 10.1016/j.aninu.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
In recent years, many studies have shown that the intestinal microflora has various effects that are linked to the critical physiological functions and pathological systems of the host. The intestinal microbial community is widely involved in the metabolism of food components such as protein, which is one of the essential nutrients in diets. Additionally, dietary protein/amino acids have been shown to have had a profound impact on profile and operation of gut microbiota. This review summarizes the current literature on the mutual interaction between intestinal microbiota and protein/amino acid metabolism for host mucosal immunity and health.
Collapse
Affiliation(s)
- Liuting Wu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhiru Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Huiyuan Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhongxiang Ren
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qi Ding
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Kaiyang Liang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhihong Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Yu M, Li Z, Chen W, Rong T, Wang G, Wang F, Ma X. Evaluation of full-fat Hermetia illucens larvae meal as a fishmeal replacement for weanling piglets: Effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphology. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Human urine 1H NMR metabolomics reveals alterations of protein and carbohydrate metabolism when comparing habitual Average Danish diet vs. healthy New Nordic diet. Nutrition 2020; 79-80:110867. [PMID: 32619792 DOI: 10.1016/j.nut.2020.110867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the alteration of the human urine metabolome by means of diet and to compare the metabolic effects of the nutritionally healthy New Nordic Diet (NND) with an Average Danish Diet (ADD). The NND was designed a decade ago by scientists and chefs, based on local and sustainable foods, including fish, shellfish, vegetables, roots, fruit, and berries. The NND has been proven to lower blood pressure, reduce glycemia, and lead to weight loss. METHODS The human urine metabolome was measured by untargeted proton nuclear magnetic resonance spectroscopy in samples from 142 centrally obese Danes (20-66 years old), randomized to consume the ADD or the NND. The resulting metabolomics data was processed and analyzed using advanced multivariate data analysis methods to reveal effects related to the design factors, including diet, season, sex, and changes in body weight. RESULTS Exploration of the nuclear magnetic resonance profiles revealed unique metabolite markers reflecting changes in protein and carbohydrate metabolism between the two diets. Glycine betaine, glucose, trimethylamine N-oxide and creatinine were increased in urine of the individuals following the NND compared with the ADD population, whereas relative concentrations of tartrate, dimethyl sulfone, and propylene glycol were decreased. Propylene glycol had a strong association with the homeostatic model assessment for insulin resistance in the NND group. The food intake biomarkers found in this study confirm the importance of these as tools for nutritional research. CONCLUSIONS Findings from this study provided new insights into the effects of a healthy diet on glycemia, reduction of inflammation, and weight loss among obese individuals, and alteration of the gut microbiota metabolism.
Collapse
|
5
|
Vinnakota KC, Pannala VR, Wall ML, Rahim M, Estes SK, Trenary I, O'Brien TP, Printz RL, Reifman J, Shiota M, Young JD, Wallqvist A. Network Modeling of Liver Metabolism to Predict Plasma Metabolite Changes During Short-Term Fasting in the Laboratory Rat. Front Physiol 2019; 10:161. [PMID: 30881311 PMCID: PMC6405515 DOI: 10.3389/fphys.2019.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
The liver—a central metabolic organ that integrates whole-body metabolism to maintain glucose and fatty-acid regulation, and detoxify ammonia—is susceptible to injuries induced by drugs and toxic substances. Although plasma metabolite profiles are increasingly investigated for their potential to detect liver injury earlier than current clinical markers, their utility may be compromised because such profiles are affected by the nutritional state and the physiological state of the animal, and by contributions from extrahepatic sources. To tease apart the contributions of liver and non-liver sources to alterations in plasma metabolite profiles, here we sought to computationally isolate the plasma metabolite changes originating in the liver during short-term fasting. We used a constraint-based metabolic modeling approach to integrate central carbon fluxes measured in our study, and physiological flux boundary conditions gathered from the literature, into a genome-scale model of rat liver metabolism. We then measured plasma metabolite profiles in rats fasted for 5–7 or 10–13 h to test our model predictions. Our computational model accounted for two-thirds of the observed directions of change (an increase or decrease) in plasma metabolites, indicating their origin in the liver. Specifically, our work suggests that changes in plasma lipid metabolites, which are reliably predicted by our liver metabolism model, are key features of short-term fasting. Our approach provides a mechanistic model for identifying plasma metabolite changes originating in the liver.
Collapse
Affiliation(s)
- Kalyan C Vinnakota
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.,Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Venkat R Pannala
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.,Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Martha L Wall
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN, United States
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN, United States
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN, United States
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| |
Collapse
|
6
|
Yao X, Xu C, Cao Y, Lin L, Wu H, Wang C. Early metabolic characterization of brain tissues after whole body radiation based on gas chromatography–mass spectrometry in a rat model. Biomed Chromatogr 2018; 33:e4448. [DOI: 10.1002/bmc.4448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/12/2018] [Accepted: 11/24/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Xueting Yao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Chao Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Yurong Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Lin Lin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Hanxu Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD‐X)Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection Suzhou P. R. China
| |
Collapse
|
7
|
Lin W, Liu Z, Zheng X, Chen M, Gao D, Tian Z. High-salt diet affects amino acid metabolism in plasma and muscle of Dahl salt-sensitive rats. Amino Acids 2018; 50:1407-1414. [DOI: 10.1007/s00726-018-2615-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
8
|
Wang Y, Liu X, Zhang C, Wang Z. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats. J Nutr Biochem 2018; 56:133-141. [PMID: 29567533 DOI: 10.1016/j.jnutbio.2018.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022]
Abstract
High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP+, NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Emergency, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiangyang Liu
- Department of Endocrinology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Chen Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhengjun Wang
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an 710062, China.
| |
Collapse
|
9
|
Abstract
Alterations of specific microbes serve as important indicators that link gut health with specific diet intake. Although a six-week high-protein diet (45% protein) upregulates the pro-inflammatory response and oxidative stress in colon of rats, the dynamic alteration of gut microbiota remains unclear. To dissect temporal changes of microbiota, dynamic analyses of fecal microbiota were conducted using a rat model. Adult rats were fed a normal-protein diet or an HPD for 6 weeks, and feces collected at different weeks were used for microbiota and metabolite analysis. The structural alteration of fecal microbiota was observed after 4 weeks, especially for the decreased appearance of bands related to Akkermansia species. HPD increased numbers of Escherichia coli while decreased Akkermansia muciniphila, Bifidobacterium, Prevotella, Ruminococcus bromii, and Roseburia/Eubacterium rectale (P < 0.05), compared to the normal-protein diet. HPD also decreased the copies of genes encoding butyryl-CoA:acetate CoA-transferase and Prevotella-associated methylmalonyl-CoA decarboxylase α-subunit (P < 0.05). The concentrations of acetate, propionate, and butyrate were decreased by HPD (P < 0.05). Additionally, HPD tended to decrease (P = 0.057) the concentration of IgG in the colonic lumen, which was positively correlated with fecal butyrate at week 6 (P < 0.05). Collectively, this study found the temporal alteration of fecal microbiota related to the decreased numbers and activity of propionate- and butyrate-producing bacteria in feces after the HPD. These findings may provide important reference for linking changes of specific fecal microbes with gut health under high-protein diet.
Collapse
Affiliation(s)
- Chunlong Mu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuxiang Yang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen Luo
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Mu C, Yang Y, Yu K, Yu M, Zhang C, Su Y, Zhu W. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics. Amino Acids 2017; 49:771-781. [DOI: 10.1007/s00726-017-2379-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
|
11
|
Lancha AH, Zanella R, Tanabe SGO, Andriamihaja M, Blachier F. Dietary protein supplementation in the elderly for limiting muscle mass loss. Amino Acids 2016; 49:33-47. [PMID: 27807658 DOI: 10.1007/s00726-016-2355-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Supplementation with whey and other dietary protein, mainly associated with exercise training, has been proposed to be beneficial for the elderly to gain and maintain lean body mass and improve health parameters. The main objective of this review is to examine the evidence provided by the scientific literature indicating benefit from such supplementation and to define the likely best strategy of protein uptake for optimal objectified results in the elderly. Overall, it appears that an intake of approximately 0.4 g protein/kg BW per meal thus representing 1.2-1.6 g protein/kg BW/day may be recommended taking into account potential anabolic resistance. The losses of the skeletal muscle mass contribute to lower the capacity to perform activities in daily living, emphasizing that an optimal protein consumption may represent an important parameter to preserve independence and contribute to health status. However, it is worth noting that the maximal intake of protein with no adverse effect is not known, and that high levels of protein intake is associated with increased transfer of protein to the colon with potential deleterious effects. Thus, it is important to examine in each individual case the benefit that can be expected from supplementation with whey protein, taking into account the usual protein dietary intake.
Collapse
Affiliation(s)
- Antonio Herbert Lancha
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil.
| | - Rudyard Zanella
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil
| | - Stefan Gleissner Ohara Tanabe
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil
| | - Mireille Andriamihaja
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Francois Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France.
| |
Collapse
|
12
|
Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.011] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Stepien M, Azzout-Marniche D, Even PC, Khodorova N, Fromentin G, Tomé D, Gaudichon C. Adaptation to a high-protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R771-R778. [PMID: 27581809 DOI: 10.1152/ajpregu.00040.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022]
Abstract
We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[15N]-[13C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13CO2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet.
Collapse
Affiliation(s)
- Magdalena Stepien
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Dalila Azzout-Marniche
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Patrick C Even
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Nadezda Khodorova
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Gilles Fromentin
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Claire Gaudichon
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| |
Collapse
|
14
|
Mu C, Yang Y, Luo Z, Guan L, Zhu W. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet. J Nutr 2016; 146:474-83. [PMID: 26843585 DOI: 10.3945/jn.115.223990] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/21/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. OBJECTIVE The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. METHODS Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. RESULTS Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P < 0.05) Escherichia/Shigella, Enterococcus, Streptococcus, and sulfate-reducing bacteria by 54.9-fold, 31.3-fold, 5.36-fold, and 2.59-fold, respectively. However, the HPD reduced Ruminococcus (8.04-fold), Akkermansia (not detected in HPD group), and Faecalibacterium prausnitzii (3.5-fold) (P < 0.05), which are generally regarded as beneficial bacteria in the colon. Concomitant increases in cadaverine (4.88-fold), spermine (31.2-fold), and sulfide (4.8-fold) (P < 0.05) and a decrease in butyrate (2.16-fold) (P < 0.05) in the HPD rats indicated an evident shift toward the production of unhealthy microbial metabolites. In the colon epithelium of the HPD rats, transcriptome analysis identified an upregulation of genes (P < 0.05) involved in disease pathogenesis; these genes are involved in chemotaxis, the tumor necrosis factor signal process, and apoptosis. The HPD was also associated with a downregulation of many genes (P < 0.05) involved in immunoprotection, such as genes involved in innate immunity, O-linked glycosylation of mucin, and oxidative phosphorylation, suggesting there may be an increased disease risk in these rats. The abundance of Escherichia/Shigella, Enterococcus, and Streptococcus was positively correlated (Spearman's ρ > 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. CONCLUSION Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease.
Collapse
Affiliation(s)
- Chunlong Mu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| | - Yuxiang Yang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| | - Zhen Luo
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| |
Collapse
|
15
|
Frainay C, Jourdan F. Computational methods to identify metabolic sub-networks based on metabolomic profiles. Brief Bioinform 2016; 18:43-56. [PMID: 26822099 DOI: 10.1093/bib/bbv115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/16/2015] [Indexed: 11/13/2022] Open
Abstract
Untargeted metabolomics makes it possible to identify compounds that undergo significant changes in concentration in different experimental conditions. The resulting metabolomic profile characterizes the perturbation concerned, but does not explain the underlying biochemical mechanisms. Bioinformatics methods make it possible to interpret results in light of the whole metabolism. This knowledge is modelled into a network, which can be mined using algorithms that originate in graph theory. These algorithms can extract sub-networks related to the compounds identified. Several attempts have been made to adapt them to obtain more biologically meaningful results. However, there is still no consensus on this kind of analysis of metabolic networks. This review presents the main graph approaches used to interpret metabolomic data using metabolic networks. Their advantages and drawbacks are discussed, and the impacts of their parameters are emphasized. We also provide some guidelines for relevant sub-network extraction and also suggest a range of applications for most methods.
Collapse
|
16
|
High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats. Br J Nutr 2015; 114:1132-42. [PMID: 26285832 DOI: 10.1017/s000711451500238x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the effects of high protein intake on the development of fat deposition and partitioning in response to high-fat and/or HS feeding. A total of thirty adult male Wistar rats were assigned to one of the six dietary regimens with low and high protein, sucrose and fat contents for 5 weeks. Body weight (BW) and food intake were measured weekly. Oral glucose tolerance tests and meal tolerance tests were performed after 4th and 5th weeks of the regimen, respectively. At the end of the study, the rats were killed 2 h after ingestion of a calibrated meal. Blood, tissues and organs were collected for analysis of circulating metabolites and hormones, body composition and mRNA expression in the liver and adipose tissues. No changes were observed in cumulative energy intake and BW gain after 5 weeks of dietary treatment. However, high-protein diets reduced by 20 % the adiposity gain induced by HS and high-sucrose high-fat (HS-HF) diets. Gene expression and transcriptomic analysis suggested that high protein intake reduced liver capacity for lipogenesis by reducing mRNA expressions of fatty acid synthase (fasn), acetyl-CoA carboxylase a and b (Acaca and Acacb) and sterol regulatory element binding transcription factor 1c (Srebf-1c). Moreover, ketogenesis, as indicated by plasma β-hydroxybutyrate levels, was higher in HS-HF-fed mice that were also fed high protein levels. Taken together, these results suggest that high-protein diets may reduce adiposity by inhibiting lipogenesis and stimulating ketogenesis in the liver.
Collapse
|