1
|
Yuan Y, Li J, Wei G, Shen Z, Li B, Wu J, Liu J. Exploring the Antimicrobial Potential of LL-37 Derivatives: Recent Developments and Challenges. ACS Biomater Sci Eng 2025. [PMID: 40423576 DOI: 10.1021/acsbiomaterials.4c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The human antimicrobial peptide LL-37 exhibits broad antimicrobial efficacy. However, it has several limitations including high production costs, reduced efficacy under physiological conditions, susceptibility to proteolytic degradation and significant toxicity to human cells. Recent research has improved the clinical potential of peptide LL-37 through multiple systematic modifications. Therefore, we review the various modification techniques for LL-37 and explore the structure-activity relationships that underpin its antimicrobial properties. We also highlight the benefits of LL-37 derivatives and investigate their mechanisms of action against bacterial infections, particularly their effects on biofilms and cell membranes. Furthermore, we review the antimicrobial applications of LL-37 derivatives, examine nanocarrier systems for their delivery, and highlight the potential synergy between these derivatives and traditional antibiotics. Finally, it assesses the status of LL-37 derivatives in clinical applications, identifies ongoing challenges, and provides insights into future modifications and potential applications. This review aims to offer valuable strategies for enhancing LL-37 derivatives and facilitating their transition from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Yihao Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Jiapeng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Guotao Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Ziyi Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Bo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science & Medicine, Northwest University, Xian 710069, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Datta M, Rajeev A, Chattopadhyay I. Application of antimicrobial peptides as next-generation therapeutics in the biomedical world. Biotechnol Genet Eng Rev 2024; 40:2458-2496. [PMID: 37036043 DOI: 10.1080/02648725.2023.2199572] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Antimicrobial peptide (AMP), also called host defense peptide, is a part of the innate immune system in eukaryotic organisms. AMPs are also produced by prokaryotes in response to stressful conditions and environmental changes. They have a broad spectrum of activity against both Gram positive and Gram negative bacteria. They are also effective against viruses, fungi, parasites, and cancer cells. AMPs are cationic or amphipathic in nature, but in recent years cationic AMPs have attracted a lot of attention because cationic AMPs can easily interact with negatively charged bacterial and cancer cell membranes through electrostatic interaction. AMPs can also eradicate bacterial biofilms and have broad-spectrum activity against multidrug resistant (MDR) bacteria. Although the main target site for AMPs is the cell membrane, they can also disrupt bacterial cell walls, interfere with protein folding and inhibit enzymatic activity. In recent centuries antibiotics are gradually losing their potential because of the continuous rise of antibiotic resistant bacteria. Therefore, there is an urgent need to develop novel therapeutic approaches to treat MDR bacteria, and AMP is such an alternative treatment option over conventional antibiotics. Several communicable diseases like tuberculosis and non-communicable diseases such as cancer can be treated by using AMPs. One of the major advantages of using AMP is that it works with high specificity and does not cause any harm to normal tissue. AMPs can be modified to improve their efficacy. In this narrative review, we are focusing on the potential application of AMPs in medical science.
Collapse
Affiliation(s)
- Manjari Datta
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashwin Rajeev
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
3
|
Zhao L, Li L, Hu M, Fang Y, Dong N, Shan A. Heterologous expression of the novel dimeric antimicrobial peptide LIG in Pichia pastoris. J Biotechnol 2024; 381:19-26. [PMID: 38181981 DOI: 10.1016/j.jbiotec.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The antimicrobial peptide (AMP) LI is a fusion product of antimicrobial peptide LL37 produced by human neutrophils and Indolicidin secreted by bovine neutrophils. LI retained the antimicrobial activity of the parental peptides and showed high cell selectivity. In this study, the flexible linker Gly-Ser-Gly (G-S-G) was used to ligate LI into dimeric LIG, and constructed the Pichia pastoris (P. pastoris) expression vector pPIC9K-6×His-3×FLAG-LIG. The total protein expression of P. pastoris GS115 reached the highest level (189.6 mg/L) after 96 h induction with 3 % methanol at the initial pH value of 7.0. Finally, 5.9 mg/L of recombinant LIG (rLIG) was obtained after enterokinase digestion and purification. The rLIG had high antimicrobial activity and low hemolytic activity. Compared with monomer LI, GSG linked dimeric LIG, which had no significant change in antimicrobial activity and had good salt ions stability. In this study, the dimeric antimicrobial peptide LIG was successfully expressed, which provided a new idea for the expression of AMPs in the P. pastoris expression system, and had important significance for the application of AMPs.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Ling Li
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Mingyang Hu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
4
|
Xia R, Xiao H, Xu M, Hou L, Han Y, Zhou Z. Insight into the inhibitory activity and mechanism of bovine cathelicidin BMAP 27 against Salmonella Typhimurium. Microb Pathog 2024; 187:106540. [PMID: 38190945 DOI: 10.1016/j.micpath.2024.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
This study synthesized an antimicrobial peptide based on the bovine cathelicidin BMAP 27 sequence. It was found to have a broad spectrum of antibacterial activity, with exceptionally high activity against Salmonella. However, the antibacterial mechanism of BMAP 27 against Salmonella remains unclear. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of BMAP 27 against Salmonella enterica serovar Typhimurium were determined to be 2 μM and 4 μM, respectively. After treatment with 2 MIC of BMAP 27, the absorbance of DNA in centrifugal supernatant increased from 0.244 to 1.464, and that of protein rose from 0.174 to 0.774, respectively. BMAP 27 has compromised the cell membrane as observed through field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), and confirmed by the propidium iodide (PI) test. The alkaline phosphatase (AKP) enzyme activity in the supernatant of the 2 MIC treatment group was 2.15 times higher than the control group, indicating extracellular membrane damage. BMAP 27 treatment increased intracellular ROS levels as tested by dichlorofluorescein diacetate (DCFH) staining. DNA interaction analysis revealed that BMAP 27 has a binding affinity towards DNA, causing its characteristic bands to disappear and peak intensity at 260 nm to reduce. Molecular docking identified its potential binding mode with DNA. The crystal violet biofilm staining results demonstrated that BMAP 27 inhibited S. Typhimurium biofilm formation by 43.1 % and cleared mature biofilms by 53.62 %. Confocal Laser scanning electron microscopy (CLSM) observed that BMAP 27 could kill bacteria within the biofilm and dislodge bacteria from the surface of glasses. Swimming tests identified that the motor capacity of S. Typhimurium was diminished by BMAP 27. By counting the total bacteria, BMAP 27 was revealed to exert bacteriostatic effects in chilled pork and orange juice, which might provide a basis for its application in the inhibition of Salmonella.
Collapse
Affiliation(s)
- Rui Xia
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Huazhi Xiao
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Min Xu
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Luying Hou
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Ye Han
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China
| | - Zhijiang Zhou
- Department of Food Science and Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Malhotra K, Buznyk O, Islam MM, Edin E, Basu S, Groleau M, Dégué DS, Fagerholm P, Fois A, Lesage S, Jangamreddy JR, Šimoliūnas E, Liszka A, Patra HK, Griffith M. Phosphorylcholine and KR12-Containing Corneal Implants in HSV-1-Infected Rabbit Corneas. Pharmaceutics 2023; 15:1658. [PMID: 37376106 DOI: 10.3390/pharmaceutics15061658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Severe HSV-1 infection can cause blindness due to tissue damage from severe inflammation. Due to the high risk of graft failure in HSV-1-infected individuals, cornea transplantation to restore vision is often contraindicated. We tested the capacity for cell-free biosynthetic implants made from recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) to suppress inflammation and promote tissue regeneration in the damaged corneas. To block viral reactivation, we incorporated silica dioxide nanoparticles releasing KR12, the small bioactive core fragment of LL37, an innate cationic host defense peptide produced by corneal cells. KR12 is more reactive and smaller than LL37, so more KR12 molecules can be incorporated into nanoparticles for delivery. Unlike LL37, which was cytotoxic, KR12 was cell-friendly and showed little cytotoxicity at doses that blocked HSV-1 activity in vitro, instead enabling rapid wound closure in cultures of human epithelial cells. Composite implants released KR12 for up to 3 weeks in vitro. The implant was also tested in vivo on HSV-1-infected rabbit corneas where it was grafted by anterior lamellar keratoplasty. Adding KR12 to RHCIII-MPC did not reduce HSV-1 viral loads or the inflammation resulting in neovascularization. Nevertheless, the composite implants reduced viral spread sufficiently to allow stable corneal epithelium, stroma, and nerve regeneration over a 6-month observation period.
Collapse
Affiliation(s)
- Kamal Malhotra
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
| | - Oleksiy Buznyk
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine, 65061 Odessa, Ukraine
| | - Mohammad Mirazul Islam
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Elle Edin
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sankar Basu
- Department of Microbiology, Asutosh College, Affiliated with University of Calcutta, Kolkata 700026, India
| | - Marc Groleau
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Delali Shana Dégué
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Per Fagerholm
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Adrien Fois
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | | | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, 01513 Vilnius, Lithuania
| | - Aneta Liszka
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - Hirak K Patra
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - May Griffith
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC H1T 2M4, Canada
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Institute of Biomedical Engineering, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
6
|
Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Appl Environ Microbiol 2022; 88:e0057422. [PMID: 35638842 PMCID: PMC9238401 DOI: 10.1128/aem.00574-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thirty peptide conjugates were designed by combining an antimicrobial peptide (BP16, BP100, BP143, KSL-W, BP387, or BP475) at the N- or C-terminus of a plant defense elicitor peptide (flg15, BP13, Pep13, or PIP1). These conjugates were highly active in vitro against six plant-pathogenic bacteria, especially against Xanthomonas arboricola pv. pruni, Xanthomonas fragariae and Xanthomonas axonopodis pv. vesicatoria. The most active peptides were those incorporating Pep13. The order of the conjugation influenced the antibacterial activity and the hemolysis. Regarding the former, peptide conjugates incorporating the elicitor peptide flg15 or Pep13 at the C-terminus were, in general, more active against Pseudomonas syringae pv. actinidiae and P. syringae pv. syringae, whereas those bearing these elicitor peptides at the N-terminus displayed higher activity against Erwinia. amylovora and the Xanthomonas species. The best peptide conjugates displayed MIC values between 0.8 and 12.5 μM against all the bacteria tested and also had low levels of hemolysis and low phytotoxicity. Analysis of the structural and physicochemical parameters revealed that a positive charge ranging from +5 to +7 and a moderate hydrophobic moment/amphipathic character is required for an optimal biological profile. Interestingly, flg15-BP475 exhibited a dual activity, causing the upregulation of the same genes as flg15 and reducing the severity of bacterial spot in tomato plants with a similar or even higher efficacy than copper oxychloride. Characterization by nuclear magnetic resonance (NMR) of the secondary structure of flg15-BP475 showed that residues 10 to 25 fold into an α-helix. This study establishes trends to design new bifunctional peptides useful against plant diseases caused by plant-pathogenic bacteria. IMPORTANCE The consequences of plant pathogens on crop production together with the lack of effective and environmentally friendly pesticides evidence the need of new agents to control plant diseases. Antimicrobial and plant defense elicitor peptides have emerged as good candidates to tackle this problem. This study focused on combining these two types of peptides into a single conjugate with the aim to potentiate the activity of the individual fragments. Differences in the biological activity of the resulting peptide conjugates were obtained depending on their charge, amphipathicity, and hydrophobicity, as well as on the order of the conjugation of the monomers. This work provided bifunctional peptide conjugates able to inhibit several plant-pathogenic bacteria, to stimulate plant defense responses, and to reduce the severity of bacterial spot in tomato plants. Thus, this study could serve as the basis for the development of new antibacterial/plant defense elicitor peptides to control bacterial plant pathogens.
Collapse
|
7
|
Ajish C, Yang S, Kumar SD, Kim EY, Min HJ, Lee CW, Shin SH, Shin SY. A novel hybrid peptide composed of LfcinB6 and KR-12-a4 with enhanced antimicrobial, anti-inflammatory and anti-biofilm activities. Sci Rep 2022; 12:4365. [PMID: 35288606 PMCID: PMC8921290 DOI: 10.1038/s41598-022-08247-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Hybridizing two known antimicrobial peptides (AMPs) is a simple and effective strategy for designing antimicrobial agents with enhanced cell selectivity against bacterial cells. Here, we generated a hybrid peptide Lf-KR in which LfcinB6 and KR-12-a4 were linked with a Pro hinge to obtain a novel AMP with potent antimicrobial, anti-inflammatory, and anti-biofilm activities. Lf-KR exerted superior cell selectivity for bacterial cells over sheep red blood cells. Lf-KR showed broad-spectrum antimicrobial activities (MIC: 4–8 μM) against tested 12 bacterial strains and retained its antimicrobial activity in the presence of salts at physiological concentrations. Membrane depolarization and dye leakage assays showed that the enhanced antimicrobial activity of Lf-KR was due to increased permeabilization and depolarization of microbial membranes. Lf-KR significantly inhibited the expression and production of pro-inflammatory cytokines (nitric oxide and tumor necrosis factor‐α) in LPS-stimulated mouse macrophage RAW264.7 cells. In addition, Lf-KR showed a powerful eradication effect on preformed multidrug-resistant Pseudomonas aeruginosa (MDRPA) biofilms. We confirmed using confocal laser scanning microscopy that a large portion of the preformed MDRPA biofilm structure was perturbed by the addition of Lf-KR. Collectively, our results suggest that Lf-KR can be an antimicrobial, anti-inflammatory, and anti-biofilm candidate as a pharmaceutical agent.
Collapse
|
8
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
9
|
Caravaca-Fuentes P, Camó C, Oliveras À, Baró A, Francés J, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. A Bifunctional Peptide Conjugate That Controls Infections of Erwinia amylovora in Pear Plants. Molecules 2021; 26:molecules26113426. [PMID: 34198776 PMCID: PMC8201157 DOI: 10.3390/molecules26113426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
In this paper, peptide conjugates were designed and synthesized by incorporating the antimicrobial undecapeptide BP16 at the C- or N-terminus of the plant defense elicitor peptide flg15, leading to BP358 and BP359, respectively. The evaluation of their in vitro activity against six plant pathogenic bacteria revealed that BP358 displayed MIC values between 1.6 and 12.5 μM, being more active than flg15, BP16, BP359, and an equimolar mixture of BP16 and flg15. Moreover, BP358 was neither hemolytic nor toxic to tobacco leaves. BP358 triggered the overexpression of 6 out of the 11 plant defense-related genes tested. Interestingly, BP358 inhibited Erwinia amylovora infections in pear plants, showing slightly higher efficacy than the mixture of BP16 and flg15, and both treatments were as effective as the antibiotic kasugamycin. Thus, the bifunctional peptide conjugate BP358 is a promising agent to control fire blight and possibly other plant bacterial diseases.
Collapse
Affiliation(s)
- Pau Caravaca-Fuentes
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Cristina Camó
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Àngel Oliveras
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Aina Baró
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Jesús Francés
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
- Correspondence: ; Tel.: +34-660719646
| |
Collapse
|
10
|
Ridyard KE, Overhage J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics (Basel) 2021; 10:antibiotics10060650. [PMID: 34072318 PMCID: PMC8227053 DOI: 10.3390/antibiotics10060650] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.
Collapse
|
11
|
Carratalá JV, Serna N, Villaverde A, Vázquez E, Ferrer-Miralles N. Nanostructured antimicrobial peptides: The last push towards clinics. Biotechnol Adv 2020; 44:107603. [PMID: 32738381 DOI: 10.1016/j.biotechadv.2020.107603] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Peptide drugs hold great potential for the treatment of infectious diseases due to their unconventional mechanisms of action, biocompatibility, biodegradability and ease of synthesis and modification. The increasing rising of bacterial strains resistant to classical antibiotics have pushed the development of new peptide-based antimicrobial therapies. In this context, over the past few years, different approaches have reached a clinical approval. Furthermore, the application of nanotechnological principles to the design of antimicrobial peptide-based composites increases even more the already known benefits of antimicrobial peptides as competent protein drugs. Then, we provide here an overview of the current strategies for antimicrobial peptide discovery and modification and the status of such peptides already under clinical development. In addition, we summarize the innovative formulation strategies for their application, focusing on the controlled self-assembly for the fabrication of antimicrobial nanostructures without the assistance of external nanocarriers, and with emphasis on bioengineering, design of ultra-short peptides and rising insights in bacterial selectivity.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
12
|
Feng X, Jin S, Wang M, Pang Q, Liu C, Liu R, Wang Y, Yang H, Liu F, Liu Y. The Critical Role of Tryptophan in the Antimicrobial Activity and Cell Toxicity of the Duck Antimicrobial Peptide DCATH. Front Microbiol 2020; 11:1146. [PMID: 32670215 PMCID: PMC7326067 DOI: 10.3389/fmicb.2020.01146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) have attracted more attention for their potential candidates for new antibiotic drugs. As a novel identified cathelicidin AMP from duck, dCATH owns broad-spectrum antimicrobial activities but with a noticeable toxicity. To explore dCATH-derived AMPs with reduced cell toxicity and improved cell selectivity, a series of truncated and tryptophan-replaced peptides of dCATH were designed. Two truncated peptides containing one of the two tryptophan (Trp) residues at the positions of 4 and 17 (W4 and W17) of dCATH, dCATH(1-16) and dCATH(5-20), showed strong antibacterial activity, but didn't show obvious hemolytic activity and cytotoxicity. The derived peptides not containing Trp didn't possess obvious antimicrobial activity, and their hemolytic and cytotoxic effect was also diminished. Also as evidence by Trp fluorescence experiment that existence of W4 and W17 was crucially important to the antimicrobial activity, hemolysis and cytotoxicity of dCATH, and one of the two Trp residues was competent and necessary to retain its antimicrobial activity. Antibacterial mechanism analysis showed that dCATH(1-16) and dCATH(5-20) killed bacterial cells by increasing permeability and causing a loss of membrane integrity. dCATH(1-16) and dCATH(5-20) possessed insignificant inhibitory activity against levels of IL-6, TNF-α, and NO in RAW 264.7 cells treated with LPS. In vivo, intraperitoneal administration of the two peptides significantly decreased mortality and provided protection against LPS-induced inflammation in mice challenged with lethal dose of LPS. The two peptides, dCATH(1-16) and dCATH(5-20), which possessed high antibacterial activity and cell selectivity, may herald development prospects as new antibacterial agents in the future.
Collapse
Affiliation(s)
- Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Sanjun Jin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Min Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qian Pang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chunlong Liu
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Harbin, China
| | - Ruiqi Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yingjie Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Hao Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Fangju Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yueying Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Chou S, Wang J, Shang L, Akhtar MU, Wang Z, Shi B, Feng X, Shan A. Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomater Sci 2019; 7:2394-2409. [PMID: 30919848 DOI: 10.1039/c9bm00044e] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Broad-spectrum antibiotics have, until now, been the mainstay of antibiotic therapy. However, the increasing threat of drug-resistant bacteria and the ecological imbalance of normal microbial communities have forced a reconsideration of the best strategies to treat such pathogens. Therefore, antibacterial agents with specific abilities of eliminating pathogens may provide long-term protection. Antimicrobial peptides (AMPs), which can be optimized by modifying their primary sequences, are regarded as potentially valuable in development of pathogen-specific agents. To obtain efficient narrow-spectrum AMPs, database-filtering technology, which filters the most probable amino acid composition, positive charge, sequence length and hydrophobic content of peptides against Gram-negative bacteria, was taken as the first step. Then, the filtered parameters were distributed and modified into an α-helical symmetrical structure by considering the structure-function relationship of synthesized antimicrobial peptides. Finally, short, safe and stable peptides against Escherichia coli, Salmonella pullorum and Pseudomonas aeruginosa were successfully identified. The potential peptides F1 and F4 showed low cell toxicity, low resistance potential and low salt sensitivity. CD spectroscopy of the peptides illustrated that F1 and F4 exhibited a tendency towards an α-helical structure in a membrane-mimetic environment. Indeed, fluorescence spectroscopy and electron microscopy analyses indicated that the shorter potential sequence F4 killed the bacteria by causing physical destruction of the bacterial membrane and cytosol leakage. In the mouse model test, F4 reduced the bacterial load in major organs and the cytokine (TNF-α, IL-6, and IL-1β) levels in serum significantly (P < 0.05). Collectively, this symmetric-helical distribution, dependent on database-filtering parameters, is a promising strategy for designing effective smart AMPs with high cell selectivity, and it also provides new insights into the design and optimization of pathogen-specific biomaterials.
Collapse
Affiliation(s)
- Shuli Chou
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Spohn R, Daruka L, Lázár V, Martins A, Vidovics F, Grézal G, Méhi O, Kintses B, Számel M, Jangir PK, Csörgő B, Györkei Á, Bódi Z, Faragó A, Bodai L, Földesi I, Kata D, Maróti G, Pap B, Wirth R, Papp B, Pál C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun 2019; 10:4538. [PMID: 31586049 PMCID: PMC6778101 DOI: 10.1038/s41467-019-12364-6] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.
Collapse
Affiliation(s)
- Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Fanni Vidovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- University of California, San Francisco, Department of Microbiology and Immunology, San Francisco, CA, USA
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Zoltán Bódi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Anikó Faragó
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Diána Kata
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bernadett Pap
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
15
|
Shao C, Li W, Lai Z, Akhtar MU, Dong N, Shan A, Ma D. Effect of terminal arrangement of tryptophan on biological activity of symmetric α‐helix‐forming peptides. Chem Biol Drug Des 2019; 94:2051-2063. [DOI: 10.1111/cbdd.13608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/29/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Changxuan Shao
- Institute of Animal Nutrition Northeast Agricultural University Harbin China
| | - Weizhong Li
- Institute of Animal Nutrition Northeast Agricultural University Harbin China
- College of Biological and Agricultural Engineering Weifang University Weifang China
| | - Zhenheng Lai
- Institute of Animal Nutrition Northeast Agricultural University Harbin China
| | | | - Na Dong
- Institute of Animal Nutrition Northeast Agricultural University Harbin China
| | - Anshan Shan
- Institute of Animal Nutrition Northeast Agricultural University Harbin China
| | - Deying Ma
- Institute of Animal Nutrition Northeast Agricultural University Harbin China
| |
Collapse
|
16
|
Juretić D, Simunić J. Design of α-helical antimicrobial peptides with a high selectivity index. Expert Opin Drug Discov 2019; 14:1053-1063. [DOI: 10.1080/17460441.2019.1642322] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, Split, Croatia
- Department of Physics, Faculty of Science, University of Split, Split, Croatia
| | - Juraj Simunić
- Division of molecular biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
17
|
Wade HM, Darling LEO, Elmore DE. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182980. [PMID: 31067436 DOI: 10.1016/j.bbamem.2019.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 01/30/2023]
Abstract
Combining two known antimicrobial peptides (AMPs) into a hybrid peptide is one promising avenue in the design of agents with increased antibacterial activity. However, very few previous studies have considered the effect of creating a hybrid from one AMP that permeabilizes membranes and another AMP that acts intracellularly after translocating across the membrane. Moreover, very few studies have systematically evaluated the order of parent peptides or the presence of linkers in the design of hybrid AMPs. Here, we use a combination of antibacterial measurements, cellular assays and semi-quantitative confocal microscopy to characterize the activity and mechanism for a library of sixteen hybrid peptides. These hybrids consist of permutations of two primarily membrane translocating peptides, buforin II and DesHDAP1, and two primarily membrane permeabilizing peptides, magainin 2 and parasin. For all hybrids, the permeabilizing peptide appeared to dominate the mechanism, with hybrids primarily killing bacteria through membrane permeabilization. We also observed increased hybrid activity when the permeabilizing parent peptide was placed at the N-terminus. Activity data also highlighted the potential value of considering AMP cocktails in addition to hybrid peptides. Together, these observations will guide future design efforts aiming to design more active hybrid AMPs.
Collapse
Affiliation(s)
- Heidi M Wade
- Department of Chemistry, Wellesley College, Wellesley, MA 02481, United States of America; Biochemistry Program, Wellesley College, Wellesley, MA 02481, United States of America
| | - Louise E O Darling
- Biochemistry Program, Wellesley College, Wellesley, MA 02481, United States of America; Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, United States of America
| | - Donald E Elmore
- Department of Chemistry, Wellesley College, Wellesley, MA 02481, United States of America; Biochemistry Program, Wellesley College, Wellesley, MA 02481, United States of America.
| |
Collapse
|