1
|
Asega AF, Barros BCSC, Chaves AFA, Oliveira AK, Bertholim L, Kitano ES, Serrano SMT. Mouse skin peptidomic analysis of the hemorrhage induced by a snake venom metalloprotease. Amino Acids 2023; 55:1103-1119. [PMID: 37389729 DOI: 10.1007/s00726-023-03299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Hemorrhage induced by snake venom metalloproteases (SVMPs) results from proteolysis, capillary disruption, and blood extravasation. HF3, a potent SVMP of Bothrops jararaca, induces hemorrhage at pmol doses in the mouse skin. To gain insight into the hemorrhagic process, the main goal of this study was to analyze changes in the skin peptidome generated by injection of HF3, using approaches of mass spectrometry-based untargeted peptidomics. The results revealed that the sets of peptides found in the control and HF3-treated skin samples were distinct and derived from the cleavage of different proteins. Peptide bond cleavage site identification in the HF3-treated skin showed compatibility with trypsin-like serine proteases and cathepsins, suggesting the activation of host proteinases. Acetylated peptides, which originated from the cleavage at positions in the N-terminal region of proteins in both samples, were identified for the first time in the mouse skin peptidome. The number of peptides acetylated at the residue after the first Met residue, mostly Ser and Ala, was higher than that of peptides acetylated at the initial Met. Proteins cleaved in the hemorrhagic skin participate in cholesterol metabolism, PPAR signaling, and in the complement and coagulation cascades, indicating the impairment of these biological processes. The peptidomic analysis also indicated the emergence of peptides with potential biological activities, including pheromone, cell penetrating, quorum sensing, defense, and cell-cell communication in the mouse skin. Interestingly, peptides generated in the hemorrhagic skin promoted the inhibition of collagen-induced platelet aggregation and could act synergistically in the local tissue damage induced by HF3.
Collapse
Affiliation(s)
- Amanda F Asega
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Bianca C S C Barros
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Alison F A Chaves
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Ana K Oliveira
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Luciana Bertholim
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Eduardo S Kitano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-000, Brazil.
| |
Collapse
|
2
|
Sialic acid-containing glycans play a role in the activity of snake venom proteases. Biochimie 2023; 204:140-153. [PMID: 36210615 DOI: 10.1016/j.biochi.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.
Collapse
|
3
|
Bertholim L, Chaves AFA, Oliveira AK, Menezes MC, Asega AF, Tashima AK, Zelanis A, Serrano SMT. Systemic Effects of Hemorrhagic Snake Venom Metalloproteinases: Untargeted Peptidomics to Explore the Pathodegradome of Plasma Proteins. Toxins (Basel) 2021; 13:toxins13110764. [PMID: 34822548 PMCID: PMC8622078 DOI: 10.3390/toxins13110764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.
Collapse
Affiliation(s)
- Luciana Bertholim
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Alison F. A. Chaves
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Ana K. Oliveira
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Milene C. Menezes
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Amanda F. Asega
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Alexandre K. Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo 04023-901, SP, Brazil;
| | - Andre Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (UNIFESP), 330 Talim St., São José dos Campos 12231-280, SP, Brazil;
| | - Solange M. T. Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
- Correspondence:
| |
Collapse
|
4
|
Andrade-Silva D, Nishiyama MY, Stuginski DR, Zelanis A, Serrano SMT. The distinct N-terminomes of Bothrops jararaca newborn and adult venoms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140643. [PMID: 33722654 DOI: 10.1016/j.bbapap.2021.140643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Using approaches of transcriptomics and proteomics we have shown that the phenotype of Bothrops jararaca venom undergoes a significant rearrangement upon neonate to adult transition. Most regulatory processes in biology are intrinsically related to modifications of protein structure, function, and abundance. However, it is unclear to which extent intrinsic proteolysis affects toxins and snake venom phenotypes upon ontogenesis. Here we assessed the natural N-terminome of Bothrops jararaca newborn and adult venoms and explored the degree of N-terminal protein truncation in ontogenetic-based proteome variation. To this end we applied the Terminal Amine Isotopic Labeling of Substrates (TAILS) technology to characterize venom collected in the presence of proteinase inhibitors. We identified natural N-terminal sequences in the newborn (71) and adult (84) venoms, from which only 37 were common to both. However, truncated toxins were found in higher number in the newborn (212) than in the adult (140) venom. Moreover, sequences N-terminally blocked by pyroglutamic acid were identified in the newborn (55) and adult (49) venoms. Most toxin classes identified by their natural N-terminal sequences showed a similar number of unique peptides in the newborn and adult venoms, however, those of serine proteinases and C-type lectins were more abundant in the adult venom. Truncated sequences from at least ten toxin classes were detected, however the catalytic and cysteine-rich domains of metalloproteinases were the most prone to proteolysis, mainly in the newborn venom. Our results underscore the pervasiveness of truncations in most toxin classes and highlight variable post-translational events in newborn and adult venoms.
Collapse
Affiliation(s)
- Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Milton Y Nishiyama
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | | | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos, SP, Brazil
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Cleavage of proteoglycans, plasma proteins and the platelet-derived growth factor receptor in the hemorrhagic process induced by snake venom metalloproteinases. Sci Rep 2020; 10:12912. [PMID: 32737331 PMCID: PMC7395112 DOI: 10.1038/s41598-020-69396-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.
Collapse
|
6
|
Zelanis A, Oliveira AK, Prudova A, Huesgen PF, Tashima AK, Kizhakkedathu J, Overall CM, Serrano SMT. Deep Profiling of the Cleavage Specificity and Human Substrates of Snake Venom Metalloprotease HF3 by Proteomic Identification of Cleavage Site Specificity (PICS) Using Proteome Derived Peptide Libraries and Terminal Amine Isotopic Labeling of Substrates (TAILS) N-Terminomics. J Proteome Res 2019; 18:3419-3428. [PMID: 31337208 DOI: 10.1021/acs.jproteome.9b00325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Snakebite is a major medical concern in many parts of the world with metalloproteases playing important roles in the pathological effects of Viperidae venoms, including local tissue damage, hemorrhage, and coagulopathy. Hemorrhagic Factor 3 (HF3), a metalloprotease from Bothrops jararaca venom, induces local hemorrhage and targets extracellular matrix (ECM) components, including collagens and proteoglycans, and plasma proteins. However, the full substrate repertoire of this metalloprotease is unknown. We report positional proteomic studies identifying >2000 N-termini, including neo-N-termini of HF3 cleavage sites in mouse embryonic fibroblast secretome proteins. Terminal amine isotopic labeling of substrates (TAILS) analysis identified a preference for Leu at the P1' position among candidate HF3 substrates including proteins of the ECM and focal adhesions and the cysteine protease inhibitor cystatin-C. Interestingly, 190 unique peptides matched to annotated cleavage sites in the TopFIND N-termini database, suggesting that these cleavages occurred at a site prone to cleavage or might have been generated by other proteases activated upon incubation with HF3, including caspases-3 and -7, cathepsins D and E, granzyme B, and MMPs 2 and 9. Using Proteomic identification of cleavage site specificity (PICS), a tryptic library derived from THP-1 monocytic cells was used as HF3 substrates for identifying protease cleavage sites and sequence preferences in peptides. A total of 799 unique cleavage sites were detected and, in accordance with TAILS analysis using native secreted protein substrates of MEF cells, revealed a clear preference for Leu at P1'. Taken together, these results greatly expand the known substrate degradome of HF3 and reveal potential new targets, which may serve as a basis to better elucidate the complex pathophysiology of snake envenomation.
Collapse
Affiliation(s)
- André Zelanis
- Department of Science and Technology , Federal University of São Paulo (ICT-UNIFESP) , São José dos Campos , SP 12231-280 , Brazil.,Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Ana K Oliveira
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Anna Prudova
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Pitter F Huesgen
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Central Institute for Engineering, Electronics and Analytics, ZEA-3 , Forschungszentrum Jülich , Juelich 52425 , Germany
| | - Alexandre K Tashima
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Jayachandran Kizhakkedathu
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Christopher M Overall
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| |
Collapse
|
7
|
Menezes MC, Kitano ES, Bauer VC, Oliveira AK, Cararo-Lopes E, Nishiyama MY, Zelanis A, Serrano SMT. Early response of C2C12 myotubes to a sub-cytotoxic dose of hemorrhagic metalloproteinase HF3 from Bothrops jararaca venom. J Proteomics 2019; 198:163-176. [PMID: 30553073 DOI: 10.1016/j.jprot.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Manifestations of local tissue damage, such as hemorrhage and myonecrosis, are among the most dramatic effects of envenomation by viperid snakes. Snake venom metalloproteinases (SVMPs) of the P-III class are main players of the hemorrhagic effect due to their activities in promoting blood vessel disruption. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, shows a minimum hemorrhagic dose of 240 fmol on rabbit skin. The aim of this study was to assess the effects of a sub-cytotoxic dose of HF3 (50 nM) on the proteomic profile of C2C12 differentiated cells (myotubes) in culture, and on the peptidomic profile of the culture supernatant. Quantitative proteomic analysis using stable-isotope dimethyl labeling showed differential abundance of various proteins including enzymes involved in oxidative stress and inflammation responses. Identification of peptides in the supernatant of HF3-treated myotubes revealed proteolysis and pointed out potential new substrates of HF3, including glyceraldehyde-3-phosphate dehydrogenase, and some damage-associated molecular patterns (DAMPs). These experiments demonstrate the subtle effects of HF3 on muscle cells and illustrate for the first time the early proteolytic events triggered by HF3 on myotubes. Moreover, they may contribute to future studies aimed at explaining the inflammation process, hemorrhage and myonecrosis caused by SVMPs. SIGNIFICANCE: One of the main features of viperid snake envenomation is myotoxicity at the bite site, which, in turn is often associated with edema, blistering and hemorrhage, composing a complex pattern of local tissue damage. In this scenario, besides muscle cells, other types of cells, components of the extracellular matrix and blood vessels may also be affected, resulting in an outcome of deficient muscle regeneration. The main venom components participating in this pathology are metalloproteinases and phospholipases A2. Muscle necrosis induced by metalloproteinases is considered as an indirect effect related to ischemia, due to hemorrhage resulted from damage to the microvasculature. The pathogenesis of local effects induced by Bothrops venoms or isolated toxins has been studied by traditional methodologies. More recently, proteomic and peptidomic approaches have been used to study venom-induced pathogenesis. Here, in order to investigate the role of metalloproteinase activity in local tissue damage, we asked whether the hemorrhagic metalloproteinase HF3, at sub-cytotoxic levels, could alter the proteome of C2C12 myotubes in culture, thereby providing an insight into the mechanisms for the development of myonecrosis. Our results from mass spectrometric analyses showed subtle, early changes in the cells, including differential abundance of some proteins and proteolysis in the culture supernatant. The data illustrate the potential ability of metalloproteinases to trigger early systemic responses progressing from local cells and up to tissues.
Collapse
Affiliation(s)
- Milene C Menezes
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Eduardo S Kitano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Verena C Bauer
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ana K Oliveira
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil; Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Eduardo Cararo-Lopes
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Milton Y Nishiyama
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - André Zelanis
- Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos, SP, Brazil
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
8
|
Kalogeropoulos K, Treschow AF, Auf dem Keller U, Escalante T, Rucavado A, Gutiérrez JM, Laustsen AH, Workman CT. Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins (Basel) 2019; 11:toxins11030170. [PMID: 30893860 PMCID: PMC6468401 DOI: 10.3390/toxins11030170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) are among the most abundant enzymes in many snake venoms, particularly among viperids. These proteinases are responsible for some of the clinical manifestations classically seen in viperid envenomings, including hemorrhage, necrosis, and coagulopathies. The objective of this study was to investigate the enzymatic activities of these proteins using a high-throughput peptide library to screen for the proteinase targets of the venoms of five viperid (Echis carinatus, Bothrops asper, Daboia russelii, Bitis arietans, Bitis gabonica) and one elapid (Naja nigricollis) species of high medical importance. The proteinase activities of these venoms were each tested against 360 peptide substrates, yielding 2160 activity profiles. A nonlinear regression model that accurately described the observed enzymatic activities was fitted to the experimental data, allowing for the comparison of cleavage rates across species. In this study, previously unknown protein targets of snake venom proteinases were identified, potentially implicating novel human and animal proteins that may be involved in the pathophysiology of viper envenomings. The functional relevance of these targets was further evaluated and discussed. These new findings may contribute to our understanding of the clinical manifestations and underlying biochemical mechanisms of snakebite envenoming by viperid species.
Collapse
Affiliation(s)
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|