1
|
Bollinger L, Bartel A, Weber C, Gehlen H. Pre-Ride Biomarkers and Endurance Horse Welfare: Analyzing the Impact of the Elimination of Superoxide Dismutase, δ-Aminolevulinic-Dehydratase, Thiobarbituric Acid Reactive Substances, Iron, and Serum Amyloid A Levels in Elite 160 km Endurance Rides. Animals (Basel) 2023; 13:ani13101670. [PMID: 37238102 DOI: 10.3390/ani13101670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
High elimination rates and concerns for horse welfare are important issues in endurance riding. Improved understanding of the causes of elimination could increase completion rates in this sport. We have identified pre-ride laboratory risk factors that enable an assessment of potential elimination before the ride. A longitudinal cohort study was performed among 49 healthy horses competing in the 160 km endurance ride at the 2016 World Championship of Endurance Riding in Samorin/Slovakia. Blood samples were taken before the event. For statistical evaluation, horses were categorized into three groups: finishers, lame horses, and metabolically eliminated horses. Risk factors were calculated for each group using multinominal logistic regression. δ-Aminolevulinic-dehydratase (ALAD), thiobarbituric acid reactive substances (TBARSs), iron, and serum amyloid A (SAA) were measured and did not show an impact on the race outcome, but elevated pre-ride superoxide dismutase (SOD) was shown to have an effect on lameness elimination (p = 0.011). It might serve as an indicator for withdrawing horses at risk of later elimination before endurance rides, ultimately resulting in lower elimination rates and an increase in overall horse welfare.
Collapse
Affiliation(s)
- Lena Bollinger
- Equine Clinic, Internal Medicine, Freie Universität Berlin, Oertzenweg 19b, 14193 Berlin, Germany
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Corinna Weber
- Laboklin Veterinary Laboratory Diagnostics, Steubenstrasse 4, 97688 Bad Kissingen, Germany
| | - Heidrun Gehlen
- Equine Clinic, Internal Medicine, Freie Universität Berlin, Oertzenweg 19b, 14193 Berlin, Germany
| |
Collapse
|
2
|
de Moraes Meine B, Franceschi TS, Bona NP, Spohr L, Pedra NS, Spanevello RM, de Aguiar MSS, Stefanello FM. Chemical hypermethioninemia in young mice: oxidative damage and reduction of antioxidant enzyme activity in brain, kidney, and liver. Metab Brain Dis 2023; 38:223-232. [PMID: 36308587 DOI: 10.1007/s11011-022-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
High levels of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), found in hypermethioninemia, can be detrimental to the body; however, the underlying mechanisms are still uncertain. Using a recently standardized protocol, the aim of this study was to investigate the effects of chronic administration of Met and/or MetO on parameters of oxidative damage in the total brain, liver, and kidney of young mice. Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. Results showed that Met and/or MetO caused an increase in reactive oxygen species (ROS) and lipoperoxidation, along with a reduction of superoxide dismutase (SOD) and catalase (CAT) activities in the brain. In the liver, Met and/or MetO enhanced ROS and nitrite levels, and reduced SOD, CAT, and delta aminolevulinic dehydratase activities. The effects on the kidney were an increase in ROS production and SOD activity, and a reduction in thiol content and CAT activity. These data demonstrated the contribution of redox imbalance to the systemic changes found in patients with hypermethioninemia. In conclusion, our findings may help future studies to better understand the pathophysiological mechanisms of hypermethioninemia as well as contribute to the search for new therapeutic agents for this pathology.
Collapse
Affiliation(s)
- Bernardo de Moraes Meine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Thaís Scolari Franceschi
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil.
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| |
Collapse
|
3
|
Tang Y, Shah S, Cho KS, Sun X, Chen DF. Metabolomics in Primary Open Angle Glaucoma: A Systematic Review and Meta-Analysis. Front Neurosci 2022; 16:835736. [PMID: 35645711 PMCID: PMC9135181 DOI: 10.3389/fnins.2022.835736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. It is suggested that primary open angle glaucoma (POAG), the most common form of glaucoma, may be associated with significant metabolic alternations, but the systemic literature review and meta-analysis in the area have been missing. Altered metabolomic profiles in the aqueous humor and plasma may serve as possible biomarkers for early detection or treatment targets. In this article, we performed a systematic meta-analysis of the current literature surrounding the metabolomics of patients with POAG and metabolites associated with the disease. Results suggest several metabolites found to be specifically altered in patients with POAG, suggesting broad generalizability and pathways for future research.
Collapse
Affiliation(s)
- Yizhen Tang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Simran Shah
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xinghuai Sun
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen,
| |
Collapse
|
4
|
Abstract
The results of the use of probiotic strains of microorganisms of the Bacillus family for the correction and formation of the microflora of the gastrointestinal tract and the impact on metabolism in calves are presented.
The aim of the study. To analyze the effect of probiotics on the microflora of the gastrointestinal tract in calves and biochemical parameters of blood in calves up to one month.
Materials and methods. The research was conducted during 2020 in the conditions of Ukrainian farms for cattle breeding. Five experimental groups of five one-week-old calves were formed in each and one control group. Calves were kept separately in the same conditions on the same diet, but with feeding together with colostrum substitute probiotics of five grams per animal: Bacillus amyloliquefaciense, Bacillus mucilaginosus, Bacillus coagulans, Bacillus megaterium, Bacillus pumilus. The strains are deposited and produced by “Kronos Agro” Ukraine.
Results. It was found that as a result of studies when feeding calves B. coagulans, B. pumilus and B. mucilaginosus the number of Lactobacillus sp. was 80 % higher than in the control group. The level of opportunistic pathogens in the experimental group with B. coagulans had minimal values. Animals in the group where B. mucilaginosus was given had a higher amount of Candida - up to 300 CFU/g and Enterobacteriaceae – 200 CFU/g; which is 50 % less compared to control groups, but more than in the experiment with B. coagulans. According to the results of biochemical examination of blood serum in calves, the absence of toxic effects of probiotic strains: Bacillus amyloliquefaciense, Bacillus mucilaginosus, Bacillus coagulans, Bacillus megaterium, Bacillus pumilus on the internal organs of animals was established.
Conclusions. It was found that the maximum positive effect on the microflora of the gastrointestinal tract of calves up to 30 days of age had B. coagulans (1×109) when fed at a dose of 5 g per animal. The amount of Lactobacillus sp. was the maximum and reached 800 CFU/g, which is 80 % more than in the control group. At the same time, the level of opportunistic pathogens in the experimental group with B. coagulans had minimal indicators and was: Clostridium by 20 %, Escherichia coli – by 70 %, Enterobacteriaceae, Staphylococcus and Candida – 100 % less than the control.
In the study of biochemical parameters, it was found that the activity of enzymes, protein and glucose levels in the serum of experimental animals fed with B. coagulans were within the physiological norm, indicating a normal metabolic process and no toxic effects.
Collapse
|
5
|
de Moraes Meine B, Bona NP, Luduvico KP, de Souza Cardoso J, Spohr L, de Souza AÁ, Spanevello RM, Soares MSP, Stefanello FM. Ameliorative effect of tannic acid on hypermethioninemia-induced oxidative and nitrosative damage in rats: biochemical-based evidences in liver, kidney, brain, and serum. Amino Acids 2020; 52:1545-1558. [PMID: 33184691 DOI: 10.1007/s00726-020-02913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/06/2020] [Indexed: 11/27/2022]
Abstract
We investigated the ability of tannic acid (TA) to prevent oxidative and nitrosative damage in the brain, liver, kidney, and serum of a rat model of acute hypermethioninemia. Young Wistar rats were divided into four groups: I (control), II (TA 30 mg/kg), III (methionine (Met) 0.4 g/kg + methionine sulfoxide (MetO) 0.1 g/kg), and IV (TA/Met + MetO). Rats in groups II and IV received TA orally for seven days, and rats of groups I and III received an equal volume of water. After pretreatment with TA, rats from groups II and IV received a single subcutaneous injection of Met + MetO, and were euthanized 3 h afterwards. In specific brain structures and the kidneys, we observed that Met + MetO led to increased reactive oxygen species (ROS), nitrite, and lipid peroxidation levels, followed by a reduction in thiol content and antioxidant enzyme activity. On the other hand, pretreatment with TA prevented both oxidative and nitrosative damage. In the serum, Met + MetO caused a decrease in the activity of antioxidant enzymes, which was again prevented by TA pretreatment. In contrast, in the liver, there was a reduction in ROS levels and an increase in total thiol content, which was accompanied by a reduction in catalase and superoxide dismutase activities in the Met + MetO group, and pretreatment with TA was able to prevent only the reduction in catalase activity. Conclusively, pretreatment with TA has proven effective in preventing oxidative and nitrosative changes caused by the administration of Met + MetO, and may thus represent an adjunctive therapeutic approach for treatment of hypermethioninemia.
Collapse
Affiliation(s)
- Bernardo de Moraes Meine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Juliane de Souza Cardoso
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, 96010-900, Brazil
| | - Anita Ávila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, 96010-900, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, 96010-900, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, 96010-900, Brazil.
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| |
Collapse
|
6
|
Abstract
![]()
The
methionine–iodine reaction was reinvestigated spectrophotometrically
in detail monitoring the absorbance belonging to the isosbestic point
of iodine at 468 nm, at T = 25.0 ± 0.1 °C,
and at 0.5 M ionic strength in buffered acidic medium. The stoichiometric
ratio of the reactants was determined to be 1:1 producing methionine
sulfoxide as the lone sulfur-containing product. The direct reaction
between methionine and iodine was found to be relatively rapid in
the absence of initially added iodide ion, and it can conveniently
be followed by the stopped-flow technique. Reduction of iodine eventually
leads to the formation of iodide ion that inhibits the reaction making
the whole system autoinhibitory with respect to the halide ion. We
have also shown that this inhibitory effect appears quite prominently,
and addition of iodide ion in the millimole concentration range may
result in a rate law where the formal kinetic order of this species
becomes −2. In contrast to this, hydrogen ion has just a mildly
inhibitory effect giving rise to the fact that iodine is the kinetically
active species in the system but not hypoiodous acid. The surprisingly
complex kinetics of this simple reaction may readily be interpreted
via the initiating rapidly established iodonium-transfer process between
the reactants followed by the subsequent hydrolytic decomposition
of the short-lived iodinated methionine. A seven-step kinetic model
to be able to describe the most important characteristics of the measured
kinetic curves is established and discussed in detail.
Collapse
Affiliation(s)
- Li Xu
- Department of Chemical Engineering and Technology, School of Chemistry, Biology and Material of Science, East China University of Technology, Nanchang 330013, Jiangxi Province People's Republic of China
| | - György Csekő
- Department of Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pécs, Hungary, H-7624
| | - Attila K Horváth
- Department of Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pécs, Hungary, H-7624
| |
Collapse
|
7
|
Franceschi TS, Soares MSP, Pedra NS, Bona NP, Spohr L, Teixeira FC, do Couto CAT, Spanevello RM, Deon M, Vargas CR, Braganhol E, Stefanello FM. Characterization of macrophage phenotype, redox, and purinergic response upon chronic treatment with methionine and methionine sulfoxide in mice. Amino Acids 2020; 52:629-638. [DOI: 10.1007/s00726-020-02841-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
|
8
|
Modelling Methionine Requirements of Fast- and Slow-Growing Chinese Yellow-Feathered Chickens during the Starter Phase. Animals (Basel) 2020; 10:ani10030443. [PMID: 32155889 PMCID: PMC7142444 DOI: 10.3390/ani10030443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 01/23/2023] Open
Abstract
Simple Summary In poultry production, consuming diets with low or excessive methionine levels leads to negative effects on growth performance. The requirements of methionine may differ among the fast and slow-growing breeds; therefore, the optimal dietary methionine level should be estimated for each. In this study, six dietary methionine levels were evaluated to estimate the optimal level for fast and slow-growing yellow feathered chicken breeds. The quadratic polynomial and exponential asymptotic regression showed that the optimal methionine requirements for maximal growth performance were 0.50% and 0.53% in the fast-growing breed, and 0.48% and 0.52% in the slow growing breed. Abstract Two experiments were carried out to investigate the dietary methionine requirement for fast and slow-growing Chinese yellow-feathered breeds during the starter phase, based on growth variables and regression models. In Experiment 1, a total of 2880 one-day-old Lingnan chicks (fast growing breed) were used to test the methionine requirement from 1 to 21 days of age for males and females separately. Of each gender, 1440 birds were allocated into 6 dietary methionine levels (0.28%, 0.32%, 0.37%, 0.43%, 0.50% and 0.63%), each with 6 pen replicates of 40 chicks. Experiment 2 had the same design with Guangxi chicks (slow growing breed) from 1 to 30 d of age. Results indicated that significant nonlinear or quadratic responses to increasing dietary methionine levels were observed in body weight, daily gain, feed intake and feed conversion ratio of both breeds. In summary, the quadratic polynomial regression showed that the optimal methionine requirements for maximal growth performance of Lingnan chickens were 0.52–0.58% in males, 0.51% in females, and 0.53% in mixed genders. The corresponding values for Guangxi breed were 0.53% in males by quadratic polynomial regression and 0.43% in females, and 0.48% to 0.49% in mixed sexes by exponential asymptotic models.
Collapse
|
9
|
Nambo-Venegas R, Valdez-Vargas C, Cisneros B, Palacios-González B, Vela-Amieva M, Ibarra-González I, Cerecedo-Zapata CM, Martínez-Cruz E, Cortés H, Reyes-Grajeda JP, Magaña JJ. Altered Plasma Acylcarnitines and Amino Acids Profile in Spinocerebellar Ataxia Type 7. Biomolecules 2020; 10:biom10030390. [PMID: 32138195 PMCID: PMC7175318 DOI: 10.3390/biom10030390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, is caused by an abnormal CAG repeat expansion in the ATXN7 gene coding region. The onset and severity of SCA7 are highly variable between patients, thus identification of sensitive biomarkers that accurately diagnose the disease and monitoring its progression are needed. With the aim of identified SCA7-specific metabolites with clinical relevance, we report for the first time, to the best of our knowledge, a metabolomics profiling of circulating acylcarnitines and amino acids in SCA7 patients. We identified 21 metabolites with altered levels in SCA7 patients and determined two different sets of metabolites with diagnostic power. The first signature of metabolites (Valine, Leucine, and Tyrosine) has the ability to discriminate between SCA7 patients and healthy controls, while the second one (Methionine, 3-hydroxytetradecanoyl-carnitine, and 3-hydroxyoctadecanoyl-carnitine) possess the capability to differentiate between early-onset and adult-onset patients, as shown by the multivariate model and ROC analyses. Furthermore, enrichment analyses of metabolic pathways suggest alterations in mitochondrial function, energy metabolism, and fatty acid beta-oxidation in SCA7 patients. In summary, circulating SCA7-specific metabolites identified in this study could serve as effective predictors of SCA7 progression in the clinics, as they are sampled in accessible biofluid and assessed by a relatively simple biochemical assay.
Collapse
Affiliation(s)
- Rafael Nambo-Venegas
- Laboratory of Chronic Diseases Biochemistry, National Genomics Medicine Institute (INMEGEN), Mexico City 14610, Mexico;
| | - Claudia Valdez-Vargas
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City 14389, Mexico; (C.V.-V.); (H.C.)
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | | | - Marcela Vela-Amieva
- Laboratory of Inborn errors of metabolism, National Pediatrics Institute (INP), Mexico City 04530, Mexico;
| | | | - César M. Cerecedo-Zapata
- Rehabilitation and Special Education Center of Veracruz (CRISVER-DIF), Xalapa 91097, Veracruz, Mexico; (C.M.C.-Z.)
| | - Emilio Martínez-Cruz
- Rehabilitation and Special Education Center of Veracruz (CRISVER-DIF), Xalapa 91097, Veracruz, Mexico; (C.M.C.-Z.)
| | - Hernán Cortés
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City 14389, Mexico; (C.V.-V.); (H.C.)
| | - Juan P. Reyes-Grajeda
- Laboratory of Chronic Diseases Biochemistry, National Genomics Medicine Institute (INMEGEN), Mexico City 14610, Mexico;
- Correspondence: (J.P.R.-G.); or (J.J.M.); Tel.: +52-55-5350-1900 (ext. 1192) (J.P.R.-G.); +52-55- 5999-1000 (ext. 14708) (J.J.M.)
| | - Jonathan J. Magaña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City 14389, Mexico; (C.V.-V.); (H.C.)
- Correspondence: (J.P.R.-G.); or (J.J.M.); Tel.: +52-55-5350-1900 (ext. 1192) (J.P.R.-G.); +52-55- 5999-1000 (ext. 14708) (J.J.M.)
| |
Collapse
|
10
|
Luchese C, Barth A, da Costa GP, Alves D, Novo DLR, Mesko MF, Wilhelm EA. Role of 7-chloro-4-(phenylselanyl) quinoline as an anti-aging drug fighting oxidative damage in different tissues of aged rats. Exp Gerontol 2020; 130:110804. [DOI: 10.1016/j.exger.2019.110804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/17/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
11
|
Hypermethioninemia induces memory deficits and morphological changes in hippocampus of young rats: implications on pathogenesis. Amino Acids 2020; 52:371-385. [PMID: 31902007 DOI: 10.1007/s00726-019-02814-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the effect of the chronic administration of methionine (Met) and/or its metabolite, methionine sulfoxide (MetO), on the behavior and neurochemical parameters of young rats. Rats were treated with saline (control), Met (0.2-0.4 g/kg), MetO (0.05-0.1 g/kg), and/or a combination of Met + MetO, subcutaneously twice a day from postnatal day 6 (P6) to P28. The results showed that Met, MetO, and Met + MetO impaired short-term and spatial memories (P < 0.05), reduced rearing and grooming (P < 0.05), but did not alter locomotor activity (P > 0.05). Acetylcholinesterase activity was increased in the cerebral cortex, hippocampus, and striatum following Met and/or MetO (P < 0.05) treatment, while Na+, K+-ATPase activity was reduced in the hippocampus (P < 0.05). There was an increase in the level of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex in Met-, MetO-, and Met + MetO-treated rats (P < 0.05). Met and/or MetO treatment reduced superoxide dismutase, catalase, and glutathione peroxidase activity, total thiol content, and nitrite levels, and increased reactive oxygen species and TBARS levels in the hippocampus and striatum (P < 0.05). Hippocampal brain-derived neurotrophic factor was reduced by MetO and Met + MetO compared with the control group. The number of NeuN-positive cells was decreased in the CA3 in Met + MetO group and in the dentate gyrus in the Met, MetO, and Met + MetO groups compared to control group (P < 0.05). Taken together, these findings further increase our understanding of changes in the brain in hypermethioninemia by elucidating behavioral alterations, biological mechanisms, and the vulnerability of brain function to high concentrations of Met and MetO.
Collapse
|
12
|
Talbert LE, Julian RR. Methionine and Selenomethionine as Energy Transfer Acceptors for Biomolecular Structure Elucidation in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1601-1608. [PMID: 31222676 PMCID: PMC6697561 DOI: 10.1007/s13361-019-02262-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Mass spectrometry affords rapid and sensitive analysis of peptides and proteins. Coupling spectroscopy with mass spectrometry allows for the development of new methods to enhance biomolecular structure determination. Herein, we demonstrate two new energy acceptors that can be utilized for action-excitation energy transfer experiments. In the first system, C-S bonds in methionine act as energy acceptors from native chromophores, including tyrosine, tryptophan, and phenylalanine. Comparison among chromophores reveals that tyrosine transfers energy most efficiently at 266 nm, but phenylalanine and tryptophan also transfer energy with comparable efficiencies. Overall, the C-S bond dissociation yields following energy transfer are low for methionine, which led to an investigation of selenomethionine, a common analog that is found in many naturally occurring proteins. Sulfur and selenium are chemically similar, but C-Se bonds are weaker than C-S bonds and have lower lying σ* anti-bonding orbitals. Excitation of peptides containing tyrosine and tryptophan results in efficient energy transfer to selenomethionine and abundant C-Se bond dissociation. A series of helical peptides were examined where the positions of the donor or acceptor were systematically scanned to explore the influence of distance and helix orientation on energy transfer. The distance was found to be the primary factor affecting energy transfer efficiency, suggesting that selenomethionine may be a useful acceptor for probing protein structure in the gas phase.
Collapse
Affiliation(s)
- Lance E Talbert
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Wang Z, Liang M, Li H, Cai L, He H, Wu Q, Yang L. l-Methionine activates Nrf2-ARE pathway to induce endogenous antioxidant activity for depressing ROS-derived oxidative stress in growing rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4849-4862. [PMID: 31001831 DOI: 10.1002/jsfa.9757] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Methionine is an essential sulfur-containing amino acid. To elucidate the influence of l-methionine on activation of the nuclear factor erythroid 2-related factor 2-antioxidant responsive element (Nrf2-ARE) antioxidant pathway to stimulate the endogenous antioxidant activity for depressing reactive oxygen species (ROS)-derived oxidative stress, male Wistar rats were orally administered l-methionine daily for 14 days. RESULTS With the intake of l-methionine, Nrf2 was activated by l-methionine through depressing Keap1 and Cul3, resulting in upregulation of ARE-driven antioxidant expression (glutamate cysteine ligase catalytic subunit, glutamate cysteine ligase modulatory subunit, glutathione synthase (GS), catalase (CAT), superoxide dismutase (SOD), heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPx)) with increasing l-methionine availability. Upon activation of Nrf2, glutathione synthesis was increased through upregulated expression of methionine adenosyltransferase, S-adenosylhomocysteine hydrolase, cystathionine β-synthase, cystathionine γ-lyse, glutamate cysteine ligase (GCL) and GS, while hepatic expressions of methionine sulfoxide reductases (MsrA, MsrB2, MsrB3) and hepatic enzyme activities (CAT, SOD, GCL, GR, GST, GPx) were uniformly stimulated with increasing consumption of l-methionine. As a result, hepatic content of ROS and MDA were effectively reduced by l-methionine intake. CONCLUSION The present study demonstrates that methionine availability plays a critical role in activation of the Nrf2-ARE pathway to induce an endogenous antioxidant response for depressing ROS-derived oxidative stress, which is primarily attributed to the stimulation of methionine sulfoxide reductase expression and glutathione synthesis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengxuan Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Mingcai Liang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hui Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Liang Cai
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hongjuan He
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Biotechnology, Harbin Institute of Technology, Harbin, China
| | - Lin Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
14
|
Mafra D, Esgalhado M, Borges NA, Cardozo LFMF, Stockler-Pinto MB, Craven H, Buchanan SJ, Lindholm B, Stenvinkel P, Shiels PG. Methyl Donor Nutrients in Chronic Kidney Disease: Impact on the Epigenetic Landscape. J Nutr 2019; 149:372-380. [PMID: 30796783 DOI: 10.1093/jn/nxy289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/23/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022] Open
Abstract
Epigenetic alterations, such as those linked to DNA methylation, may potentially provide molecular explanations for complications associated with altered gene expression in illnesses, such as chronic kidney disease (CKD). Although both DNA hypo- and hypermethylation have been observed in the uremic milieu, this remains only a single aspect of the epigenetic landscape and, thus, of any biochemical dysregulation associated with CKD. Nevertheless, the role of uremia-promoting alterations on the epigenetic landscape regulating gene expression is still a novel and scarcely studied field. Although few studies have actually reported alterations of DNA methylation via methyl donor nutrient intake, emerging evidence indicates that nutritional modification of the microbiome can affect one-carbon metabolism and the capacity to methylate the genome in CKD. In this review, we discuss the nutritional modifications that may affect one-carbon metabolism and the possible impact of methyl donor nutrients on the microbiome, CKD, and its phenotype.
Collapse
Affiliation(s)
- Denise Mafra
- Post Graduation Program in Medical Sciences.,Post Graduation Program in Cardiovascular Sciences
| | | | - Natalia A Borges
- Post Graduation Program in Cardiovascular Sciences.,Post Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil
| | | | - Milena B Stockler-Pinto
- Post Graduation Program in Cardiovascular Sciences.,Post Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil
| | - Hannah Craven
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Sarah J Buchanan
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
15
|
Soares MSP, da Silveira de Mattos B, Ávila AA, Spohr L, Pedra NS, Teixeira FC, Bona NP, Oliveira PS, Stefanello FM, Spanevello RM. High levels of methionine and methionine sulfoxide: Impact on adenine nucleotide hydrolysis and redox status in platelets and serum of young rats. J Cell Biochem 2019; 120:2289-2303. [PMID: 30216509 DOI: 10.1002/jcb.27554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
We investigated acute and chronic effects administration of methionine (Met) and/or methionine sulfoxide (MetO) on ectonucleotidases and oxidative stress in platelets and serum of young rats. Wistar rats were divided into four groups: control, Met, MetO, and Met + MetO. In acute treatment, the animals received a single subcutaneous injection of amino acid(s) and were euthanized after 1 and 3 hours. In chronic protocol, Met and/or MetO were administered twice a day with an 8-hour interval from the 6th to the 28th day of life. Nucleoside triphosphate phosphohydrolase and 5'-nucleotidase activities were reduced in platelets and serum by Met, MetO, and Met + MetO after 3 hours and 21 days. Adenosine deaminase activity reduced in platelets at 3 hours after MetO and Met + MetO administration and increased after 21 days in animals treated with Met + MetO. Superoxide dismutase and catalase activities decreased in platelets in MetO and Met + MetO groups after 3 hours, while reactive oxygen species (ROS) levels increased in same groups. Catalase activity in platelets decreased in all experimental groups after chronic treatment. Met, MetO, and Met + MetO administration increased plasmatic ROS levels in acute and chronic protocols; glutathione S-transferase activity increased by MetO and Met + MetO administration at 3 hours, and ascorbic acid decreased in all experimental groups in acute and chronic protocols. Thiobarbituric acid reactive substances increased, superoxide dismutase and catalase activities reduced in the Met and/or MetO groups at 3 hours and in chronic treatment. Our data demonstrated that Met and/or MetO induced changes in adenine nucleotide hydrolysis and redox status of platelets and serum, which can be associated with platelet dysfunction in hypermethioninemia.
Collapse
Affiliation(s)
- Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Bruna da Silveira de Mattos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Anita Almeida Ávila
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Pathise Souto Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
16
|
Kumar R, Mutreja V, Sharma G, Kumar S, Ali A, Mehta SK, Venugopalan P, Kataria R, Sahoo SC. The role of a weakly coordinating thioether group in ligation controlled molecular self-assemblies and their inter-conversions in Ni( ii) complexes of l-methionine derived ligand. NEW J CHEM 2019. [DOI: 10.1039/c9nj02573a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Ni(ii) complexes of an amino acid derived ligand (Salmet) has been synthesized, and characterized by various techniques including X-ray crystallography. Alkali ions K+/Na+ direct the conversion of monomers to multi-nuclear complexes.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | | | - Gyaneshwar Sharma
- Department of Applied Science
- Punjab Engineering College
- Chandigarh
- India
| | - Sanjeev Kumar
- Department of Applied Science
- Punjab Engineering College
- Chandigarh
- India
| | - Anzar Ali
- Department of Physical Sciences
- Indian Institute of Science Education and Research Mohali
- PO 140306
- India
| | - S. K. Mehta
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | | | | | | |
Collapse
|
17
|
Amelioratory Effects of Testosterone Propionate on Age-related Renal Fibrosis via Suppression of TGF-β1/Smad Signaling and Activation of Nrf2-ARE Signaling. Sci Rep 2018; 8:10726. [PMID: 30013094 PMCID: PMC6048025 DOI: 10.1038/s41598-018-29023-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Androgen plays a pivotal role in the progression of renal fibrosis. However, whether exogenous androgen treatment to aged male rats can improve the age-related renal fibrosis was not explored. In our study, the changes of morphological structure, renal fibrosis, ultrastructure and renal function, the expressions of extracellular matrix (ECM), matrix metalloproteinases (MMPs) and its tissue inhibitors of metalloproteinases (TIMPs), the expressions of tumor growth factor β1 (TGF-β1)/Smad signaling and oxidative stress parameters as well as nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling were tested in kidney of aged male Wistar rats after subcutaneous testosterone propionate (TP, 2 mg/kg/d, 84-day) injection. Aged rats showed significantly renal histopathological changes, increased renal fibrosis, increased thickening of the glomerular basement membrane and the Bowman’s capsule basement membrane, declined renal functional, increased ECM, lower expressions of MMP-2 and MMP-9 and higher expressions of TIMP-1 and TIMP-2 in renal tissues and higher expressions of TGF-β1/Smad signaling, as well as lower expressions of Nrf2-ARE signaling compared to young rats. TP treatment significantly improved age-related above indexes. These results suggested that TP supplement may alleviate age-related renal fibrosis via suppression of TGF-β1/Smad signaling and activation of Nrf2-ARE signaling in aged rats.
Collapse
|
18
|
Abbasi IHR, Abbasi F, Abd El-Hack ME, Swelum AA, Yao J, Cao Y. Post-ruminal effects of rumen-protected methionine supplementation with low protein diet using long-term simulation and in vitro digestibility technique. AMB Express 2018. [PMID: 29523988 PMCID: PMC5845091 DOI: 10.1186/s13568-018-0566-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microbial degradation in the rumen and dietary availability of methionine amino acid have been reported as limiting in dairy ruminants. The aim of the present study was to examine the post-ruminal effects of feeding ruminants different concentrations of rumen-protected methionine (RPM) in low crude protein diets using the long-term rumen simulation method (Rusitec) followed by in vitro abomasum and ileum digestibility technique. The experiment contained four treatment groups: (1) high protein, without RPM supplementation (HP); (2) low protein, without RPM supplementation (LP); (3) low protein supplementation with low RPM (LPLM); and (4) low protein supplementation with high RPM (LPHM) mixed per 20 ± 0.04 g basal diet in every fermenter. The results showed that the LPLM and LPHM groups had significantly higher disappearance of crude protein and neutral detergent fiber in the abomasum and ileum than the HP treatment (P < 0.05) and were the same as the LP group (P > 0.05). The proportions of short-chain fatty acids and total volatile fatty acids in the abomasum and ileum were the same between the LPHM and HP groups (P > 0.05); however, the LPLM group was found to be significantly (P < 0.05) lower than the HP group and similar to the LP group (P > 0.05). Rusitec pH before or after changing feed bags and daily ammonia nitrogen production in the abomasum and ileum were non significantly (P > 0.05) different among all groups. In conclusion, RPM supplementation with low crude protein diets promoted post-ruminal digestibility and production of volatile fatty acids.
Collapse
|
19
|
Soares MSP, Viau CM, Saffi J, Costa MZ, da Silva TM, Oliveira PS, Azambuja JH, Barschak AG, Braganhol E, S Wyse AT, Spanevello RM, Stefanello FM. Acute administration of methionine and/or methionine sulfoxide impairs redox status and induces apoptosis in rat cerebral cortex. Metab Brain Dis 2017; 32:1693-1703. [PMID: 28676970 DOI: 10.1007/s11011-017-0054-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/16/2017] [Indexed: 01/24/2023]
Abstract
High plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO) may occur in several genetic abnormalities. Patients with hypermethioninemia can present neurological dysfunction; however, the neurotoxicity mechanisms induced by these amino acids remain unknown. The aim of the present work was to study the effects of Met and/or MetO on oxidative stress, genotoxicity, cytotoxicity and to evaluate whether the cell death mechanism is mediated by apoptosis in the cerebral cortex of young rats. Forty-eight Wistar rats were divided into groups: saline, Met 0.4 g/Kg, MetO 0.1 g/Kg and Met 0.4 g/Kg + MetO 0.1 g/Kg, and were euthanized 1 and 3 h after subcutaneous injection. Results showed that TBARS levels were enhanced by MetO and Met+MetO 1 h and 3 h after treatment. ROS was increased at 3 h by Met, MetO and Met+MetO. SOD activity was increased in the Met group, while CAT was reduced in all experimental groups 1 h and 3 h after treatment. GPx activity was enhanced 1 h after treatment by Met, MetO and Met+MetO, however it was reduced in the same experimental groups 3 h after administration of amino acids. Caspase-3, caspase-9 and DNA damage was increased and cell viability was reduced by Met, MetO and Met+MetO at 3 h. Also, Met, MetO and Met+MetO, after 3 h, enhanced early and late apoptosis cells. Mitochondrial electrochemical potential was decreased by MetO and Met+MetO 1 h and 3 h after treatment. These findings help understand the mechanisms involved in neurotoxicity induced by hypermethioninemia.
Collapse
Affiliation(s)
- Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N CEP: 96010-900, Pelotas, RS, Brazil
| | - Cassiana Macagnan Viau
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcelo Zanusso Costa
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Tatiane Morgana da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Pathise Souto Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Juliana Hofstatter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alethéa Gatto Barschak
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doença Metabólica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N CEP: 96010-900, Pelotas, RS, Brazil.
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
20
|
The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017; 49:2091-2098. [DOI: 10.1007/s00726-017-2494-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
|
21
|
Soares MSP, Zanusso Costa M, da Silva TM, Gazal M, Couto CATD, Nogueira Debom G, Rodrigues R, Hofstätter Azambuja J, André Casali E, Moritz CEJ, Frescura Duarte M, Braganhol E, Moro Stefanello F, Maria Spanevello R. Methionine and/or Methionine Sulfoxide Alter Ectoenzymes Activities in Lymphocytes and Inflammatory Parameters in Serum from Young Rats: Acute and Chronic Effects. Cell Biochem Biophys 2017; 76:243-253. [PMID: 28726179 DOI: 10.1007/s12013-017-0815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
In this study we investigated the effect of acute and chronic treatment with Met and/or methionine sulfoxide (MetO) on ectonucleotidases and cholinesterases activities from lymphocytes and purine derivatives compounds, C-protein reactive, interleukin-10, interleukin-6, and tumor necrosis factor-α levels in serum of young rats. Adenosine triphosphate hydrolysis was decreased in lymphocytes 1 h after treatment by MetO and Met + MetO. However, adenosine triphosphate and adenosine diphosphate hydrolysis in lymphocytes was increased in the groups MetO and Met + MetO and adenosine deaminase activity was increased in MetO 3 h after the treatment. Acetylcholinesterase activity was increased in lymphocytes after 3 h and 21 days of treatment by MetO and Met + MetO, while serum butyrycholinesterase activity was decreased after 1 h and 21 days of treatment in the same groups. In chronic treatment, interleukin-6 and tumor necrosis factor-α level were increased, while that interleukin-10 level was decreased by Met, MetO, and Met + MetO when compared to control group. C-protein reactive level was increased by MetO and Met + MetO. Adenosine triphosphate and adenosine monophosphate levels were reduced in all amino acids treated groups, while adenosine diphosphate and hypoxanthine were enhanced by MetO and Met + MetO. Adenosine and xanthine were reduced in the MetO group, whereas inosine levels were decreased in the MetO and Met + MetO groups. These findings help to understand the inflammatory alterations observed in hypermethioninemia.
Collapse
Affiliation(s)
- Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marcelo Zanusso Costa
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Tatiane Morgana da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marta Gazal
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Gabriela Nogueira Debom
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Juliana Hofstätter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cesar Eduardo Jacintho Moritz
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marta Frescura Duarte
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Laboratório de Análises Clínicas Labimed, Universidade Luterana do Brasil, Santa Maria, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|