1
|
Kaur J, Lather A, Cheema PS, Jangir BL, Manoj J, Singh M, Joshi VG, Chhabra R. Designing, Synthesis and In Vitro Antimicrobial Activity of Peptide Against Biofilm Forming Methicillin Resistant Staphylococcus aureus. Curr Microbiol 2025; 82:159. [PMID: 40014067 DOI: 10.1007/s00284-025-04132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Increasing antimicrobial resistance and residue in an ecosystem is a huge threat to human as well as animal possibly inviting an uncontrollable outbreak and spoiling food. Use of alternative approaches in tackling the resistance problem has shown promising results in recent past. The present study was targeted to develop and evaluate the use synthetic peptide against biofilm forming methicillin resistant Staphylococcus aureus (MRSA). Peptide evaluation included determination of MIC, time kill kinetics, lysis activity, cell cytotoxicity assay, effect on biofilm formation, mechanism of action, thermo-stability and pH stability. Initially, a synthetic antimicrobial peptide, RWWKARIRL (ANLP-V3) was designed using bioinformatics tools and synthesized by solid phase synthesis using Fmoc chemistry. Peptide was found to exhibit antibacterial activity at 19.5 µg/mL concentration against both ATCC & clinical isolates of S. aureus. The time kill kinetic studies revealed > 99% inhibition of growth after 3 h at MIC, whereas 100% cell inhibition was seen at 2 h at 2 × MIC and 4 × MIC. No cytotoxicity was observed against mice RBCs as well as Vero cells at 2 × MIC. The AMP was found to be thermo-stable as well as pH stable at a wide range. Field emission scanning electron microscopy study demonstrates cell morphological alterations in AMP treated cells indicating membrane interacting nature of AMP. At MIC concentration, effective inhibition of biofilm formation in ATCC strains was seen. In conclusion, designed peptide might be effective antimicrobial agent against methicillin resistant biofilm forming S. aureus underlining possibilities of its preclinical development against mastitis in dairy animals.
Collapse
Affiliation(s)
- Jasleen Kaur
- Veterinary Microbiology, LUVAS, Hisar, Haryana, 125001, India
| | - Anshul Lather
- Veterinary Microbiology, LUVAS, Hisar, Haryana, 125001, India
| | | | | | - Jinu Manoj
- Veterinary Public Health and Epidemiology, LUVAS, Hisar, Haryana, 125001, India
| | - Mahavir Singh
- College Central Laboratory, LUVAS, Hisar, Haryana, 125001, India
| | - Vinay G Joshi
- Animal Biotechnology, LUVAS, Hisar, Haryana, 125001, India.
| | - Rajesh Chhabra
- Veterinary Microbiology, LUVAS, Hisar, Haryana, 125001, India.
- College Central Laboratory, LUVAS, Hisar, Haryana, 125001, India.
| |
Collapse
|
2
|
Singh S, Jha B, Tiwari P, Joshi VG, Mishra A, Malik YS. Recent approaches in the application of antimicrobial peptides in food preservation. World J Microbiol Biotechnol 2024; 40:315. [PMID: 39249587 DOI: 10.1007/s11274-024-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Antimicrobial peptides (AMPs) are small peptides existing in nature as an important part of the innate immune system in various organisms. Notably, the AMPs exhibit inhibitory effects against a wide spectrum of pathogens, showcasing potential applications in different fields such as food, agriculture, medicine. This review explores the application of AMPs in the food industry, emphasizing their crucial role in enhancing the safety and shelf life of food and how they offer a viable substitute for chemical preservatives with their biocompatible and natural attributes. It provides an overview of the recent advancements, ranging from conventional approaches of using natural AMPs derived from bacteria or other sources to the biocomputational design and usage of synthetic AMPs for food preservation. Recent innovations such as structural modifications of AMPs to improve safety and suitability as food preservatives have been discussed. Furthermore, the active packaging and creative fabrication strategies such as nano-formulation, biopolymeric peptides and casting films, for optimizing the efficacy and stability of these peptides in food systems are summarized. The overall focus is on the spectrum of applications, with special attention to potential challenges in the usage of AMPs in the food industry and strategies for their mitigation.
Collapse
Affiliation(s)
- Satparkash Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Bhavna Jha
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Pratiksha Tiwari
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Adarsh Mishra
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Yashpal Singh Malik
- ICAR-IVRI (Mukteswar Campus), Mukteswar, Nainital, Uttarakhand, 263138, India
| |
Collapse
|
3
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|