1
|
Li X, Wang Y, Ren M, Liu Q, Li J, Zhang L, Yao S, Tang L, Wen G, An J, Jin H, Tuo B. The role of chloride intracellular channel 4 in tumors. Cancer Cell Int 2025; 25:118. [PMID: 40140845 PMCID: PMC11948840 DOI: 10.1186/s12935-025-03737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Tumors are among the most predominant health problems in the world, and the annual incidence of cancer is increasing globally; therefore, there is an urgent need to identify effective therapeutic targets. Chloride intracellular channel 4 (CLIC4) belongs to the family of chloride intracellular channels (CLICs), which are widely expressed in various tissues and organs, such as the brain, lung, pancreas, colorectum, and ovary, and play important roles in promoting apoptosis, promoting angiogenesis, maintaining normal proliferation of endothelial cells, and regulating the assembly and reconstruction of the cytoskeleton. The expression and function of CLIC4 in tumors varies. It has been reported that CLIC4 is low expressed in gastric cancer, skin cancer and prostate cancer, suggesting a tumor suppressor role. Interestingly, CLIC4 is overexpressed in pancreatic, ovarian and breast cancers, indicating a cancer-promoting role. CLIC4 expression is dysregulated in some solid tumors, which may be because CLIC4 is involved in the growth, migration or invasion of some cancer cells through various mechanisms. Regulation of CLIC4 expression may be a potential therapeutic strategy for some tumors. CLIC4 may be a promising therapeutic target and a biomarker for some cancers. In this study, we review the role of CLIC4 in several cancers and its value in the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Minmin Ren
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Nursing School of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Jiajia Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Lulu Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, 563003, China.
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan, Zunyi, 563003, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
2
|
Dietary vitamin B6 restriction aggravates neurodegeneration in mice fed a high-fat diet. Life Sci 2022; 309:121041. [DOI: 10.1016/j.lfs.2022.121041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
|
3
|
Yıldızhan K, Nazıroğlu M. Protective role of selenium on MPP + and homocysteine-induced TRPM2 channel activation in SH-SY5Y cells. J Recept Signal Transduct Res 2021; 42:399-408. [PMID: 34583611 DOI: 10.1080/10799893.2021.1981381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Homocysteine is an intermediate product of biochemical reactions occurring in living organisms. It is known that drugs that increase dopamine synthesis used in Parkinson's disease (PD) cause an increase in the plasma homocysteine level. As the plasma homocysteine level increases, the amount of intracellular free calcium ion ([Ca2+]i) and oxidative stress increase. As a result, it contributes to the excitotoxic effect by causing neurodegeneration. TRPM2 cation channel is activated by high [Ca2+]i and oxidative stress. The role of TRPM2 in the development of neuronal damage due to the increase in homocysteine in PD has not yet been elucidated. In current study, we aimed to investigate the role of the TRPM2 and selenium (Se) in SH-SY5Y neuronal cells treated with homocysteine (HCT) and MPP . SH-SY5Y cells were divided into four groups: control, MPP, MPP + HCT, and MPP + HCT + Se. The results of plate reader assay, confocal microscope imaging, and western blot analyses indicated upregulation of apoptosis, [Ca2+]i, mitochondrial membrane depolarization, caspase activation, and intracellular ROS values in the cells. The MPP + HCT group had considerably higher values than the other groups. The MPP + HCT + Se group had significantly lower values than all the other groups except the control group. In addition, incubation of MPP + HCT and MPP + HCT + Se groups with TRPM2 antagonist 2-APB increased cell viability and reduced intracellular calcium influx and apoptosis levels. It is concluded that the activation of TRPM2 was propagated in HCT and MPP-induced SH-SY5Y cells by the increase of oxidative stress. The antioxidant property of Se regulated the TRPM2 channel activation and neurodegeneration by providing intracellular oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Neuroscience Research Center (NOROBAM), Suleyman Demirel University, Isparta, Turkey.,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc., Isparta, Turkey
| |
Collapse
|
4
|
Kaplan P, Tatarkova Z, Sivonova MK, Racay P, Lehotsky J. Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. Int J Mol Sci 2020; 21:ijms21207698. [PMID: 33080955 PMCID: PMC7589705 DOI: 10.3390/ijms21207698] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Elevated concentration of homocysteine (Hcy) in the blood plasma, hyperhomocysteinemia (HHcy), has been implicated in various disorders, including cardiovascular and neurodegenerative diseases. Accumulating evidence indicates that pathophysiology of these diseases is linked with mitochondrial dysfunction. In this review, we discuss the current knowledge concerning the effects of HHcy on mitochondrial homeostasis, including energy metabolism, mitochondrial apoptotic pathway, and mitochondrial dynamics. The recent studies suggest that the interaction between Hcy and mitochondria is complex, and reactive oxygen species (ROS) are possible mediators of Hcy effects. We focus on mechanisms contributing to HHcy-associated oxidative stress, such as sources of ROS generation and alterations in antioxidant defense resulting from altered gene expression and post-translational modifications of proteins. Moreover, we discuss some recent findings suggesting that HHcy may have beneficial effects on mitochondrial ROS homeostasis and antioxidant defense. A better understanding of complex mechanisms through which Hcy affects mitochondrial functions could contribute to the development of more specific therapeutic strategies targeted at HHcy-associated disorders.
Collapse
|
5
|
Övey İS, Nazıroğlu M. Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer’s disease. J Recept Signal Transduct Res 2020; 41:273-283. [DOI: 10.1080/10799893.2020.1806321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- İshak Suat Övey
- Department of Physiology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
6
|
Yoshitomi R, Nakayama K, Yamashita S, Kumazoe M, Lin TA, Mei CY, Marugame Y, Fujimura Y, Maeda-Yamamoto M, Kuriyama S, Tachibana H. Plasma Homocysteine Concentration is Associated with the Expression Level of Folate Receptor 3. Sci Rep 2020; 10:10283. [PMID: 32581311 PMCID: PMC7314855 DOI: 10.1038/s41598-020-67288-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/05/2020] [Indexed: 11/08/2022] Open
Abstract
Folic acid and folate receptors (FOLRs) play an important role in the downregulation of homocysteine (Hcy), a risk factor of Alzheimer's disease, thrombosis, neuropsychiatric illness and fractures. While several studies have reported that FOLR1 and FOLR2 import folic acid into cells, the role of FOLR3 remains unknown. In this study, we evaluated the impact of FOLR3 on the metabolism of Hcy alongside its protective effect against homocysteine-induced neurotoxicity. To reveal the role of FOLR3, we constructed FOLR3-overexpressed HEK293 cells (FOLR3+ cells) and evaluated cell growth, folic acid intake and Hcy-induced neurotoxicity. Subjects with a high expression of FOLR3 exhibited low levels of plasma homocysteine. The ectopic expression of FOLR3 enhanced cell growth, and the enhanced effect was neutralised by folic acid-deficient media. The Western blot analysis revealed that FOLR3 is secreted into cell supernatant. The folic acid intake of FOLR3+ cells was higher than that of wild-type cells. Supernatant from FOLR3+ cells showed a protective effect on Hcy-induced cytotoxicity. FOLR3 expression in plasma is negatively correlated with plasma homocysteine. Our study emphasizes the role of FOLR3 in the intake of folic acid into cells on the one hand and its protective role in Hcy-induced cytotoxicity on the other.
Collapse
Affiliation(s)
- Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kai Nakayama
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Makurazaki, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ting-An Lin
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Chen-Yi Mei
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mari Maeda-Yamamoto
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Shinichi Kuriyama
- Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
7
|
de Queiroz KB, Cavalcante-Silva V, Lopes FL, Rocha GA, D'Almeida V, Coimbra RS. Vitamin B 12 is neuroprotective in experimental pneumococcal meningitis through modulation of hippocampal DNA methylation. J Neuroinflammation 2020; 17:96. [PMID: 32238192 PMCID: PMC7115084 DOI: 10.1186/s12974-020-01763-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
Background Bacterial meningitis (BM) causes apoptotic damage to the hippocampus and homocysteine (Hcy) accumulation to neurotoxic levels in the cerebrospinal fluid of children. The Hcy pathway controls bioavailability of methyl, and its homeostasis can be modulated by vitamin B12, a cofactor of the methionine synthase enzyme. Herein, the neuroprotective potential and the underlying mode of action of vitamin B12 adjuvant therapy were assessed in an infant rat model of BM. Methods Eleven-day old rats were intracysternally infected with Streptococcus pneumoniae serotype 3, or saline, treated with B12 or placebo, and, 24 h after infection, their hippocampi were analyzed for apoptosis in the dentate gyrus, sulfur amino acids content, global DNA methylation, transcription, and proximal promoter methylation of candidate genes. Differences between groups were compared using 2-way ANOVA followed by Bonferroni post hoc test. Correlations were tested with Spearman’s test. Results B12 attenuated BM-induced hippocampal apoptosis in a Hcy-dependent manner (r = 0.80, P < 0.05). BM caused global DNA hypomethylation; however, B12 restored this parameter. Accordingly, B12 increased the methylation capacity of hippocampal cells from infected animals, as inferred from the ratio S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) in infected animals. BM upregulated selected pro-inflammatory genes, and this effect was counteracted by B12, which also increased methylation of CpGs at the promoter of Ccl3 of infected animals. Conclusion Hcy is likely to play a central role in hippocampal damage in the infant rat model of BM, and B12 shows an anti-inflammatory and neuroprotective action through methyl-dependent epigenetic mechanisms.
Collapse
Affiliation(s)
- Karina Barbosa de Queiroz
- Neurogenômica/Imunopatologia, Instituto René Rachou (IRR), Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima, 1715, Belo Horizonte, MG, CEP 30190-002, Brazil
| | - Vanessa Cavalcante-Silva
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP-EPM), Rua Botucatu, 740, São Paulo, SP, CEP 04023-062, Brazil
| | - Flávia Lombardi Lopes
- Faculdade de Medicina Veterinária de Araçatuba, Universidade Estadual Paulista (UNESP), R. Clóvis Pestana, 793, Araçatuba, SP, CEP 16050-680, Brazil
| | - Gifone Aguiar Rocha
- Laboratório de Pesquisa em Bacteriologia, Departamento de Propedêutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Belo Horizonte, MG, CEP 30130-100, Brazil
| | - Vânia D'Almeida
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP-EPM), Rua Botucatu, 740, São Paulo, SP, CEP 04023-062, Brazil
| | - Roney Santos Coimbra
- Neurogenômica/Imunopatologia, Instituto René Rachou (IRR), Fundação Oswaldo Cruz (FIOCRUZ), Av. Augusto de Lima, 1715, Belo Horizonte, MG, CEP 30190-002, Brazil.
| |
Collapse
|
8
|
Sato K, Nishii T, Sato A, Tatsunami R. Autophagy activation is required for homocysteine-induced apoptosis in bovine aorta endothelial cells. Heliyon 2020; 6:e03315. [PMID: 32021943 PMCID: PMC6994847 DOI: 10.1016/j.heliyon.2020.e03315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/05/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
An elevated level of homocysteine (Hcy) in plasma is an independent risk factor for cardiovascular disease and central nervous system disease. Endothelial dysfunction as a result of apoptosis in endothelial cells is involved in the development and progression of these diseases. In this study, we aimed to investigate the effect of autophagy activation by amino acid starvation on Hcy-induced cytotoxicity in bovine aorta endothelial cells (BAECs). Hcy-induced lactate dehydrogenase (LDH) release was promoted by amino acid starvation. In addition, Hcy increased cleaved caspase-3 level, an indicator of apoptosis, by amino acid starvation. We revealed that oxidative stress is not involved in the Hcy-induced cytotoxicity promoted by amino acid starvation. Salazosulfapyridine (SASP), an SLC7A11 inhibitor, protected against the Hcy-induced LDH release promoted by amino acid starvation. SASP decreased the Hcy-induced cleaved caspase-3 level by amino acid starvation. We demonstrate for the first time that autophagy activation by amino acid starvation promotes Hcy-induced apoptosis in BAECs. Moreover, SLC7A11 inhibitor SASP, which is an amino acid transporter, protects against Hcy-induced apoptosis due to autophagy.
Collapse
Affiliation(s)
- Keisuke Sato
- Department of Pharmacy, Hokkaido University of Science, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8585, Japan
| | - Tomonari Nishii
- Department of Pharmacy, Hokkaido University of Science, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8585, Japan
| | - Ayana Sato
- Department of Pharmacy, Hokkaido University of Science, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8585, Japan
| | - Ryosuke Tatsunami
- Department of Pharmacy, Hokkaido University of Science, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8585, Japan
| |
Collapse
|
9
|
Zhao T, Fu Y, Sun H, Liu X. Ligustrazine suppresses neuron apoptosis via the Bax/Bcl-2 and caspase-3 pathway in PC12 cells and in rats with vascular dementia. IUBMB Life 2017; 70:60-70. [PMID: 29247598 DOI: 10.1002/iub.1704] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022]
Abstract
The aim of this study was to examine the comprehensive neuroprotective mechanism of ligustrazine, which is extracted from Ligusticum Chuanxiong Hort., against vascular dementia (VD) in rats and apoptosis in oxygen and glucose deprivation (OGD) PC12 cells. Rats were subjected to bilateral common carotid artery occlusion (BCCAO) surgery and administered ligustrazine intragastrically for 6 weeks. At the end of the experiments, the hippocampal biomarkers brain-derived neurotrophic factor (BDNF), monocyte chemotactic protein 1 (MCP-1), and homocysteine (Hcy) were examined. In experiments in vitro, OGD PC12 cells were treated with ligustrazine for 0.5, 1, 3, 6, 12, or 24 h. The cell-released biomarkers BDNF, MCP-1, and Hcy were examined. Microscopy, acridine orange-ethidium bromide (AO/EB) staining, and flow cytometry assays were performed to investigate apoptosis. Cleaved caspase-3, Bcl-2 associated X protein (Bax), and B cell lymphoma 2 (Bcl-2) expression was examined using Western blot assays. The results showed that biomarkers, including MCP-1 and Hcy, were significantly increased in both the in vivo and in vitro models, while the BDNF level was significantly decreased compared with the sham or vehicle models. Microscopy, AO/EB staining, and flow cytometry analysis showed that severe cell damage occurred in OGD PC12 cells, and apoptosis played a major role in this environment. Further Western blot studies showed that the apoptosis-related Bax/Bcl-2 protein ratio and cleaved caspase-3 were significantly increased in the experiment. However, ligustrazine profoundly suppressed the imbalance of these biomarkers, reduced cell damage, decreased the Bax/Bcl-2, and downregulated cleaved caspase-3. Pro- and anti-apoptotic biomarkers of multiple pathways including BDNF, MCP-1, and Hcy played a joint role in triggering the activation of the mitochondria-related Bax/Bcl-2 and caspase-3 apoptosis pathway in VD. Ligustrazine attenuated VD by comprehensively regulating BDNF, MCP-1, and Hcy and inactivating the Bax/Bcl-2 and caspase-3 apoptosis pathway. Our data provide novel insight into ligustrazine, which is a promising neuroprotective agent for VD disease treatment strategies. © IUBMB Life, 70(1):60-70, 2018.
Collapse
Affiliation(s)
- Tengfei Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yingxue Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing, China
| | - Hao Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing, China
| | - Xiaoquan Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Janel N, Alexopoulos P, Badel A, Lamari F, Camproux AC, Lagarde J, Simon S, Feraudet-Tarisse C, Lamourette P, Arbones M, Paul JL, Dubois B, Potier MC, Sarazin M, Delabar JM. Combined assessment of DYRK1A, BDNF and homocysteine levels as diagnostic marker for Alzheimer's disease. Transl Psychiatry 2017; 7:e1154. [PMID: 28632203 PMCID: PMC5537644 DOI: 10.1038/tp.2017.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Early identification of Alzheimer's disease (AD) risk factors would aid development of interventions to delay the onset of dementia, but current biomarkers are invasive and/or costly to assess. Validated plasma biomarkers would circumvent these challenges. We previously identified the kinase DYRK1A in plasma. To validate DYRK1A as a biomarker for AD diagnosis, we assessed the levels of DYRK1A and the related markers brain-derived neurotrophic factor (BDNF) and homocysteine in two unrelated AD patient cohorts with age-matched controls. Receiver-operating characteristic curves and logistic regression analyses showed that combined assessment of DYRK1A, BDNF and homocysteine has a sensitivity of 0.952, a specificity of 0.889 and an accuracy of 0.933 in testing for AD. The blood levels of these markers provide a diagnosis assessment profile. Combined assessment of these three markers outperforms most of the previous markers and could become a useful substitute to the current panel of AD biomarkers. These results associate a decreased level of DYRK1A with AD and challenge the use of DYRK1A inhibitors in peripheral tissues as treatment. These measures will be useful for diagnosis purposes.
Collapse
Affiliation(s)
- N Janel
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - P Alexopoulos
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Psychiatry, University Hospital of Rion, University of Patras, Patras, Greece
| | - A Badel
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - F Lamari
- Department of Metabolic Biochemistry, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - A C Camproux
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - J Lagarde
- Unit of Neurology of Memory and Langage, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - S Simon
- CEA, DSV, iBiTec-S, Laboratoire d'études et de recherches en immunoanalyse, Gif-sur-Yvette, France
| | - C Feraudet-Tarisse
- CEA, DSV, iBiTec-S, Laboratoire d'études et de recherches en immunoanalyse, Gif-sur-Yvette, France
| | - P Lamourette
- CEA, DSV, iBiTec-S, Laboratoire d'études et de recherches en immunoanalyse, Gif-sur-Yvette, France
| | - M Arbones
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| | - J L Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | - B Dubois
- Alzheimer Institute (MB, LCdS, BD, MS), Department of Neurology, Hôpital Pitié-Salpêtrière (Assistance Publique—Hôpitaux de Paris), Paris, France
| | - M C Potier
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - M Sarazin
- Unit of Neurology of Memory and Langage, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - J M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
11
|
Shan Z, Liu Q, Li Y, Wu J, Sun D, Gao Z. PUMA decreases the growth of prostate cancer PC-3 cells independent of p53. Oncol Lett 2017; 13:1885-1890. [PMID: 28454339 DOI: 10.3892/ol.2017.5657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/15/2016] [Indexed: 12/18/2022] Open
Abstract
PUMA (p53 upregulated modulator of apoptosis), a member of the B-cell lymphoma 2 (Bcl-2) protein family, is a pro-apoptotic protein. PUMA expression is modulated by the tumor suppressor p53. PUMA has a role in rapid cell death via p53-dependent and -independent mechanisms. To evaluate whether p53 is required for PUMA-mediated apoptosis in prostate cancer cells, p53 protein was silenced in human prostate cancer PC-3 cells by using p53 small interfering RNA (siRNA). The interference efficiency of p53 on RNA and protein levels was detected by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation and p21 expression were subsequently examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and western blot analysis, respectively. p53-silenced or control PC-3 cells were transfected with pCEP4-(hemagglutinin)-PUMA plasmid, or non-carrier plasmid. Enzyme-linked immunosorbent assay was used to determine cell apoptosis by measuring histone release and caspase-3 activation, and MTT assay was used to measure cell viability. In addition, the expression of pro-apoptosis protein Bax and anti-apoptosis protein Bcl-2 were evaluated. The results of the present study revealed that p53 siRNA significantly suppressed p53 RNA and protein expression in PC-3 cells. Deficiency of p53 increased the cell growth rate and decreased p21 expression. However, PUMA overexpression remained able to induce apoptosis in p53-silenced and control cells by increasing Bax expression and decreasing Bcl-2 expression, leading to the activation of caspase-3. These results suggest that PUMA may mediate apoptosis of prostate cancer PC-3 cells, potentially independently of p53. Furthermore, PUMA gene treatment to induce cancer cell apoptosis may be more efficient compared with p53-dependent apoptosis, where loss of p53 expression or function may lead to limited efficacy of PUMA expression. Therefore, the present study proposes the significant hypothesis that increasing PUMA expression may be an effective approach for the treatment of prostate cancer, regardless of p53 status.
Collapse
Affiliation(s)
- Zhengfei Shan
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Qingzuo Liu
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yuling Li
- Department of Pathophysiology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Jitao Wu
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Dekang Sun
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhenli Gao
- Department of Urology, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|