1
|
Zubkowski A, Sferruzzi‐Perri AN, Wishart DS. Mechanisms of Homoarginine: Looking Beyond Clinical Outcomes. Acta Physiol (Oxf) 2025; 241:e14273. [PMID: 39817883 PMCID: PMC11737358 DOI: 10.1111/apha.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/31/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025]
Abstract
PURPOSE Homoarginine (hArg) is an arginine metabolite that has been known for years, but its physiological role in the body remains poorly understood. For instance, it is well known that high hArg concentrations in the blood are protective against several disease states, yet the mechanisms behind these health benefits are unclear. This review compiles what is known about hArg, namely its synthetic pathways, its role in different diseases and conditions, and its proposed mechanisms of action in humans and experimental animals. FINDINGS Previous work has identified multiple pathways that control hArg synthesis and degradation in the body. Furthermore, endogenous hArg can modulate the cardiovascular system, with decreased hArg being associated with cardiovascular complications and increased mortality. Studies also suggest that hArg could serve as a diagnostic biomarker for a variety of immune, pancreatic, renal, and hepatic dysfunctions. Finally, in women, hArg concentrations rapidly increase throughout pregnancy and there are suggestions that alterations in hArg could indicate pregnancy complications like pre-eclampsia. SUMMARY Homoarginine is an under-appreciated amino acid with potential wide-ranging roles in systemic health, pregnancy, and pathophysiology. Although recent research has focused on its health or disease associations, there is a need for more investigations into understanding the mechanistic pathways by which hArg may operate. This could be aided using metabolomics, which provides a comprehensive approach to correlating multiple metabolites and metabolic pathways with physiological effects. Increasing our knowledge of hArg's roles in the body could pave the way for its routine use as both a diagnostic and therapeutic molecule.
Collapse
Affiliation(s)
- Ashley Zubkowski
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Amanda N. Sferruzzi‐Perri
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - David S. Wishart
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Department of Computer SciencesUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Tsikas D. Perspectives of Quantitative GC-MS, LC-MS, and ICP-MS in the Clinical Medicine Science-The Role of Analytical Chemistry. J Clin Med 2024; 13:7276. [PMID: 39685736 DOI: 10.3390/jcm13237276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Mass spectrometry (MS) is the only instrumental analytical technology that utilizes unique properties of matter, that is, its mass (m) and electrical charge (z). In the magnetic and/or electric fields of mass spectrometers, electrically charged native or chemically modified (millions) endogenous and (thousands) exogenous substances, the analytes, are separated according to their characteristic mass-to-charge ratio (m/z) values. Mass spectrometers coupled to gas chromatographs (GC) or liquid chromatographs (LC), the so-called hyphenated techniques, i.e., GC-MS and LC-MS, respectively, enable reliable determination of the concentration of analytes in complex biological samples such as plasma, serum, and urine. A particular technology is represented by inductively coupled plasma-mass spectrometry (ICP-MS), which is mainly used for the analysis of metal ions. The highest analytical accuracy is reached by using mass spectrometers with high mass resolution (HR) or by tandem mass spectrometers, as it can be realized with quadrupole-type instruments, such as GC-MS/MS and LC-MS/MS, in combination with stable-isotope labeled analytes that serve as internal standards, like a standard weight in scales. GC-MS belongs to the oldest and most advanced instrumental analytical technology. From the very beginning, GC-MS found broad application in basic and applied research sciences. GC-MS has played important roles in discovering biochemical pathways, exploring underlying mechanisms of disease, and establishing new evidence-based pharmacological therapy. In this article, we make an inventory of the use of instrumental mass spectrometry in the life sciences and attempt to provide a perspective study on the future of analytical mass spectrometry in clinical science, mainly focusing on GC-MS and LC-MS. We used information freely available in the scientific database PubMed (retrieved in August-November 2024). Specific search terms such as GC-MS (103,000 articles), LC-MS (113,000 articles), and ICP-MS (14,000 articles) were used in the Title/Abstract in the "PubMed Advanced Search Builder" including filters such as search period (1970-2024). In total, around 103,000 articles on GC-MS, 113,000 articles on LC-MS (113,000), and 14,000 articles on ICP-MS were found. In the period 1995-2023, the yearly publication rate accounted for 3042 for GC-MS articles and 3908 for LC-MS articles (LC-MS/GC-MS ratio, 1.3:1). Our study reveals that GC-MS/MS, LC-MS/MS, and their high-resolution variants are indispensable instrumentations in clinical science including clinical pharmacology, internal and forensic medicine, and doping control. Long-tradition manufacturers of analytical instruments continue to provide increasingly customer-friendly GC-MS and LC-MS apparatus, enabling fulfillment of current requirements and needs in the life sciences. Quantitative GC-MS and GC-MS/MS methods are expected to be used worldwide hand in hand with LC-MS/MS, with ICP-MS closing the gap left for metal ions. The significance of analytical chemistry in clinical science in academia and industry is essential.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
3
|
Baach F, Meyer B, Oh J, Lezius S, Böger R, Schwedhelm E, Choe CU, Neu A. Developmental dynamics of homoarginine, ADMA and SDMA plasma levels from birth to adolescence. Amino Acids 2023; 55:1381-1388. [PMID: 37648945 PMCID: PMC10689515 DOI: 10.1007/s00726-023-03318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Guanidino compounds such as dimethylarginines (SDMA, ADMA) and L-homoarginine ((L-)hArg) can interfere with bioavailability and function of the main NO-donor L-arginine (L-Arg). High ADMA and SDMA but low L-hArg concentrations have been associated with cardio- and cerebrovascular events and mortality in adults. The role of guanidino compounds in paediatric patients remains less clear. We, therefore, compared guanidino compound levels in plasma samples of 57 individuals with chronic kidney disease (CKD) and 141 individuals without CKD from the age of 0 to 17 years, including patients with different comorbidities by correlation and regression analyses. We found highest hArg, SDMA and ADMA concentrations in neonates (Kruskal-Wallis, p < 0.001 for all). From the age of 1 year on, hArg levels increased, whereas SDMA und ADMA levels further decreased in children. SDMA and ADMA are higher in children with CKD independent of GFR (mean factor 1.92 and 1.38, respectively, p < 0.001 for both), and SDMA is strongly correlated with creatinine concentration in children with CKD (Spearman's rho 0.74, p < 0.001). We provide guanidino compound levels in a large sample covering all paediatric age groups for the first time. Our data can be used to assess the role of guanidino compounds such as hArg in disease states, i.e. cerebro- and cardiovascular disorders in childhood and adolescence.
Collapse
Affiliation(s)
- Florence Baach
- Department of Paediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Boglarka Meyer
- Department of Paediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Jun Oh
- Department of Paediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Susanne Lezius
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK E.V.), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Klinikum Itzehoe, Robert-Koch-Strasse 2, 25524, Itzehoe, Germany
| | - Axel Neu
- Department of Paediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- VAMED Klinik Geesthacht, Johannes-Ritter-Strasse 100, 21502, Geesthacht, Germany.
| |
Collapse
|
4
|
Brinkmann F, Hanusch B, Ballmann M, Mayorandan S, Bollenbach A, Chobanyan-Jürgens K, Jansen K, Schmidt-Choudhury A, Derichs N, Tsikas D, Lücke T. Activated L-Arginine/Nitric Oxide Pathway in Pediatric Cystic Fibrosis and Its Association with Pancreatic Insufficiency, Liver Involvement and Nourishment: An Overview and New Results. J Clin Med 2020; 9:jcm9062012. [PMID: 32604946 PMCID: PMC7356307 DOI: 10.3390/jcm9062012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF; OMIM 219700) is a rare genetic disorder caused by a chloride channel defect, resulting in lung disease, pancreas insufficiency and liver impairment. Altered L-arginine (Arg)/nitric oxide (NO) metabolism has been observed in CF patients’ lungs and in connection with malnutrition. The aim of the present study was to investigate markers of the Arg/NO pathway in the plasma and urine of CF patients and to identify possible risk factors, especially associated with malnutrition. We measured the major NO metabolites nitrite and nitrate, Arg, a semi-essential amino acid and NO precursor, the NO synthesis inhibitor asymmetric dimethylarginine (ADMA) and its major urinary metabolite dimethylamine (DMA) in plasma and urine samples of 70 pediatric CF patients and 78 age-matched healthy controls. Biomarkers were determined by gas chromatography–mass spectrometry and high-performance liquid chromatography. We observed higher plasma Arg (90.3 vs. 75.6 µM, p < 0.0001), ADMA (0.62 vs. 0.57 µM, p = 0.03), Arg/ADMA ratio (148 vs. 135, p = 0.01), nitrite (2.07 vs. 1.95 µM, p = 0.03) and nitrate (43.3 vs. 33.1 µM, p < 0.001) concentrations, as well as higher urinary DMA (57.9 vs. 40.7 µM/mM creatinine, p < 0.001) and nitrate (159 vs. 115 µM/mM creatinine, p = 0.001) excretion rates in the CF patients compared to healthy controls. CF patients with pancreatic sufficiency showed plasma concentrations of the biomarkers comparable to those of healthy controls. Malnourished CF patients had lower Arg/ADMA ratios (p = 0.02), indicating a higher NO synthesis capacity in sufficiently nourished CF patients. We conclude that NO production, protein-arginine dimethylation, and ADMA metabolism is increased in pediatric CF patients. Pancreas and liver function influence Arg/NO metabolism. Good nutritional status is associated with higher NO synthesis capacity and lower protein-arginine dimethylation.
Collapse
Affiliation(s)
- Folke Brinkmann
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| | - Beatrice Hanusch
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
- Correspondence: ; Tel.: +49-234-5092615
| | - Manfred Ballmann
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
- Paediatric Clinic, University Medicine Rostock, 18057 Rostock, Germany
| | - Sebene Mayorandan
- Department of Paediatrics, Hannover Medical School, 30623 Hannover, Germany; (S.M.); (K.C.-J.); (N.D.)
- Department of Paediatrics, University Clinic Münster, 48149 Münster, Germany
| | - Alexander Bollenbach
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany; (A.B.); (D.T.)
| | - Kristine Chobanyan-Jürgens
- Department of Paediatrics, Hannover Medical School, 30623 Hannover, Germany; (S.M.); (K.C.-J.); (N.D.)
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of General Pediatrics, Neuropediatrics, Metabolism, Gastroenterology, Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Pediatric Clinical-Pharmacological Trial Center (paedKliPS), Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kathrin Jansen
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| | - Anjona Schmidt-Choudhury
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| | - Nico Derichs
- Department of Paediatrics, Hannover Medical School, 30623 Hannover, Germany; (S.M.); (K.C.-J.); (N.D.)
- KinderPneumologieDerichs, Pediatric Pneumology and Allergology, CFTR & Pulmonary Research Center, 30173 Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany; (A.B.); (D.T.)
| | - Thomas Lücke
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| |
Collapse
|
5
|
Jansen K, Hanusch B, Pross S, Hanff E, Drabert K, Bollenbach A, Dugave I, Carmann C, Siefen RG, Emons B, Juckel G, Legenbauer T, Tsikas D, Lücke T. Enhanced Nitric Oxide (NO) and Decreased ADMA Synthesis in Pediatric ADHD and Selective Potentiation of NO Synthesis by Methylphenidate. J Clin Med 2020; 9:jcm9010175. [PMID: 31936392 PMCID: PMC7019361 DOI: 10.3390/jcm9010175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common pediatric psychiatric disorder, frequently treated with methylphenidate (MPH). Recently, MPH’s cardiovascular safety has been questioned by observational studies describing an increased cardiovascular risk in adults and blood pressure alterations in children. We considered members of the L-arginine (Arg)/nitric oxide (NO) pathway as possible early cardiovascular risk factors in pediatric ADHD children. They include the NO metabolites, nitrite and nitrate, the NO precursor Arg, and asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor and a cardiovascular risk factor in adults. We conducted a prospective clinical trial with 42 ADHD children (aged 6–16 years) with (n = 19) and without (n = 23) MPH treatment. Age-matched children without ADHD (n = 43) served as controls. All plasma and urine metabolites were determined by gas chromatography-mass spectrometry. We observed higher plasma nitrite and lower plasma ADMA concentrations in the ADHD children. MPH-treated ADHD children had higher plasma nitrite concentrations than MPH-untreated ADHD children. As NOS activity is basally inhibited by ADMA, MPH treatment seems to have decreased the inhibitory potency of ADMA. Percentiles of systolic blood pressure were higher in MPH-treated ADHD children. The underlying mechanisms and their implications in the MPH therapy of pediatric ADHD with MPH remain to be elucidated in larger cohorts.
Collapse
Affiliation(s)
- Kathrin Jansen
- University Children’s Hospital, Ruhr University Bochum, 44791 Bochum, Germany
- Correspondence: ; Tel.: +49-234-5092615
| | - Beatrice Hanusch
- University Children’s Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| | - Saskia Pross
- University Children’s Hospital, Ruhr University Bochum, 44791 Bochum, Germany
- Children’s Hospital, St., Clemens-Hospital Geldern, 47608 Geldern, Germany
| | - Erik Hanff
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Kathrin Drabert
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Bollenbach
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Irina Dugave
- University Children’s Hospital, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Psychiatry, Alexius/Josef Hospital, 41464 Neuss, Germany
| | - Christina Carmann
- University Children’s Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| | - Rainer Georg Siefen
- University Children’s Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| | - Barbara Emons
- Department of Psychiatry, LWL Institute of Mental Health, LWL University Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Georg Juckel
- Department of Psychiatry, LWL Institute of Mental Health, LWL University Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Tanja Legenbauer
- LWL University Hospital Hamm for Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic, Ruhr University Bochum, 59071 Hamm, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Lücke
- University Children’s Hospital, Ruhr University Bochum, 44791 Bochum, Germany
| |
Collapse
|
6
|
Snauwaert E, Van Biesen W, Raes A, Glorieux G, Van Bogaert V, Van Hoeck K, Coppens M, Roels S, Vande Walle J, Eloot S. Concentrations of representative uraemic toxins in a healthy versus non-dialysis chronic kidney disease paediatric population. Nephrol Dial Transplant 2019; 33:978-986. [PMID: 28992139 DOI: 10.1093/ndt/gfx224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022] Open
Abstract
Background Chronic kidney disease (CKD) in childhood is poorly explained by routine markers (e.g. urea and creatinine) and is better depicted in adults by other uraemic toxins. This study describes concentrations of representative uraemic toxins in non-dialysis CKD versus healthy children. Methods In 50 healthy children and 57 children with CKD Stages 1-5 [median estimated glomerular filtration rate 48 (25th-75th percentile 24-71) mL/min/1.73 m2; none on dialysis], serum concentrations of small solutes [symmetric and asymmetric dimethyl-arginine (SDMA and ADMA, respectively)], middle molecules [β2-microglobuline (β2M), complement factor D (CfD)] and protein-bound solutes [p-cresylglucuronide (pCG), hippuric acid (HA), indole-acetic acid (IAA), indoxyl sulphate (IxS), p-cresyl sulphate (pCS) and 3-carboxy-4-methyl-5-propyl-furanpropionic acid (CMPF)] were measured. Concentrations in the CKD group were expressed as z-score relative to controls and matched for age and gender. Results SDMA, CfD, β2M, IxS, pCS, IAA, CMPF and HA concentrations were higher in the overall CKD group compared with controls, ranging from 1.7 standard deviations (SD) for IAA and HA to 11.1 SD for SDMA. SDMA, CfD, β2M, IxS and CMPF in CKD Stages 1-2 with concentrations 4.8, 2.8, 4.5, 1.9 and 1.6 SD higher, respectively. In contrast, pCS, pCG and IAA concentrations were only higher than controls from CKD Stages 3-4 onwards, but only in CKD Stage 5 for ADMA and HA (z-score 2.6 and 20.2, respectively). Conclusions This is the first study to establish reference values for a wide range of uraemic toxins in non-dialysis CKD and healthy children. We observed an accumulation of multiple uraemic toxins, each with a particular retention profile according to the different CKD stages.
Collapse
Affiliation(s)
- Evelien Snauwaert
- Department of Paediatrics and Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Ann Raes
- Department of Paediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Valerie Van Bogaert
- Department of Paediatrics and Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Koen Van Hoeck
- Department of Paediatric Nephrology, Antwerp University Hospital, Antwerp, Belgium
| | - Marc Coppens
- Department of Anaesthesiology, Ghent University Hospital, Ghent, Belgium
| | - Sanne Roels
- Department of Data Analysis, Faculty of Psychology and Pedagogy, Ghent University, Ghent, Belgium
| | - Johan Vande Walle
- Department of Paediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Sunny Eloot
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Hanff E, Ruben S, Kreuzer M, Bollenbach A, Kayacelebi AA, Das AM, von Versen-Höynck F, von Kaisenberg C, Haffner D, Ückert S, Tsikas D. Development and validation of GC–MS methods for the comprehensive analysis of amino acids in plasma and urine and applications to the HELLP syndrome and pediatric kidney transplantation: evidence of altered methylation, transamidination, and arginase activity. Amino Acids 2019; 51:529-547. [DOI: 10.1007/s00726-018-02688-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
|
8
|
Tsikas D, Bollenbach A, Savvidou MD. Inverse correlation between maternal plasma asymmetric dimethylarginine (ADMA) and birthweight percentile in women with impaired placental perfusion: circulating ADMA as an NO-independent indicator of fetal growth restriction? Amino Acids 2017; 50:341-351. [PMID: 29235018 DOI: 10.1007/s00726-017-2522-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/04/2017] [Indexed: 01/15/2023]
Abstract
L-Arginine (Arg) is the enzymatic precursor of nitric oxide (NO) which has multiple biological functions. Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) are endogenous inhibitors of NO. We hypothesized that the ADMA and SDMA have additional biological functions in pregnancy, beyond NO synthesis, and may play a role in the regulation of birthweight (BW). To investigate this issue, we measured the plasma concentration of ADMA, SDMA, Arg and the NO metabolites nitrite and nitrate, at 23-25 weeks of gestation in women with normal placental function (Group 1) and in women with impaired placental perfusion; 19 of these women had normal outcome (Group 2), 14 had a fetus that was growth restricted (Group 3), and 10 women eventually developed preeclampsia (Group 4). BW percentile was found to inversely correlate with maternal plasma ADMA concentration in Group 3 (r = - 0.872, P < 0.001) and in Group 4 (r = - 0.800, P < 0.05). But, BW percentile did not correlate with the maternal plasma concentration of Arg, SDMA, nitrate or nitrite. Our results suggest that maternal plasma ADMA concentration is an important indicator of fetal growth restriction in women with impaired placental perfusion independent of NO.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Alexander Bollenbach
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Makrina D Savvidou
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, Imperial College London, London, UK
| |
Collapse
|
9
|
Nagasaka H, Morioka I, Takuwa M, Nakacho M, Yoshida M, Ishida A, Hirayama S, Miida T, Tsukahara H, Yorifuji T, Iijima K. Blood asymmetric dimethylarginine and nitrite/nitrate concentrations in short-stature children born small for gestational age with and without growth hormone therapy. J Int Med Res 2017; 46:761-772. [PMID: 28974136 PMCID: PMC5971506 DOI: 10.1177/0300060517723183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective
To investigate the basal amino acid metabolism and impact of growth hormone (GH) therapy in short-stature children born small for gestational age (short SGA children). Methods In this age-matched case-control study, the basal blood levels of amino acids, asymmetric dimethylarginine (ADMA), and nitrite/nitrate (NOx) were compared between 24 short SGA children and 25 age-matched normal children. Changes in these parameters were assessed for 12 months in 12 short SGA children initiating GH therapy (Group A) and 12 age-matched short SGA children without GH therapy (Group B). Results The arginine levels were significantly lower in the short SGA than in normal children. The ADMA levels were significantly higher and NOx levels were significantly lower in the short SGA than normal children. In Group A, the ADMA level was significantly lower and NOx level was significantly higher at 6 months than at baseline. At 12 months, the ADMA level in Group A began to increase, but the NOx level remained the same. Group B showed no significant changes. Conclusions This study is the first to show that ADMA is promoted and nitric oxide is suppressed in short SGA children and that GH therapy affects the production of ADMA and nitric oxide.
Collapse
Affiliation(s)
- Hironori Nagasaka
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Ichiro Morioka
- 2 Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mayuko Takuwa
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Mariko Nakacho
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Mayumi Yoshida
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Akihito Ishida
- 3 Kobe Children's Primary Emergency Medical Center, Kobe, Japan
| | - Satoshi Hirayama
- 4 Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Miida
- 4 Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirokazu Tsukahara
- 5 Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tohru Yorifuji
- 6 Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Kazumoto Iijima
- 2 Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
10
|
Skrzypczyk P, Pańczyk-Tomaszewska M. Methods to evaluate arterial structure and function in children - State-of-the art knowledge. Adv Med Sci 2017; 62:280-294. [PMID: 28501727 DOI: 10.1016/j.advms.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND With increasing rates of hypertension, obesity, and diabetes in the pediatric population, wide available, and reproducible methods are necessary to evaluate arterial structure and function in children and adolescents. METHODS MEDLINE/Pubmed was searched for articles published in years 2012-2017 on methodology of, current knowledge on, and limitations of the most commonly used methods to evaluate central, proximal and coronary arteries, as well as endothelial function in pediatric patients. RESULTS Among 1528 records screened (including 1475 records from years 2012 to 2017) 139 papers were found suitable for the review. Following methods were discussed in this review article: ultrasound measurements of the intima-media thickness, coronary calcium scoring using computed tomography, arterial stiffness measurements (pulse wave velocity and pulse wave analysis, carotid artery distensibility, pulse pressure, and ambulatory arterial stiffness index), ankle-brachial index, and methods to evaluate vascular endothelial function (flow-mediated vasodilation, peripheral arterial tonometry, Doppler laser flowmetry, and cellular and soluble markers of endothelial dysfunction). CONCLUSIONS Ultrasonographic measurement of carotid intima-media thickness and measurement of pulse wave velocity (by oscillometry or applanation tonometry) are highly reproducible methods applicable for both research and clinical practice with proved applicability for children aged ≥6 years or with height ≥120cm. Evaluation of ambulatory arterial stiffness index by ambulatory blood pressure monitoring is another promising option in pediatric high-risk patients. Clearly, further studies are necessary to evaluate usefulness of these and other methods for the detection of subclinical arterial damage in children.
Collapse
|
11
|
The role of L-arginine/L-homoarginine/nitric oxide pathway for aortic distensibility and intima-media thickness in stroke patients. Amino Acids 2017; 49:1111-1121. [PMID: 28285332 DOI: 10.1007/s00726-017-2409-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
Asymmetric dimethylarginine (ADMA) and L-homoarginine (hArg) are L-arginine (Arg) metabolites derived from different pathways. Protein arginine N-methyltransferase (PRMT) and subsequent proteolysis of proteins containing methylarginine residues release ADMA. Arginine:glycine amidinotransferase (AGAT) converts Arg to hArg and guanidinoacetate (GAA). While high concentrations of ADMA and low concentrations of hArg in the blood have been established as cardiovascular risk markers, the cardiovascular relevance of GAA is still unexplored. Arg and hArg are substrates and ADMA is an inhibitor of nitric oxide (NO) synthase (NOS). The cardiovascular effects of ADMA and hArg have been related to NO, a potent endogenous vasodilator. ADMA and hArg are considered to exert additional, not yet explored, presumably NO-unrelated effects and to act antagonistically in the renal and cardiovascular systems. Although the physiological role of Arg, ADMA, hArg and NO for endothelial function in small- and medium-sized arteries has been intensively studied in the past, the clinical relevance of aortic wall remodeling still remains unclear. Here, we evaluated potential relation between aortic distensibility (AD) or aortic intima-media thickness (aIMT) and circulating ADMA, hArg, GAA, and the NO metabolites nitrite and nitrate in the plasma of 78 patients (24 females, 54 males; aged 59 ± 14 years) with recent ischemic stroke or transient ischemic attack (TIA). All biochemical parameters were determined by stable-isotope dilution gas chromatography-mass spectrometry. AD and aIMT were measured by transesophageal echocardiography. Arg, hArg, ADMA and GAA median plasma concentrations (µM) were determined to be 61, 1.43, 0.50 and 2.16, respectively. hArg, ADMA and GAA correlated closely with Arg. Nitrite, nitrate and creatinine median plasma concentrations (µM) were 2.49, 48.7, and 84.1, respectively. Neither AD (2.61 vs. 1.85 10-6 × cm2 × dyn-1, P = 0.064) nor aIMT (1.25 vs. 1.13 mm, P = 0.596) differed between females and males. The hArg/ADMA molar ratio (r = -0.351, P = 0.009), nitrate (r = 0.364, P = 0.007) and nitrite (r = 0.329, P = 0.015) correlated with aIMT but not with AD. Arg, hArg, ADMA and GAA correlated with aIMT but not with AD. The results demonstrate a strong relation between the Arg/NO pathway and aortic atherosclerosis but not with AD suggesting different mechanisms underlying the two aspects of aortic wall remodeling.
Collapse
|
12
|
Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins (Basel) 2017; 9:toxins9030092. [PMID: 28272322 PMCID: PMC5371847 DOI: 10.3390/toxins9030092] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/04/2017] [Indexed: 02/07/2023] Open
Abstract
Asymmetric and symmetric dimethylarginine (ADMA and SDMA, respectively) are toxic, non-proteinogenic amino acids formed by post-translational modification and are uremic toxins that inhibit nitric oxide (NO) production and play multifunctional roles in many human diseases. Both ADMA and SDMA have emerged as strong predictors of cardiovascular events and death in a range of illnesses. Major progress has been made in research on ADMA-lowering therapies in animal studies; however, further studies are required to fill the translational gap between animal models and clinical trials in order to treat human diseases related to elevated ADMA/SDMA levels. Here, we review the reported impacts of ADMA and SDMA on human health and disease, focusing on the synthesis and metabolism of ADMA and SDMA; the pathophysiological roles of these dimethylarginines; clinical conditions and animal models associated with elevated ADMA and SDMA levels; and potential therapies against ADMA and SDMA. There is currently no specific pharmacological therapy for lowering the levels and counteracting the deleterious effects of ADMA and SDMA. A better understanding of the mechanisms underlying the impact of ADMA and SDMA on a wide range of human diseases is essential to the development of specific therapies against diseases related to ADMA and SDMA.
Collapse
|
13
|
Comprehensive analysis of the L-arginine/L-homoarginine/nitric oxide pathway in preterm neonates: potential roles for homoarginine and asymmetric dimethylarginine in foetal growth. Amino Acids 2017; 49:783-794. [PMID: 28161799 DOI: 10.1007/s00726-017-2382-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 01/21/2023]
Abstract
L-Arginine (Arg) and L-homoarginine (hArg) are precursors of nitric oxide (NO), a signalling molecule with multiple important roles in human organism. In the circulation of adults, high concentrations of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) and low concentrations of hArg emerged as cardiovascular risk factors. Yet, the importance of the Arg/hArg/NO pathway, especially of hArg and ADMA, in preterm neonates is little understood. We comprehensively investigated the Arg/hArg/NO pathway in 106 healthy preterm infants (51 boys, 55 girls) aged between 23 + 6 and 36 + 1 gestational weeks. Babies were divided into two groups: group I consisted of 31 babies with a gestational age of 23 + 6 - 29 + 6 weeks; group II comprised 75 children with a gestational age of 30 + 0 - 36 + 1 weeks. Plasma and urine concentrations of ADMA, SDMA, hArg, Arg, dimethylamine (DMA) which is the major urinary ADMA metabolite, as well as of nitrite and nitrate, the major NO metabolites, were determined by GC-MS and GC-MS/MS methods. ADMA and hArg plasma levels, but not the hArg/ADMA molar ratio, were significantly higher in group II than in group I: 895 ± 166 nM vs. 774 ± 164 nM (P = 0.001) for ADMA and 0.56 ± 0.04 µM vs. 0.48 ± 0.08 µM (P = 0.010) for hArg. There was no statistical difference between the groups with regard to urinary ADMA (12.2 ± 4.6 vs 12.8 ± 3.6 µmol/mmol creatinine; P = 0.61) and urinary SDMA. Urinary hArg, ADMA, SDMA correlated tightly with each other. Urinary excretion of DMA was slightly higher in group I compared to group II: 282 ± 44 vs. 247 ± 35 µmol/mmol creatinine (P = 0.004). The DMA/ADMA molar ratio in urine was tendentiously higher in neonates of group I compared to group II: 27 ± 13 vs. 20 ± 5 (P = 0.065). There were no differences between the groups with respect to Arg in plasma and to nitrite and nitrate in plasma and urine. In preterm neonates, ADMA and hArg biosynthesis increases with gestational age without remarkable changes in the hArg/ADMA ratio or NO biosynthesis. Our study suggests that ADMA and hArg are involved in foetal growth.
Collapse
|
14
|
Hou Y, Hu S, Jia S, Nawaratna G, Che D, Wang F, Bazer FW, Wu G. Whole-body synthesis of L-homoarginine in pigs and rats supplemented with L-arginine. Amino Acids 2016; 48:993-1001. [PMID: 26676627 DOI: 10.1007/s00726-015-2145-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022]
Abstract
Recent studies suggest an important role for L-homoarginine in cardiovascular, hepatic and neurological functions, as well as the regulation of glucose metabolism. However, little is known about whole-body L-homoarginine synthesis or its response to dietary L-arginine intake in animals. Four series of experiments were conducted to determine L-homoarginine synthesis and catabolism in pigs and rats. In Experiment 1, male and female pigs were fed a corn- and soybean meal-based diet supplemented with 0.0-2.42 % L-arginine-HCl. In Experiment 2, male and female rats were fed a casein-based diet, while receiving drinking water containing supplemental L-arginine-HCl to provide 0.0-3.6 g L-arginine/kg body-weight/day. In both experiments, urine collected from the animals for 24 h was analyzed for L-homoarginine and related metabolites. In Experiment 3, pigs and rats received a single oral dose of 1 or 10 mg L-homoarginine/kg body-weight, respectively, and their urine was collected for 24 h for analyses of L-homoarginine and related substances. In Experiment 4, slices of pig and rat tissues (including liver, brain, kidney, heart, and skeletal-muscle) were incubated for 1 h in Krebs-bicarbonate buffer containing 5 or 50 µM L-homoarginine. Our results indicated that: (a) animal tissues did not degrade L-homoarginine in the presence of physiological concentrations of other amino-acids; (b) 95-96 % of orally administered L-homoarginine was recovered in urine; (c) L-homoarginine was quantitatively a minor product of L-arginineg catabolism in the body; and (d) dietary L-arginine supplementation dose-dependently increased whole-body L-homoarginine synthesis. These novel findings provide a new framework for future studies of L-homoarginine metabolism and physiology in animals and humans.
Collapse
Affiliation(s)
- Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety,, Wuhan Polytechnic University, Wuhan, 430023, China
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Sichao Jia
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Gayan Nawaratna
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Dongsheng Che
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fenglai Wang
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety,, Wuhan Polytechnic University, Wuhan, 430023, China.
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Effects of chronic oral l-arginine administration on the l-arginine/NO pathway in patients with peripheral arterial occlusive disease or coronary artery disease: l-Arginine prevents renal loss of nitrite, the major NO reservoir. Amino Acids 2015; 47:1961-74. [DOI: 10.1007/s00726-015-2031-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/13/2015] [Indexed: 12/20/2022]
|