1
|
Liu F, Zhao Y, Pei Y, Lian F, Lin H. Role of the NF-kB signalling pathway in heterotopic ossification: biological and therapeutic significance. Cell Commun Signal 2024; 22:159. [PMID: 38439078 PMCID: PMC10910758 DOI: 10.1186/s12964-024-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process in which ectopic bone develops in soft tissues within the skeletal system. Endochondral ossification can be divided into the following types of acquired and inherited ossification: traumatic HO (tHO) and fibrodysplasia ossificans progressiva (FOP). Nuclear transcription factor kappa B (NF-κB) signalling is essential during HO. NF-κB signalling can drive initial inflammation through interactions with the NOD-like receptor protein 3 (NLRP3) inflammasome, Sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK). In the chondrogenesis stage, NF-κB signalling can promote chondrogenesis through interactions with mechanistic target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K)/AKT (protein kinase B, PKB) and other molecules, including R-spondin 2 (Rspo2) and SRY-box 9 (Sox9). NF-κB expression can modulate osteoblast differentiation by upregulating secreted protein acidic and rich in cysteine (SPARC) and interacting with mTOR signalling, bone morphogenetic protein (BMP) signalling or integrin-mediated signalling under stretch stimulation in the final osteogenic stage. In FOP, mutated ACVR1-induced NF-κB signalling exacerbates inflammation in macrophages and can promote chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs) through interactions with smad signalling and mTOR signalling. This review summarizes the molecular mechanism of NF-κB signalling during HO and highlights potential therapeutics for treating HO.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yike Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yiran Pei
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Fengyu Lian
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Mo ML, Jiang JM, Long XP, Xie LH. MiR-144-3p Aggravated Cartilage Injury in Rheumatoid Arthritis by Regulating BMP2/PI3K/Akt Axis. Mod Rheumatol 2021; 32:1064-1076. [PMID: 34850093 DOI: 10.1093/mr/roab105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Present study aimed to illustrate the role of miR-144-3p in RA. METHODS N1511 chondrocytes were stimulated by IL-1β to mimic RA injury model in vitro. Rats were subjected to injection of type II collagen to establish an in vivo RA model and the arthritis index score was calculated. Cell viability was determined by CCK-8. The expression of cartilage extracellular matrix proteins (Collagen II and Aggrecan) and matrix metalloproteinases protein (MMP-13) were determined by qRT-PCR and western blots. Cell apoptosis was measured by Flow cytometry. ELISA was applied to test the secretion of pro-inflammatory cytokines (IL-1β and TNF-α). Tissue injury and apoptosis were detected by HE staining and TUNEL staining. Interaction of miR-144-3p and BMP2 was verified by dual luciferase assay. RESULTS MiR-144-3p was dramatically increased in IL-1β induced N1511 cells. MiR-144-3p depletion elevated cell viability, suppressed apoptosis, pro-inflammatory cytokine releasing, and extracellular matrix loss in IL-1β induced N1511 cells. Moreover, miR-144-3p targeted BMP2 to modulate its expression negatively. Activation of PI3K/Akt signaling compromised inhibition of BMP2 induced aggravated N1511 cell injury with IL-1β stimulation. Inhibition of miR-144-3p alleviated cartilage injury and inflammatory in RA rats. CONCLUSION Collectively, miR-144-3p could aggravate chondrocytes injury inflammatory response in RA via BMP2/PI3K/Akt axis.
Collapse
Affiliation(s)
- Mei-Li Mo
- The First Affiliated Hospital, Department of Rheumatology and Immunology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jin-Mei Jiang
- The First Affiliated Hospital, Department of Rheumatology and Immunology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Ping Long
- The First Affiliated Hospital, Pulmonary and Critical Care Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Li-Hu Xie
- The First Affiliated Hospital, Department of Rheumatology and Immunology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
3
|
Ke H, Mou X, Xia Q. Remifentanil repairs cartilage damage and reduces the degradation of cartilage matrix in post-traumatic osteoarthritis, and inhibits IL-1β-induced apoptosis of articular chondrocytes via inhibition of PI3K/AKT/NF-κB phosphorylation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1487. [PMID: 33313232 PMCID: PMC7729373 DOI: 10.21037/atm-20-6000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Remifentanil (RFT) is an opioid analgesic with a unique pharmacokinetic profile, and plays an important role in the intra- and post-operative periods. Post-traumatic osteoarthritis (PTO) is a particular type of osteoarthritis (OA) that occurs secondary to a traumatic injury. In the present study, we investigated the effects of RFT both in vivo and in vitro. Methods In vivo, 50 Sprague Dawley (SD) rats (7 weeks old) were randomly divided into five groups. Four groups of rats received RFT (0.2, 0.5, and 1 µg) or vehicle (PTO group), while the remaining group served as the control. A PTO model in rats was established using the Hulth method. The cartilage damage, articular cartilage formation, and the degradation of cartilage matrix were evaluated. The effects of RFT on cell proliferation, apoptosis, and nuclear factor (NF)-κB phosphorylation were also examined. Results The results indicated that RFT improved cartilage damage, enhanced articular cartilage formation, and inhibited the degradation of cartilage matrix in PTO model rats. Compared with the control group, the protein levels of Osterix (OSX), Collagen type I alpha 1 (COL1A1), and osteocalcin (OC) were down-regulated in PTO model rats. RFT also inhibited the interleukin-1β (IL-1β)-induced apoptosis of chondrocytes in vitro. Furthermore, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/NF-κB pathway was inhibited both in vitro and in vitro. Conclusions RFT has significant potential as a therapeutic intervention to ameliorate PTO and provides a foundation for further clinical studies.
Collapse
Affiliation(s)
- Hai Ke
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaping Mou
- Department of Orthopedics, The People's Hospital of Jianyang, Jianyang, China
| | - Qing Xia
- Department of Traumatic Orthopedics, No. 1 People's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
4
|
Lei J, Amhare AF, Wang L, Lv Y, Deng H, Gao H, Guo X, Han J, Lammi MJ. Proteomic analysis of knee cartilage reveals potential signaling pathways in pathological mechanism of Kashin-Beck disease compared with osteoarthritis. Sci Rep 2020; 10:6824. [PMID: 32322000 PMCID: PMC7176695 DOI: 10.1038/s41598-020-63932-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/03/2020] [Indexed: 12/31/2022] Open
Abstract
The pathological mechanism of Kashin-Beck disease (KBD), an endemic osteoarthritic disease, remains to be poorly understood. This study was designed to identify signaling pathways and crucial proteins involved in the pathological mechanism of KBD compared with osteoarthritis (OA). The knee cartilage samples were collected from gender- and age-matched KBD (n = 9) and OA (n = 9) patients. After pre-processing, samples were labeled with Tamdem Mass Tags 6plex multiplex kit, and analyzed by liquid chromatography-tandem mass spectrometry. Proteomic results were analyzed with gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPI). The differential abundance proteins from KBD and OA were validated using western blot analysis. As a result, A total number of 375 proteins were identified to have differential abundance between KBD and OA, of which 121 and 254 proteins were observed to be up-regulated or down-regulated in KBD group. GO analysis shows that the differential abundant proteins are associated with cell junction and signal transducer activity from extracellular to intracellular. KEGG pathways enrichment and PPI network indicate four major pathways, including extracellular matrix -receptor interaction, focal adhesion, phosphatidylinositol 3-kinase (PI3K)-Protein kinase B (Akt), and Ras signaling pathways were involved in the degeneration of cartilage. Moreover, integrins, laminins, NF-κB and other regulative molecules were found as crucial proteins. In conclusion, our results demonstrated that compared with OA, the differential abundance proteins and signaling pathways may contribute to the occurrence and development of joint damage in KBD. Further investigation of their regulative roles and interaction may provide new insights into the pathological mechanisms and therapeutic targets for KBD.
Collapse
Affiliation(s)
- Jian Lei
- School of Public Health, Health Science Center; Key Laboratory of Environment and Gene Related Diseases of Ministry Education; Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.,Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, Guangdong, 518057, P. R. China
| | - Abebe Feyissa Amhare
- School of Public Health, Health Science Center; Key Laboratory of Environment and Gene Related Diseases of Ministry Education; Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Liyun Wang
- School of Public Health, Health Science Center; Key Laboratory of Environment and Gene Related Diseases of Ministry Education; Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.,Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, Guangdong, 518057, P. R. China
| | - Yizhen Lv
- School of Public Health, Health Science Center; Key Laboratory of Environment and Gene Related Diseases of Ministry Education; Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Huan Deng
- School of Public Health, Health Science Center; Key Laboratory of Environment and Gene Related Diseases of Ministry Education; Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Hang Gao
- Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
| | - Xiong Guo
- School of Public Health, Health Science Center; Key Laboratory of Environment and Gene Related Diseases of Ministry Education; Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Jing Han
- School of Public Health, Health Science Center; Key Laboratory of Environment and Gene Related Diseases of Ministry Education; Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China. .,Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, Guangdong, 518057, P. R. China.
| | - Mikko J Lammi
- School of Public Health, Health Science Center; Key Laboratory of Environment and Gene Related Diseases of Ministry Education; Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.,Department of Integrative Medical Biology, Umeå University, Umeå, 90187, Sweden
| |
Collapse
|
5
|
Yang W, Sun P. Downregulation of microRNA-129-5p increases the risk of intervertebral disc degeneration by promoting the apoptosis of nucleus pulposus cells via targeting BMP2. J Cell Biochem 2019; 120:19684-19690. [PMID: 31436339 DOI: 10.1002/jcb.29274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/18/2019] [Indexed: 11/05/2022]
Abstract
miR-129-5p is implicated in many diseases, such as laryngeal cancer and breast cancer. In this study, we studied the mechanism underlying the role of BMP2 in intervertebral disc degeneration (IDD). We used a luciferase assay system to determine the relationship between BMP2 and miR-129-5 expression. In addition, Western blot and real-time PCR were used to confirm the regulatory relationship between miR-129-5p and its targets, while flow cytometry was used to evaluate the effect of miR-129-5p on the apoptosis of neural progenitor cells (NPCs). BMP2 was confirmed as a direct target of miR-129-5p. Furthermore, the expression of miR-129 was downregulated along with upregulated BMP2 expression in IDD patients. Meanwhile, BMP2 was validated as the target of miR-129-5p in cells transfected with miR-129-5p and BMP2 siRNA. Also, compared with NPCs transfected with blank/scramble controls or miR-129-5p inhibitors, the NPCs treated with miR-129-5p mimics or BMP2 siRNA exhibited evidently elevated viability and inhibited apoptosis. The data demonstrated that miR-129-5p was poorly expressed in IDD patients, and the dysregulation of miR-129-5p might contribute to the development of IDD by targeting BMP2 expression.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ping Sun
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Chowdhury HM, Sharmin N, Yuzbasioglu Baran M, Long L, Morrell NW, Trembath RC, Nasim MT. BMPRII deficiency impairs apoptosis via the BMPRII-ALK1-BclX-mediated pathway in pulmonary arterial hypertension. Hum Mol Genet 2019; 28:2161-2173. [PMID: 30809644 DOI: 10.1093/hmg/ddz047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiovascular disorder characterized by the remodelling of pre-capillary pulmonary arteries. The vascular remodelling observed in PAH patients results from excessive proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs) and pulmonary arterial endothelial cells (PAECs). We have previously demonstrated that mutations in the type II receptor for bone morphogenetic protein (BMPRII) underlie the majority of the familial and inherited forms of the disease. We have further demonstrated that BMPRII deficiency promotes excessive proliferation and attenuates apoptosis in PASMCs, but the underlying mechanisms remain unclear. The major objective of this study is to investigate how BMPRII deficiency impairs apoptosis in PAH. Using multidisciplinary approaches, we demonstrate that deficiency in the expression of BMPRII impairs apoptosis by modulating the alternative splicing of the apoptotic regulator, B-cell lymphoma X (Bcl-x) transcripts: a finding observed in circulating leukocytes and lungs of PAH subjects, hypoxia-induced PAH rat lungs as well as in PASMCs and PAECs. BMPRII deficiency elicits cell specific effects: promoting the expression of Bcl-xL transcripts in PASMCs while inhibiting it in ECs, thus exerting differential apoptotic effects in these cells. The pro-survival effect of BMPRII receptor is mediated through the activin receptor-like kinase 1 (ALK1) but not the ALK3 receptor. Finally, we show that BMPRII interacts with the ALK1 receptor and pathogenic mutations in the BMPR2 gene abolish this interaction. Taken together, dysfunctional BMPRII responsiveness impairs apoptosis via the BMPRII-ALK1-Bcl-xL pathway in PAH. We suggest Bcl-xL as a potential biomarker and druggable target.
Collapse
Affiliation(s)
- H M Chowdhury
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - N Sharmin
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom.,Department of Pharmaceutical Technology, University of Dhaka, Dhaka, Bangladesh
| | - Merve Yuzbasioglu Baran
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom.,Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - L Long
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - N W Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R C Trembath
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Md Talat Nasim
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, United Kingdom.,Centre for Health Agricultural and Socio-economic Advancements (CHASA), Lalmonirhat, Bangladesh
| |
Collapse
|
7
|
Yu Q, Zhao B, He Q, Zhang Y, Peng X. microRNA‐206 is required for osteoarthritis development through its effect on apoptosis and autophagy of articular chondrocytes via modulating the phosphoinositide 3‐kinase/protein kinase B‐mTOR pathway by targeting insulin‐like growth factor‐1. J Cell Biochem 2018; 120:5287-5303. [PMID: 30335903 DOI: 10.1002/jcb.27803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Qian Yu
- Department of Joint Surgery & Sports Medicine Qianfoshan Hospital of Shandong Province Jinan China
| | - Bei Zhao
- Department of Orthopaedics Liaocheng People’s Hospital and Liaocheng Clinical School of Taishan Medical University Liaocheng China
| | - Qi He
- Department of Blood Transfusion Shandong Provincial Hospital Jinan China
| | - Yuan Zhang
- Department of Geriatric Neurology Qianfoshan Hospital of Shandong Province Jinan China
| | - Xian‐Bo Peng
- Department of Joint Surgery & Sports Medicine Qianfoshan Hospital of Shandong Province Jinan China
| |
Collapse
|
8
|
Zhen R, Yang J, Wang Y, Li Y, Chen B, Song Y, Ma G, Yang B. Hepatocyte growth factor improves bone regeneration via the bone morphogenetic protein‑2‑mediated NF‑κB signaling pathway. Mol Med Rep 2018; 17:6045-6053. [PMID: 29436622 DOI: 10.3892/mmr.2018.8559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/03/2017] [Indexed: 11/05/2022] Open
Abstract
Bone regeneration is an important process associated with the treatment of osteonecrosis, which is caused by various factors. Hepatocyte growth factor (HGF) is an active biological factor that has multifunctional roles in cell biology, life sciences and clinical medicine. It has previously been suggested that bone morphogenetic protein (BMP)‑2 exerts beneficial roles in bone formation, repair and angiogenesis in the femoral head. The present study aimed to investigate the benefits and molecular mechanisms of HGF in bone regeneration. The viability of osteoblasts and osteoclasts were studied in vitro. In addition, the expression levels of tumor necrosis factor (TNF)‑α, monocyte chemotactic protein (MCP)‑1, interleukin (IL)‑1 and IL‑6 were detected in a mouse fracture model following treatment with HGF. The expression and activity of nuclear factor (NF)‑κB were also analyzed in osteocytes post‑treatment with HGF. Histological analysis was used to determine the therapeutic effects of HGF on mice with fractures. The migration and differentiation of osteoblasts and osteoclasts were investigated in HGF‑incubated cells. Furthermore, angiogenesis and BMP‑2 expression were analyzed in the mouse fracture model post‑treatment with HGF. The results indicated that HGF regulates the cell viability of osteoblasts and osteoclasts, and also balanced the ratio between osteoblasts and osteoclasts. In addition, HGF decreased the serum expression levels of TNF‑α, MCP‑1, IL‑1 and IL‑6 in experimental mice. The results of a mechanistic analysis demonstrated that HGF upregulated p65, IκB kinase‑β and IκBα expression in osteoblasts from experimental mice. In addition, the expression levels of vascular endothelial growth factor, BMP‑2 receptor, receptor activator of NF‑κB ligand and macrophage colony‑stimulating factor were upregulated by HGF, which may effectively promote blood vessel regeneration, and contribute to the formation and revascularization of tissue‑engineered bone. Furthermore, HGF promoted BMP‑2 expression and enhanced angiogenesis at the fracture location. These results suggested that HGF treatment may significantly promote bone regeneration in a mouse fracture model. In conclusion, these results indicated that HGF is involved in bone regeneration, angiogenesis and the balance between osteoblasts and osteoclasts, thus suggesting that HGF may be considered a potential agent for the treatment of fractures via the promotion of bone regeneration through regulation of the BMP‑2‑mediated NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Ruixin Zhen
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Jianing Yang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Yu Wang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Yubo Li
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Bin Chen
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Youxin Song
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Guiyun Ma
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Bo Yang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
9
|
Yang Y, Wang Y, Zhao M, Jia H, Li B, Xing D. Tormentic acid inhibits IL-1β-induced chondrocyte apoptosis by activating the PI3K/Akt signaling pathway. Mol Med Rep 2018; 17:4753-4758. [PMID: 29328385 DOI: 10.3892/mmr.2018.8425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Abstract
Interleukin-1β (IL-1β) accelerates degradation of the cartilage matrix and induces apoptosis of chondrocytes. Tormentic acid (TA) is a triterpene isolated from the stem bark of the Vochysia divergens plant, which has been demonstrated to exert in vitro inhibitory activity against hepatocyte apoptosis. However, the effects of TA on IL‑1β‑induced apoptosis of human chondrocytes remain unclear. Therefore, the present study investigated the in vitro effects of TA on human osteoarthritic chondrocyte apoptosis cultivated in the presence of IL‑1β. Human chondrocytes were pretreated with or without various concentrations of TA and then co‑incubated in the absence or presence of IL‑1β for 24 h. Cell viability was determined using the MTT assay, and cell apoptosis was detected using a Nucleosome ELISA kit. Caspase‑3 activity was detected using a caspase‑3 colorimetric assay kit. The levels of B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax), Bcl‑2, phosphorylated (p)‑phosphoinositide 3‑kinase (PI3K), PI3K, p‑protein kinase B (Akt) and Akt were measured by western blotting. The results revealed that pretreatment with TA inhibited IL‑1β‑induced cytotoxicity and apoptosis in chondrocytes. In addition, TA pretreatment increased B‑cell lymphoma (Bcl)‑2 expression, and decreased caspase‑3 activity and Bax expressionin human chondrocytes. In addition, pretreatment with TA markedly increased the expression of p‑PI3K and p‑Akt in IL‑1β‑induced chondrocytes. Collectively, these results indicate that TA inhibits IL‑1β‑induced chondrocyte apoptosis by activating the PI3K/Akt signaling pathway. Therefore, TA may be considered a potential therapeutic target for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Yawei Wang
- Department of Electromyography, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Meng Zhao
- Clinical Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Haobo Jia
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Bing Li
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Dan Xing
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
10
|
Abstract
Osteoarthritis is characterized by a chronic, progressive and irreversible degradation of the articular cartilage associated with joint inflammation and a reparative bone response. More than 100 million people are affected by this condition worldwide with significant health and welfare costs. Our available treatment options in osteoarthritis are extremely limited. Chondral or osteochondral grafts have shown some promising results but joint replacement surgery is by far the most common therapeutic approach. The difficulty lies on the limited regeneration capacity of the articular cartilage, poor blood supply and the paucity of resident progenitor stem cells. In addition, our poor understanding of the molecular signalling pathways involved in the senescence and apoptosis of chondrocytes is a major factor restricting further progress in the area. This review focuses on molecules and approaches that can be implemented to delay or even rescue chondrocyte apoptosis. Ways of modulating the physiologic response to trauma preventing chondrocyte death are proposed. The use of several cytokines, growth factors and advances made in altering several of the degenerative genetic pathways involved in chondrocyte apoptosis and degradation are also presented. The suggested approaches can help clinicians to improve cartilage tissue regeneration.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, UK.
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, UK; NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
11
|
Fu D, Shang X, Ni Z, Shi G. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis. Exp Ther Med 2016; 12:2735-2740. [PMID: 27703516 DOI: 10.3892/etm.2016.3642] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/05/2016] [Indexed: 12/18/2022] Open
Abstract
Shikonin has previously been shown to have antitumor, anti-inflammatory, antiviral and extensive pharmacological effects. The aim of the present study was to explore whether the protective effect of shikonin is mediated via the inhibition of inflammation and chondrocyte apoptosis, and to elucidate the potential molecular mechanisms in a rat model of osteoarthritis. A model of osteoarthritis was established in healthy male Sprague-Dawley rats and 10 mg/kg/day shikonin was administered intraperitoneally for 4 days. It was found that shikonin treatment significantly inhibited inflammatory reactions in the rats with osteoarthritis. Osteoarthritis was found to significantly increase interleukin (IL)-1β, tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) levels compared with those in the sham group. However, shikonin treatment significantly inhibited the increases in IL-1β, TNF-α and iNOS levels in the rats with osteoarthritis. Furthermore, caspase-3 activity and cyclooxygenase (COX)-2 protein expression were significantly increased and phosphorylated Akt protein expression was greatly suppressed in rats with osteoarthritis when compared with the sham group. Shikonin administration attenuated the changes in caspase-3 activity and COX-2 expression and Akt phosphorylation in rats with osteoarthritis. These results indicate that shikonin inhibits inflammation and chondrocyte apoptosis by regulating the phosphoinositide 3-kinase/Akt signaling pathway in a rat model of osteoarthritis.
Collapse
Affiliation(s)
- Daijie Fu
- Department of Orthopedics, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Xifu Shang
- Department of Orthopedics, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Zhe Ni
- Department of Orthopedics, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Guoguang Shi
- Department of Orthopedics, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
12
|
Saito K, Takahashi K, Asahara M, Kiso H, Togo Y, Tsukamoto H, Huang B, Sugai M, Shimizu A, Motokawa M, Slavkin HC, Bessho K. Effects of Usag-1 and Bmp7 deficiencies on murine tooth morphogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:14. [PMID: 27178071 PMCID: PMC4866418 DOI: 10.1186/s12861-016-0117-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/09/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wnt5a and Mrfzb1 genes are involved in the regulation of tooth size, and their expression levels are similar to that of Bmp7 during morphogenesis, including during the cap and early bell stages of tooth formation. We previously reported that Usag-1-deficient mice form supernumerary maxillary incisors. Thus, we hypothesized that BMP7 and USAG-1 signaling molecules may play important roles in tooth morphogenesis. In this study, we established double genetically modified mice to examine the in vivo inter-relationships between Bmp7 and Usag-1. RESULTS We measured the volume and cross-sectional areas of the mandibular incisors using micro-computed tomography (micro-CT) in adult Bmp7- and Usag-1-LacZ knock-in mice and their F2 generation upon interbreeding. The mandibular incisors of adult Bmp7+/- mice were significantly larger than those of wild-type (WT) mice. The mandibular incisors of adult Usag-1-/- mice were the largest of all genotypes examined. In the F2 generation, the effects of these genes were additive; Bmp7+/- was most strongly associated with the increase in tooth size using generalized linear models, and the total area of mandibular supernumerary incisors of Usag-1-/-Bmp7+/- mice was significantly larger than that of Usag-1-/-Bmp7 +/+ mice. At embryonic day 15 (E15), BrdU assays demonstrated that the labeling index of Bmp7+/- embryos was significantly higher than that of WT embryos in the cervical loop. Additionally, the labeling index of Usag-1-/- embryos was significantly the highest of all genotypes examined in dental papilla. CONCLUSIONS Bmp7 heterozygous mice exhibited significantly increased tooth sizes, suggesting that tooth size was controlled by specific gene expression. Our findings may be useful in applications of regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Masakazu Asahara
- College of Liberal Arts and Sciences, Mie University, Mie, Japan
| | - Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Boyen Huang
- School of Dentistry and Health Sciences, Sturt University, Orange, Australia
| | - Manabu Sugai
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akira Shimizu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | | | - Harold C Slavkin
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| |
Collapse
|
13
|
Tsai PH, Chien Y, Chuang JH, Chou SJ, Chien CH, Lai YH, Li HY, Ko YL, Chang YL, Wang CY, Liu YY, Lee HC, Yang CH, Tsai TF, Lee YY, Chiou SH. Dysregulation of Mitochondrial Functions and Osteogenic Differentiation in Cisd2-Deficient Murine Induced Pluripotent Stem Cells. Stem Cells Dev 2015; 24:2561-76. [PMID: 26230298 DOI: 10.1089/scd.2015.0066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wolfram syndrome 2 (WFS2) is a premature aging syndrome caused by an irreversible mitochondria-mediated disorder. Cisd2, which regulates mitochondrial electron transport, has been recently identified as the causative gene of WFS2. The mouse Cisd2 knockout (KO) (Cisd2(-/-)) recapitulates most of the clinical manifestations of WFS2, including growth retardation, osteopenia, and lordokyphosis. However, the precise mechanisms underlying osteopenia in WFS2 and Cisd2 KO mice remain unknown. In this study, we collected embryonic fibroblasts from Cisd2-deficient embryos and reprogrammed them into induced pluripotent stem cells (iPSCs) via retroviral transduction with Oct4/Sox2/Klf4/c-Myc. Cisd2-deficient mouse iPSCs (miPSCs) exhibited structural abnormalities in their mitochondria and an impaired proliferative capability. The global gene expression profiles of Cisd2(+/+), Cisd2(+/-), and Cisd2(-/-) miPSCs revealed that Cisd2 functions as a regulator of both mitochondrial electron transport and Wnt/β-catenin signaling, which is critical for cell proliferation and osteogenic differentiation. Notably, Cisd2(-/-) miPSCs exhibited impaired Wnt/β-catenin signaling, with the downregulation of downstream genes, such as Tcf1, Fosl1, and Jun and the osteogenic regulator Runx2. Several differentiation markers for tridermal lineages were globally impaired in Cisd2(-/-) miPSCs. Alizarin red S staining and flow cytometry analysis further revealed that Cisd2(-/-) miPSCs failed to undergo osteogenic differentiation. Taken together, our results, as determined using an miPSC-based platform, have demonstrated that Cisd2 regulates mitochondrial function, proliferation, intracellular Ca(2+) homeostasis, and Wnt pathway signaling. Cisd2 deficiency impairs the activation of Wnt/β-catenin signaling and thereby contributes to the pathogeneses of osteopenia and lordokyphosis in WFS2 patients.
Collapse
Affiliation(s)
- Ping-Hsing Tsai
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan
| | - Yueh Chien
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan
| | - Jen-Hua Chuang
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Shih-Jie Chou
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan
| | - Chian-Hsu Chien
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Ying-Hsiu Lai
- 4 Institute of Anatomy & Cell Biology, National Yang-Ming University , Taipei, Taiwan
| | - Hsin-Yang Li
- 4 Institute of Anatomy & Cell Biology, National Yang-Ming University , Taipei, Taiwan .,5 School of Medicine, National Yang-Ming University , Taipei, Taiwan .,6 Department of Obstetrics and Gynecology, Neurological Institute , Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Lin Ko
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,5 School of Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Yuh-Lih Chang
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,7 Department of Pharmacy, Neurological Institute , Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Ying Wang
- 5 School of Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Yung-Yang Liu
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Hsin-Chen Lee
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,5 School of Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Chang-Hao Yang
- 8 Department of Ophthalmology, National Taiwan University Hospital , Taipei, Taiwan
| | - Ting-Fen Tsai
- 9 Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University , Taipei, Taiwan
| | - Yi-Yen Lee
- 3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan .,10 Department of Neurosurgery, Neurological Institute , Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan .,4 Institute of Anatomy & Cell Biology, National Yang-Ming University , Taipei, Taiwan
| |
Collapse
|
14
|
Gorskaya YF, Danilova TA, Karyagina AS, Lunin VG, Grabko VI, Bartov MS, Gromov AV, Grunina TM, Soboleva LA, Shapoval IM, Nesterenko VG. Effects of Combined Treatment with Complex S. typhimurium Antigens and Factors Stimulating Osteogenesis (Curettage, BMP-2) on Multipotent Bone Marrow Stromal Cells and Serum Concentration of Cytokines in CBA Mice. Bull Exp Biol Med 2015; 158:465-70. [DOI: 10.1007/s10517-015-2786-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 10/24/2022]
|
15
|
Bone morphogenetic protein 2 mediates epithelial-mesenchymal transition via AKT and ERK signaling pathways in gastric cancer. Tumour Biol 2014; 36:2773-8. [PMID: 25448881 DOI: 10.1007/s13277-014-2901-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Although deregulation of bone morphogenetic protein 2 (BMP2) signaling has been linked to various types of cancers, the relationships between abnormal activation of these signaling pathways and tumorigenesis are not clear in gastric cancer. We hypothesized that BMP2 might be involved in epithelial-mesenchymal transition (EMT) process of gastric cancer. Here, BMPR-II activation and inhibition in gastric cancer cell line AGS were induced with exogenous BMP2 and with BMPR-II small interfering RNA (siRNA), respectively. BMPR-II downstream signal molecules AKT, ERK phosphorylation, and EMT biomarkers (vimentin, snail, N-cadherin, and E-cadherin) were tested using the Western blot. In the present study, our results showed that BMP2 can induce AKT and ERK phosphorylation in a dose-dependent method, and endogenous BMPR-II can be inhibited completely by BMPR-II siRNA in AGS. Notably BMP2 alone treatment can induce the up-regulation of vimentin, snail, and N-cadherin in AGS cells, besides, the down-regulation of E-cadherin also occurred. On the contrary, BMPR-II siRNA significantly prohibited BMP2-induced AKT and ERK phosphorylation, at the same time, EMT biomarkers changes were not observed. On the other hand, BMPR-II knockdown could significantly affect AGS wound closure and the migration ability (p < 0.001) compared to control siRNA and BMP2 alone. In conclusion, this study suggested that EMT process can be triggered by the BMP2/BMPR axis in gastric cancer and then involved in the tumor cell migration, invasion, and metastasis via the activation of PI3K/AKT and MEK/ERK pathways. Our study lays a new foundation for the treatment of gastric cancer through antagonizing BMP2 system.
Collapse
|
16
|
Lu J, Sun B, Huo R, Wang YC, Yang D, Xing Y, Xiao XL, Xie X, Dong DL. Bone morphogenetic protein-2 antagonizes bone morphogenetic protein-4 induced cardiomyocyte hypertrophy and apoptosis. J Cell Physiol 2014; 229:1503-10. [PMID: 24648278 DOI: 10.1002/jcp.24592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 02/19/2014] [Indexed: 11/05/2022]
Abstract
Our previous work showed that the expression of bone morphogenetic protein-4 (BMP4) was up-regulated in pathological cardiac hypertrophy models and BMP4 induced cardiomyocyte hypertrophy and apoptosis. Bone morphogenetic protein-2 (BMP2) and BMP4 share greater than 80% amino acid homology and there exists an interaction between BMP2 and BMP4, so the aim of the present study was to elucidate the changes of BMP2 in the cardiac hypertrophy models and the effects of BMP2 on BMP4-induced cardiomyocyte hypertrophy and apoptosis. The in vivo cardiac hypertrophy models were induced by pressure-overload and swimming exercise in mice. BMP2 mRNA and protein expressions increased in pressure-overload and swimming-exercise induced cardiac hypertrophy. BMP2 itself did not elicit cardiomyocyte hypertrophy and apoptosis, but antagonized BMP4-induced cardiomyocyte hypertrophy and apoptosis. BMP2 stimulated Akt in cardiomyocytes and Akt inhibitor prevented the antagonism of BMP2 on BMP4-induced cardiomyocyte apoptosis. Furthermore, BMP2 inhibited BMP4-induced JNK activation in cardiomyocytes. In conclusion, BMP2 antagonizes BMP4-induced cardiomyocyte hypertrophy and apoptosis. The anti-apoptotic effects of BMP2 on BMP4-induced cardiomyocyte apoptosis might be through activating Akt and inhibiting JNK activation.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hiepen C, Benn A, Denkis A, Lukonin I, Weise C, Boergermann JH, Knaus P. BMP2-induced chemotaxis requires PI3K p55γ/p110α-dependent phosphatidylinositol (3,4,5)-triphosphate production and LL5β recruitment at the cytocortex. BMC Biol 2014; 12:43. [PMID: 24885555 PMCID: PMC4071339 DOI: 10.1186/1741-7007-12-43] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/13/2014] [Indexed: 01/13/2023] Open
Abstract
Background BMP-induced chemotaxis of mesenchymal progenitors is fundamental for vertebrate development, disease and tissue repair. BMP2 induces Smad and non-Smad signalling. Whereas signal transduction via Smads lead to transcriptional responses, non-Smad signalling induces both, transcriptional and immediate/early non-transcriptional responses. However, the molecular mechanisms by which BMP2 facilitates planar cell polarity, cortical actin rearrangements, lamellipodia formation and chemotaxis of mesenchymal progenitors are poorly understood. Our aim was to uncover the molecular mechanism by which BMP2 facilitates chemotaxis via the BMP2-dependent activation of PI3K and spatiotemporal control of PIP3 production important for actin rearrangements at the mesenchymal cell cytocortex. Results We unveiled the molecular mechanism by which BMP2 induces non-Smad signalling by PI3K and the role of the second messenger PIP3 in BMP2-induced planar cell polarity, cortical actin reorganisation and lamellipodia formation. By using protein interaction studies, we identified the class Ia PI3K regulatory subunit p55γ to act as a specific and non-redundant binding partner for BMP receptor type II (BMPRII) in concert with the catalytic subunit p110α. We mapped the PI3K interaction to a region within the BMPRII kinase. Either BMP2 stimulation or increasing amounts of BMPRI facilitated p55γ association with BMPRII, but BMPRII kinase activity was not required for the interaction. We visualised BMP2-dependent PIP3 production via PI3K p55γ/p110α and were able to localise PIP3 to the leading edge of intact cells during the process of BMP2-induced planar cell polarity and actin dependent lamellipodia formation. Using mass spectrometry, we found the highly PIP3-sensitive PH-domain protein LL5β to act as a novel BMP2 effector in orchestrating cortical actin rearrangements. By use of live cell imaging we found that knock-down of p55γ or LL5β or pharmacological inhibition of PI3K impaired BMP2-induced migratory responses. Conclusions Our results provide evidence for an important contribution of the BMP2-PI3K (p55γ/p110α)- PIP3-LL5β signalling axis in mesenchymal progenitor cell chemotaxis. We demonstrate molecular insights into BMP2-induced PI3K signalling on the level of actin reorganisation at the leading edge cytocortex. These findings are important to better understand BMP2–induced cytoskeletal reorganisation and chemotaxis of mesenchymal progenitors in different physiological or pathophysiological contexts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Βerlin, 14195 Berlin, Germany.
| |
Collapse
|
18
|
Wang Y, Kahaleh B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med 2013; 17:1291-9. [PMID: 23859708 PMCID: PMC4159013 DOI: 10.1111/jcmm.12105] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/21/2013] [Accepted: 06/08/2013] [Indexed: 01/09/2023] Open
Abstract
Germline mutations in the bone morphogenetic protein type II receptor (BMPRII) gene play an essential role in the pathogenesis of familial pulmonary arterial hypertension (FPAH). In view of the histological similarities between scleroderma (SSc) and FPAH arterial lesion, we examined the expression levels of BMPRII in SSc microvascular endothelial cells (MVEC). Oxidative stress and serum starvation were used to examine apoptotic responses of MVECs. BMPRII expression levels were determined by RT-PCR and by Western blot. Epigenetic regulation of BMPRII expression was examined by the addition of epigenetic inhibitors to MVECs cultures, by methylation-specific PCR, and by sequence analysis of DNA methylation pattern of the BMPRII promotor region. SSc-MVECs were more sensitive to apoptotic signals than were normal-MVECs. A significant decrease in BMPRII expression levels in SSc-MVECs was noted, whereas no significant differences in the expression levels of BMPRIA and BMPRIB were observed. Similar reduction in expression levels was noted in SSc skin biopsies. The expression level of BMPRII in SSc-MVECs was normalized by the addition of 2-deoxy-5-azacytidine and trichostatin A to cell cultures. Extensive CpG sites methylation in the BMPRII promoter region was noted in SSc-MVECs with no detectable site methylation in control-MVECs. SSc-MVECs are more sensitive to apoptotic triggers than are control-MVECs. The enhanced apoptosis may be related to epigenetic repression of BMPRII expression as apoptosis of control-MVECs can be augmented by knocking down BMPRII expression. The role of BMPRII underexpression in the pathogenesis of SSc vasculopathy is suggested and should be investigated further.
Collapse
Affiliation(s)
- Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
19
|
Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteoblasts and adipocytes. J Cell Commun Signal 2013; 7:265-78. [PMID: 23637019 DOI: 10.1007/s12079-013-0199-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/12/2013] [Indexed: 01/01/2023] Open
Abstract
BMP2 is a growth factor that regulates the cell fate of mesenchymal stem cells into osteoblast and adipocytes. However, the detailed signaling pathways and mechanism are unknown. We previously reported a new interaction of Casein kinase II (CK2) with the BMP receptor type-Ia (BMPRIa) and demonstrated using mimetic peptides CK2.1, CK2.2 and CK2.3 that the release of CK2 from BMPRIa activates Smad signaling and osteogenesis. Previously, we showed that mutation of these CK2 sites on BMPRIa (MCK2.1 (476S-A), MCK2.2 (324S-A) and MCK2.3 (214S-A)) induced osteogenesis. However, one mutant MCK2.1 induced osteogenesis similar to overexpression of wild type BMPRIa, suggesting that the effect of this mutant on mineralization was due to overexpression. In this paper we investigated the signaling pathways involved in the CK2-BMPRIa mediated osteogenesis and identified a new signaling pathway activating adipogenesis dependent on the BMPRIa and CK2 association. Further the mechanism for adipogenesis and osteogenesis is specific to the CK2 interaction site on BMPRIa. In detail our data show that overexpression of MCK2.2 induced osteogenesis was dependent on Caveolin-1 (Cav1) and the activation of the Smad and mTor pathways, while overexpression of MCK2.3 induced osteogenesis was independent of Caveolin-1 without activation of Smad pathway. However, MCK2.3 induced osteogenesis via the MEK pathway. The adipogenesis induced by the overexpression of MCK2.2 in C2C12 cells was dependent on the p38 and ERK pathways as well as Caveolin-1. These data suggest that signaling through BMPRIa used two different signaling pathways to induce osteogenesis dependent on CK2. Additionally the data supports a signaling pathway initiated in caveolae and one outside of caveolae to induce mineralization. Moreover, they reveal the signaling pathway of BMPRIa mediated adipogenesis.
Collapse
|
20
|
Bone morphogenetic protein type I receptor antagonists decrease growth and induce cell death of lung cancer cell lines. PLoS One 2013; 8:e61256. [PMID: 23593444 PMCID: PMC3625205 DOI: 10.1371/journal.pone.0061256] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are highly conserved morphogens that are essential for normal development. BMP-2 is highly expressed in the majority of non-small cell lung carcinomas (NSCLC) but not in normal lung tissue or benign lung tumors. The effects of the BMP signaling cascade on the growth and survival of cancer cells is poorly understood. We show that BMP signaling is basally active in lung cancer cell lines, which can be effectively inhibited with selective antagonists of the BMP type I receptors. Lung cancer cell lines express alk2, alk3, and alk6 and inhibition of a single BMP receptor was not sufficient to decrease signaling. Inhibition of more than one type I receptor was required to decrease BMP signaling in lung cancer cell lines. BMP receptor antagonists and silencing of BMP type I receptors with siRNA induced cell death, inhibited cell growth, and caused a significant decrease in the expression of inhibitor of differentiation (Id1, Id2, and Id3) family members, which are known to regulate cell growth and survival in many types of cancers. BMP receptor antagonists also decreased clonogenic cell growth. Knockdown of Id3 significantly decreased cell growth and induced cell death of lung cancer cells. H1299 cells stably overexpressing Id3 were resistant to growth suppression and induction of cell death induced by the BMP antagonist DMH2. These studies suggest that BMP signaling promotes cell growth and survival of lung cancer cells, which is mediated through its regulation of Id family members. Selective antagonists of the BMP type I receptors represents a potential means to pharmacologically treat NSCLC and other carcinomas with an activated BMP signaling cascade.
Collapse
|
21
|
Selvaraju S, Folger JK, Gupta PSP, Ireland JJ, Smith GW. Stage-specific expression and effect of bone morphogenetic protein 2 on bovine granulosa cell estradiol production: regulation by cocaine and amphetamine regulated transcript. Domest Anim Endocrinol 2013; 44:115-20. [PMID: 23313114 DOI: 10.1016/j.domaniend.2012.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
Members of the bone morphogenetic protein (BMP) family regulate follicular development and granulosa cell function. However, changes in expression of BMP2 and its receptors during follicular waves in cattle and ability of BMP2 to modulate bovine granulosa cell estradiol production are not well understood. The objectives of this study were to determine temporal regulation of mRNA for BMP2 and its type I and II receptors (BMPR1A and BMPR2) in bovine follicles collected at specific stages of a follicular wave (predeviation, early dominance, mid dominance, preovulatory), ability of BMP2 to modulate bovine granulosa cell steroidogenesis, and whether effects of BMP2 on granulosa cell estradiol production are influenced by cotreatment with cocaine- and amphetamine-regulated transcript (CART), an intrafollicular regulatory peptide shown to inhibit estradiol production in response to other trophic hormones (FSH and IGF1). Relative abundance of mRNAs for Bmp2 and Bmpr2 was elevated at the mid dominance stage relative to earlier stages of the follicular wave and further increased at the preovulatory stage. Abundance of mRNA for Bmpr1a was lowest at early dominance stage and highest at preovulatory stage relative to other stages of the follicular wave examined. Treatment of bovine granulosa cells in vitro with BMP2 increased estradiol but decreased progesterone concentrations. Co-incubation with CART reduced the BMP2-stimulated increase in granulosa cell estradiol production. Results suggest that BMP2 may play a regulatory role in development of bovine follicles to the preovulatory stage and that CART can inhibit granulosa cell estradiol production in response to multiple hormones/growth factors, including BMP2.
Collapse
Affiliation(s)
- S Selvaraju
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
22
|
Fong D, Bisson M, Laberge G, McManus S, Grenier G, Faucheux N, Roux S. Bone morphogenetic protein-9 activates Smad and ERK pathways and supports human osteoclast function and survival in vitro. Cell Signal 2013; 25:717-28. [PMID: 23313128 DOI: 10.1016/j.cellsig.2012.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/25/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022]
Abstract
BMP-9 is a potent osteogenic factor; however, its effects on osteoclasts, the bone-resorbing cells, remain unknown. To determine the effects of BMP-9 on osteoclast formation, activity and survival, we used human cord blood monocytes as osteoclast precursors that form multinucleated osteoclasts in the presence of RANKL and M-CSF in long-term cultures. BMP-9 did not affect osteoclast formation, but adding BMP-9 at the end of the culture period significantly increased bone resorption compared to untreated cultures, and reduced both the rate of apoptosis and caspase-9 activity. BMP-9 also significantly downregulated the expression of pro-apoptotic Bid, but only after RANKL and M-CSF, which are both osteoclast survival factors, had been eliminated from the culture medium. To investigate the mechanisms involved in the effects of BMP-9, we first showed that osteoclasts expressed some BMP receptors, including BMPR-IA, BMPR-IB, ALK1, and BMPR-II. We also found that BMP-9 was able to induce the phosphorylation of Smad-1/5/8 and ERK 1/2 proteins, but did not induce p38 phosphorylation. Finally, knocking down the BMPR-II receptor abrogated the BMP-9-induced ERK-signaling, as well as the increase in bone resorption. In conclusion, these results show for the first time that BMP-9 directly affects human osteoclasts, enhancing bone resorption and protecting osteoclasts against apoptosis. BMP-9 signaling in human osteoclasts involves the canonical Smad-1/5/8 pathway, and the ERK pathway.
Collapse
Affiliation(s)
- David Fong
- Division of Rheumatology, Faculty of Medicine, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Liang D, Yang M, Guo B, Cao J, Yang L, Guo X, Li Y, Gao Z. Zinc inhibits H(2)O(2)-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res 2012; 148:420-9. [PMID: 22434380 DOI: 10.1007/s12011-012-9387-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
Zinc has been shown to increase bone mass and promote bone cell proliferation and differentiation. We, therefore, hypothesized that zinc might be cytoprotective for bone cells during oxidative stress. The cells were divided into H(2)O(2), zinc and zinc+H(2)O(2) groups. In the present study, zinc was found to inhibit H(2)O(2)-induced apoptosis in MC3T3-E1 cells, as shown by analysis of Annexin V/PI double staining. Western blot data showed that in zinc+H(2)O(2)-treated cells, zinc decreased the levels of AIF, Bax and active caspase-9 and -3, which are pro-apoptotic factors. And zinc inhibited release of cytochrome c from mitochondria to cytosol in zinc+H(2)O(2)-treated cells. Further investigation shows that protection is via activation of PI3K/Akt/mTor and MAPK /ERK pathways and inhibition of MAPK/P38 and MAPK/JNK pathways. Protecting osteoblast cells from oxidative damage presents a potential application in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dan Liang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Caron MMJ, Emans PJ, Surtel DAM, Cremers A, Voncken JW, Welting TJM, van Rhijn LW. Activation of NF-κB/p65 facilitates early chondrogenic differentiation during endochondral ossification. PLoS One 2012; 7:e33467. [PMID: 22428055 PMCID: PMC3299787 DOI: 10.1371/journal.pone.0033467] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/09/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND NF-κB/p65 has been reported to be involved in regulation of chondrogenic differentiation. However, its function in relation to key chondrogenic factor Sox9 and onset of chondrogenesis during endochondral ossification is poorly understood. We hypothesized that the early onset of chondrogenic differentiation is initiated by transient NF-κB/p65 signaling. METHODOLOGY/PRINCIPAL FINDINGS The role of NF-κB/p65 in early chondrogenesis was investigated in different in vitro, ex vivo and in vivo endochondral models: ATDC5 cells, hBMSCs, chicken periosteal explants and growth plates of 6 weeks old mice. NF-κB/p65 activation was manipulated using pharmacological inhibitors, RNAi and activating agents. Gene expression and protein expression analysis, and (immuno)histochemical stainings were employed to determine the role of NF-κB/p65 in the chondrogenic phase of endochondral development. Our data show that chondrogenic differentiation is facilitated by early transient activation of NF-κB/p65. NF-κB/p65-mediated signaling determines early expression of Sox9 and facilitates the subsequent chondrogenic differentiation programming by signaling through key chondrogenic pathways. CONCLUSIONS/SIGNIFICANCE The presented data demonstrate that NF-κB/p65 signaling, as well as its intensity and timing, represents one of the transcriptional regulatory mechanisms of the chondrogenic developmental program of chondroprogenitor cells during endochondral ossification. Importantly, these results provide novel possibilities to improve the success of cartilage and bone regenerative techniques.
Collapse
Affiliation(s)
- Marjolein M. J. Caron
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Pieter J. Emans
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Don A. M. Surtel
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lodewijk W. van Rhijn
- Department of Orthopaedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
25
|
Park J, Bauer S, Pittrof A, Killian MS, Schmuki P, von der Mark K. Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:98-107. [PMID: 22095845 DOI: 10.1002/smll.201100790] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/08/2011] [Indexed: 05/18/2023]
Abstract
The aim of this study is to elucidate whether combined environmental signals provided by nanoscale topography and by growth factors control cell behavior of mesenchymal stem cells (MSCs) in a synergistic or simply additive manner. Chondrogenic and osteogenic differentiation of MSCs is studied on vertically aligned TiO(2) nanotubes of size 15 and 100 nm with and without immobilized bone morphogenetic protein-2 (BMP-2). Although BMP-2 coating stimulates both chondrogenic and osteogenic differentiation of MSCs, the response strongly depends on the surface nanoscale geometry of the BMP-2-coated nanotubes. Chondrogenic differentiation is strongly supported on 100 nm BMP-2-coated nanotubes, but not on 15 nm nanotubes, which induce spreading and de-differentiation of chondrocytes. A similar response is observed with primary chondrocytes, which maintain their chondrogenic phenotype on BMP-2-coated 100 nm nanotubes, but de-differentiate on 15 nm nanotubes. In contrast, osteogenic differentiation is greatly enhanced on 15 nm but not on 100 nm BMP-2-coated nanotubes as shown previously. Furthermore, covalent immobilization of BMP-2 rescues MSCs from apoptosis occurring on uncoated 100 nm TiO(2) nanotube surfaces. Thus, combined signals provided by BMP-2 immobilized to a defined lateral nanoscale spacing geometry seem to contain environmental cues that are able to modulate a lineage-specific decision of MSC differentiation and cell survival in a synergistic manner.
Collapse
Affiliation(s)
- Jung Park
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Glueckstrasse 5, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Kang MH, Oh SC, Lee HJ, Kang HN, Kim JL, Kim JS, Yoo YA. Metastatic function of BMP-2 in gastric cancer cells: the role of PI3K/AKT, MAPK, the NF-κB pathway, and MMP-9 expression. Exp Cell Res 2011; 317:1746-62. [PMID: 21570392 DOI: 10.1016/j.yexcr.2011.04.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/05/2011] [Accepted: 04/13/2011] [Indexed: 01/12/2023]
Abstract
Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of IκBα and the nuclear translocation/activation of NF-κB. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-κB. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-κB inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-κB and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.
Collapse
Affiliation(s)
- Myoung Hee Kang
- Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang Q, Huang C, Xue M, Zhang X. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone 2011; 48:524-32. [PMID: 21056707 PMCID: PMC3039040 DOI: 10.1016/j.bone.2010.10.178] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022]
Abstract
Bone morphogenic protein 2 (BMP-2) plays a key role in skeletal development, repair and regeneration. To gain a better understanding of the role of BMP-2 in periosteum-mediated bone repair, we deleted BMP-2 postnatally at the initiation stage of healing utilizing a Tamoxifen-inducible CreER mouse model. To mark the mutant cells, we further generated a BMP-2(f/f); CreER; RosaR mouse model that enabled the activation of a LacZ reporter gene upon treatment of Tamoxifen. We demonstrated that deletion of BMP-2 at the onset of healing abolished periosteum-mediated bone/cartilage callus formation. In a chimeric periosteal callus with cells derived from both wild type and the mutant, over 90% of the mutant mesenchymal progenitors remained undifferentiated. Within differentiated bone and cartilage tissues, only a few cells could be identified as mutants. Using a bone graft transplantation approach, we further showed that transplantation of a mutant bone graft into a wild type host failed to rescue the deficient differentiation of the mutant cells at day 10 post-grafting. These data strongly suggest that the endogenous expression of BMP-2 plays a critical role in osteogenic and chondrogenic differentiation of periosteal progenitors during repair. To determine whether BMP-2 deficient cells remained responsive to exogenous BMP-2, we isolated periosteal mesenchymal progenitors from BMP-2 deficient bone autografts. The isolated cells demonstrated a 90% reduction of endogenous BMP-2 expression, accompanied by significant decrease in cellular proliferation and a near blockade of osteogenic differentiation. The addition of exogenous BMP-2 partially rescued impaired proliferation and further enhanced osteogenic differentiation in a dose dependent manner. Taken together, our data show that the initiation of the cortical bone repair in vivo is controlled by endogenous BMP-2. Future studies are necessary to determine the mechanisms by which the BMP-2 pathway is activated in periosteal progenitor cells at the onset of cortical bone repair.
Collapse
Affiliation(s)
- Qun Wang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY
| | - Chunlan Huang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY
| | - Ming Xue
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
28
|
MENG Q, LONG X, DENG M, CAI H, LI J. The expressions of IGF-1, BMP-2 and TGF-β1 in cartilage of condylar hyperplasia. J Oral Rehabil 2010; 38:34-40. [DOI: 10.1111/j.1365-2842.2010.02125.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
The canonical BMP signaling pathway is involved in human monocyte-derived dendritic cell maturation. Immunol Cell Biol 2010; 89:610-8. [PMID: 21102536 DOI: 10.1038/icb.2010.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-β superfamily, are multifunctional polypeptides regulating a broad spectrum of functions in embryonic and adult tissues. Recent reports have demonstrated that BMPs regulate the survival, proliferation and differentiation of several cell types in the immune system. In this study, we investigate the effects of BMP signaling activation on the capacity of human dendritic cells (DCs) to stimulate immune responses. Human DCs express type I and type II BMP receptors (BMPRIA, BMPRIB, type IA activin receptor, BMPRII) and BMP signal transduction molecules (Smad1, 5, and 8, as well as Smad4). On BMP stimulation, Id1-3 (inhibitor of differentiation 1-3/DNA binding) mRNA expression is upregulated and this effect can be blocked with the inhibitor dorsomorphin, showing that the canonical BMP signal transduction pathway is functionally active in DCs. BMP signaling activation promotes the phenotypic maturation of human DCs by increasing the expression of co-stimulatory molecules and also CD83, programmed cell death ligand 1 (PD-L1) and PD-L2, and stimulates cytokine secretion, mainly interleukin-8 and tumor necrosis factor-α. Accordingly, BMP-treated DCs exhibit an enhanced T-cell stimulatory capacity. BMP signaling also enhances the survival of human DCs increasing the Bcl-2/Bax ratio. Finally, the expression of Runx transcription factors is increased in mature DCs, and the mRNA levels of Runx1-3 are upregulated in response to BMP stimulation, indicating that Runx transcription factor family may mediate the effects of BMP signaling in human DC maturation.
Collapse
|
30
|
Ohta S, Mansour SL, Schoenwolf GC. BMP/SMAD signaling regulates the cell behaviors that drive the initial dorsal-specific regional morphogenesis of the otocyst. Dev Biol 2010; 347:369-81. [PMID: 20837004 PMCID: PMC2962452 DOI: 10.1016/j.ydbio.2010.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 12/20/2022]
Abstract
During development of the otocyst, regional morphogenesis establishes a dorsal vestibular chamber and a ventral auditory chamber, which collectively constitute the membranous labyrinth of the inner ear. We identified the earliest morphogenetic event heralding the formation of the vestibular chamber, a rapid thinning and expansion of the dorsolateral wall of the otocyst, and showed that this process is generated by changes in otocyst cell shape from columnar to squamous, as opposed to changes in other cell behaviors, such as localized changes in cell proliferation or cell death. Moreover, we showed that thinning and expansion of the dorsolateral otocyst is regulated by BMP/SMAD signaling, which is both sufficient and necessary for localized thinning and expansion. Finally, we showed that BMP/SMAD signaling causes fragmentation of E-cadherin in the dorsolateral otocyst, occurring concomitantly with cell shape change, suggesting that BMP/SMAD signaling regulates cell-cell adhesion during the initial morphogenesis of the otocyst epithelium. Collectively, our results show that BMP signaling via SMADs regulates the cell behaviors that drive the initial dorsal-specific morphogenesis of the otocyst, providing new information about how regional morphogenesis of a complex organ rudiment, the developing membranous labyrinth, is initiated.
Collapse
Affiliation(s)
- Sho Ohta
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Suzanne L. Mansour
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Gary C. Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
31
|
Bone morphogenetic proteins: a critical review. Cell Signal 2010; 23:609-20. [PMID: 20959140 DOI: 10.1016/j.cellsig.2010.10.003] [Citation(s) in RCA: 512] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 12/14/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are potent growth factors belonging to the Transforming Growth Factor Beta superfamily. To date over 20 members have been identified in humans with varying functions during processes such as embryogenesis, skeletal formation, hematopoiesis and neurogenesis. Though their functions have been identified, less is known regarding levels of regulation at the extracellular matrix, membrane surface, and receptor activation. Further, current models of activation lack the integration of these regulatory mechanisms. This review focuses on the different levels of regulation, ranging from the release of BMPs into the extracellular components to receptor activation for different BMPs. It also highlights areas in research that is lacking or contradictory.
Collapse
|
32
|
Chen X, Liao J, Lu Y, Duan X, Sun W. Activation of the PI3K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1. Pathol Oncol Res 2010; 17:257-61. [PMID: 20848249 DOI: 10.1007/s12253-010-9307-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) signaling has an emerging role in pancreatic cancer. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in pancreatic cancer. In our studies, we have focused on bone morphogenetic protein 2(BMP-2) because it induces an epithelial to mesenchymal transition (EMT) and accelerates invasion in the human pancreatic cancer cell line Panc-1. It has been reported that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates invasion of gastric and colon cancer cells, which is unrevealed in pancreatic cancer cells. The objective of our study was to investigate whether BMP-2 mediated invasion might pass through the PI3K/Akt pathway. Our results show that expression of phosphorylation of Akt was increased by treatment with BMP-2, but not Noggin, a BMP-2 antagonist. Then pretreatment of Panc-1 cells with LY294002, an inhibitor of the PI3K/AKT pathway, significantly inhibited BMP-2-induced EMT and invasiveness. The data suggest that BMP-2 accelerates invasion of panc-1 cells via the PI3K/AKT pathway in panc-1 cells, which gives clues to searching new therapy targets in advanced pancreatic cancer.
Collapse
Affiliation(s)
- Xiong Chen
- Department of General Surgery, XiangYa Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Heger J, Schiegnitz E, von Waldthausen D, Anwar MM, Piper HM, Euler G. Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes. J Cell Physiol 2010; 224:120-6. [PMID: 20232299 DOI: 10.1002/jcp.22102] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growth differentiation factor 15 (GDF15) is induced during heart failure development, and may influence different processes in cardiac remodeling. While its anti-apoptotic action under conditions of ischemia-reperfusion have been shown, it remained unclear if this is a broadly protective effect applicable to other apoptotic stimuli. Furthermore, effects on cardiac hypertrophy remained obscure. Therefore, we investigated the effects of GDF15 on induction of hypertrophy and apoptosis in ventricular cardiomyocytes. GDF15 (3 ng/ml) enhanced hypertrophic growth of cardiomyocytes as determined by an increase in cell size by 27 +/- 5% and rate of protein synthesis by 47 +/- 15%. In addition, a time and dose-dependent increase in SMAD-binding affinity was found, as well as enhanced phosphorylation of R-SMAD1. Inhibition of SMADs by transformation of cardiomyocytes with SMAD-decoy oligonucleotides abolished the hypertrophic growth effect. Specific inhibitors of PI3K (10 microM LY290042 or 10 nM wortmannin) or ERK (10 microM PD98059) also blocked GDF15-induced hypertrophy and SMAD activation. Apoptosis induction by three different agents, 100 nM angiotensin II, 1 ng/ml TGFbeta(1), or the NO-donor SNAP (100 microM) was blocked by addition of GDF15 (3 ng/ml). Scavenging of SMADs by transformation of cardiomyocytes with SMAD-decoy oligonucleotides abolished the anti-apoptotic effect of GDF15. In conclusion, GDF15 protects ventricular cardiomyocytes against different apoptotic stimuli and enhances hypertrophic growth. Hypertrophic signaling is thereby mediated via the kinases PI3K and ERK and the transcription factor R-SMAD1. Thus, GDF15 may influence cardiac remodeling via two different mechanisms, apoptosis protection and induction of hypertrophy.
Collapse
Affiliation(s)
- J Heger
- Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Felin JE, Mayo JL, Loos TJ, Jensen JD, Sperry DK, Gaufin SL, Meinhart CA, Moss JB, Bridgewater LC. Nuclear variants of bone morphogenetic proteins. BMC Cell Biol 2010; 11:20. [PMID: 20230640 PMCID: PMC2850327 DOI: 10.1186/1471-2121-11-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/15/2010] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) contribute to many different aspects of development including mesoderm formation, heart development, neurogenesis, skeletal development, and axis formation. They have previously been recognized only as secreted growth factors, but the present study detected Bmp2, Bmp4, and Gdf5/CDMP1 in the nuclei of cultured cells using immunocytochemistry and immunoblotting of nuclear extracts. RESULTS In all three proteins, a bipartite nuclear localization signal (NLS) was found to overlap the site at which the proproteins are cleaved to release the mature growth factors from the propeptides. Mutational analyses indicated that the nuclear variants of these three proteins are produced by initiating translation from downstream alternative start codons. The resulting proteins lack N-terminal signal peptides and are therefore translated in the cytoplasm rather than the endoplasmic reticulum, thus avoiding proteolytic processing in the secretory pathway. Instead, the uncleaved proteins (designated nBmp2, nBmp4, and nGdf5) containing the intact NLSs are translocated to the nucleus. Immunostaining of endogenous nBmp2 in cultured cells demonstrated that the amount of nBmp2 as well as its nuclear/cytoplasmic distribution differs between cells that are in M-phase versus other phases of the cell cycle. CONCLUSIONS The observation that nBmp2 localization varies throughout the cell cycle, as well as the conservation of a nuclear localization mechanism among three different BMP family members, suggests that these novel nuclear variants of BMP family proteins play an important functional role in the cell.
Collapse
Affiliation(s)
- Jenny E Felin
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jeong BC, Kim HJ, Bae IH, Lee KN, Lee KY, Oh WM, Kim SH, Kang IC, Lee SE, Koh GY, Kim KK, Koh JT. COMP-Ang1, a chimeric form of Angiopoietin 1, enhances BMP2-induced osteoblast differentiation and bone formation. Bone 2010; 46:479-86. [PMID: 19782780 DOI: 10.1016/j.bone.2009.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/09/2009] [Accepted: 09/17/2009] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Angiogenesis is closely associated with bone formation, especially endochondral ossification. Angiopoietin 1 (Ang1) is a specific growth factor functioning to generate a stable and matured vasculature through the Tie2 receptor/PI3K/AKT pathway. Recently cartilage oligomeric matrix protein (COMP)-Ang1, an Ang1 variant which is more potent than native Ang1 in phosphorylating Tie2 receptor and AKT, was developed. This study was designed to examine the effects of angiogenic COMP-Ang1 on BMP2-induced osteoblast differentiation and bone formation. METHODS Expression of endogenous Ang-1 and its binding receptor Tie 2 mRNA was examined in osteoblast-like cells and primary mouse calvarial cells by RT-PCR analysis, and was also monitored during osteoblast differentiation induced by BMP-2 and/or ascorbic acid and beta-glycerophosphate. Effects of COMP-Ang-1 on osteoblast differentiation and mineralization were evaluated by alkaline phosphatase (ALP) activity and osteocalcin (OC) production, and Alizarin red stain. For a molecular mechanism, Western blot and OG2 and 6xOSE promoter assays were done. For in vivo evaluation, adenoviral (Ad) vectors containing COMP-Ang-1 or BMP-2 gene were administered into thigh muscle of mice, and after 2 weeks bone formation was analyzed by micro-computed tomography and histology. Angiogenic event of COMP-Ang1 was confirmed by immunofluorescence analysis with anti-CD31 antibody. RESULTS Expression of Tie2 receptor was significantly increased in the course of osteoblast differentiation. Treatment or overexpression of COMP-Ang1 enhanced BMP2-induced ALP activity, OC production, and mineral deposition in a dose-dependent manner. In addition, COMP-Ang1 synergistically increased OG2 and 6xOSE promoter activities of BMP2, and sustained p38, Smad and AKT phosphorylation of BMP2. Notably, in vivo intramuscular injection of COMP-Ang1 dose-dependently enhanced BMP2-induced ectopic bone formation with increases in CD31 reactivity. CONCLUSIONS These results suggest that COMP-Ang1 synergistically enhanced osteoblast differentiation and bone formation through potentiating BMP2 signaling pathways and angiogenesis. Combination of BMP2 and COMP-Ang1 should be clinically useful for therapeutic application to fracture and destructive bone diseases.
Collapse
Affiliation(s)
- Byung-Chul Jeong
- Dental Science Research Institute, BK21 Project, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Price J, Zaidi AK, Bohensky J, Srinivas V, Shapiro IM, Ali H. Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress. J Cell Physiol 2010; 222:502-8. [PMID: 20020442 DOI: 10.1002/jcp.22001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The unfolded protein response (UPR) is an evolutionary conserved adaptive mechanism that permits cells to react and adjust to conditions of endoplasmic reticulum (ER) stress. In addition to UPR, phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal regulated kinase (ERK) signaling pathways protect a variety of cells from ER stress. The goal of the present study was to assess the susceptibility of chondrocytes to ER stress and to determine the signaling pathways involved in their survival. We found that low concentration of thapsigargin (10 nM) reduced the viability of a chondrocyte cell line (N1511 cells) and that these cells were approximately 100 fold more susceptible to thapsigargin-induced stress than fibroblasts. Interestingly, in thapsigargin and tunicamycin-stressed chondrocytes induction of the proapoptotic transcription factor CHOP preceded that of the anti-apoptotic BiP by 12 h. Although both of these agents caused sustained Akt and ERK phosphorylation; inhibition of Akt phosphorylation sensitized chondrocytes to ER stress, while blocking ERK signaling by U0126 had no effect. We found that Akt-1, but not Akt-2 or Akt-3, is predominantly expressed in N1511 chondrocytes. Furthermore, siRNA-mediated knockdown of Akt-1 sensitized chondrocytes to ER stress, which was associated with increased capsase-3 activity and decreased Bcl(XL) expression. These data suggest that under condition of ER stress, multiple signaling processes regulate chondrocyte's survival-death decisions. Thus, rapid upregulation of CHOP likely contributes to chondrocyte death, while Akt-1-mediated inactivation of caspase 3 and induction of BclXL promotes survival.
Collapse
Affiliation(s)
- Jeremy Price
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bragdon B, Thinakaran S, Bonor J, Underhill TM, Petersen NO, Nohe A. FRET reveals novel protein-receptor interaction of bone morphogenetic proteins receptors and adaptor protein 2 at the cell surface. Biophys J 2009; 97:1428-35. [PMID: 19720031 DOI: 10.1016/j.bpj.2009.05.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/17/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are involved with a wide range of processes including apoptosis, differentiation, and proliferation. Several different pathways such as Smad, p38, and PI3/Akt are activated by BMPs. Signaling is transduced by BMP receptors (BMPRs) of type I and type II that are serine/threonine kinase receptors. BMPRs shuttle between membrane domains such as caveolae enriched with caveolin-1 beta-isoform and caveolae of the caveolin-1 alpha/beta-isoforms. It is hypothesized that there are other membrane domains to which the receptors localize. We used immunoprecipitation, Western blots, image cross-correlation spectroscopy, and fluorescence resonance energy transfer to investigate the interaction of BMPRs with proteins in clathrin-coated pits (CCPs). Our data indicate that these domains are associated with at least two of the BMPRs: BRIa and BRII. For the first time, to our knowledge, we showed what we believe are specific interactions between BRIa and BRII with a key component of CCPs, adaptor protein 2. Further, disruption of CCPs resulted in increased BRIa aggregation at the cell surface and activation of the BMP pathway even in the absence of BMP2. Therefore, CCPs seem to function as a negative regulatory membrane domain for BMP pathway activation.
Collapse
Affiliation(s)
- Beth Bragdon
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | | | | | | | | | |
Collapse
|
38
|
Liu C, Tian G, Tu Y, Fu J, Lan C, Wu N. Expression pattern and clinical prognostic relevance of bone morphogenetic protein-2 in human gliomas. Jpn J Clin Oncol 2009; 39:625-31. [PMID: 19797419 DOI: 10.1093/jjco/hyp094] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Bone morphogenetic protein-2 (BMP-2) is normally expressed in the embryo promoting the development of several organs. Aberrant expression of BMP-2 occurs in various tumors. However, a correlation between BMP-2 expression in human gliomas and patients' prognosis has not been reported. To address this question, this study was to investigate the BMP-2 expression pattern in human gliomas and to evaluate its prognostic relevance. METHODS We analyzed the expression of the BMP-2 antigen in a series of 98 gliomas of various grade and histology by immunohistochemistry on paraffin-embedded sections. Then, the correlation of BMP-2 expression pattern with clinical-pathological features of patients and its prognostic relevance were determined. RESULTS Immunohistochemical analysis with anti-BMP-2 antibody revealed dense and spotty staining in the tumor cells and its expression levels became significantly higher as the gliomas' grade advanced (P < 0.001). The median survival of patients with intensively positive BMP-2 expression was significantly shorter than that with negative expression (318 vs. 1197 days, P < 0.0001). The Kaplan-Meier survival curves showed that the BMP-2 expression was not only a significant predictor of survival in high-grade gliomas (grade IV, P = 0.02), but also in lower-grade gliomas (grades II and III, P < 0.001). CONCLUSIONS These results indicate that BMP-2 is a highly sensitive marker for gliomas prognosis and suggest that the expression level of BMP-2 may be a potent tool for the clinical prognosis of gliomas patients.
Collapse
Affiliation(s)
- Ce Liu
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Kang MH, Kim JS, Seo JE, Oh SC, Yoo YA. BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp Cell Res 2009; 316:24-37. [PMID: 19835871 DOI: 10.1016/j.yexcr.2009.10.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/11/2009] [Accepted: 10/08/2009] [Indexed: 11/30/2022]
Abstract
Up-regulation of bone morphogenetic proteins (BMPs) and their receptors by tumor is an important hallmark in cancer progression, as it contributes through autocrine and paracrine mechanisms to tumor development, invasion, and metastasis. Generally, increased motility and invasion are positively correlated with the epithelial-mesenchymal transition (EMT). The purpose of the present study was to determine whether BMP-2 signaling to induce gastric cancer cells to undergo EMT-mediated invasion might pass through the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Herein we showed that gastric cancer cell lines express all the components of BMP-2 signaling, albeit to different extents. Moreover, an increased concentration of BMP-2 strongly enhanced motility and invasiveness in gastric cancer cells, whereas no increase was observed in cells treated with either Noggin (a BMP-2 inhibitor) or BMP-2 blocking antibodies. The stimulation of BMP-2 in gastric cancer cells induces a full EMT characterized by Snail induction, E-cadherin delocalization and down-regulation, and up-regulation of mesenchymal and invasiveness markers. Furthermore, blockade of BMP-2 signaling by Noggin or BMP-2 blocking antibodies also restored these changes in EMT markers. In addition, phosphorylation of Akt was also enhanced by treatment with BMP-2, but not Noggin or BMP-2 blocking antibodies. Pretreatment of gastric cancer cells with PI-3 kinase/Akt kinase inhibitor (kinase-dead Akt [DN-Akt], Akt siRNA, or LY294002) significantly inhibited BMP-2-induced EMT and invasiveness. Overall, our studies suggest that BMP-2 promotes motility and invasion of gastric cancer cells by activating PI-3 kinase/Akt and that targeting of this signaling pathway may provide therapeutic opportunities in preventing metastasis mediated by BMP-2.
Collapse
Affiliation(s)
- Myoung Hee Kang
- Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Korea
| | | | | | | | | |
Collapse
|
40
|
Liu Z, Shen J, Pu K, Katus HA, Plöger F, Tiefenbacher CP, Chen X, Braun T. GDF5 and BMP2 inhibit apoptosis via activation of BMPR2 and subsequent stabilization of XIAP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1819-27. [PMID: 19782107 DOI: 10.1016/j.bbamcr.2009.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/02/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
GDF5 and BMP2, members of the TGF-beta superfamily of growth factors, are known to regulate apoptosis in different cell types either positively or negatively. We wanted to investigate the effects of GDF5 and BMP2 on vascular smooth muscle cells and mouse embryonic fibroblasts and disclose the mechanism by which GDF5 and BMP2 might exert anti-apoptotic effects. The effect of GDF5 and BMP2 on proliferation and/or programmed cells death was assessed in isolated human vascular smooth muscle cells and mouse embryonic fibroblasts. We demonstrate that GDF5 and BMP2 prevent apoptosis induced by serum starvation in mouse embryonic fibroblasts but not in smooth muscle cells via the BMP receptor 2 (BMPR2), which is often mutated in hereditary cases of primary pulmonary hypertension. GDF5 and BMP2 stimulate the interaction of BMPR-2 with XIAP thereby reducing the ubiquitination of XIAP, which results in enhanced protein stability. The increased concentration of XIAP counteracts apoptosis by binding and inactivating activated caspases. We conclude that the inhibition of apoptosis in mouse embryonic fibroblasts by BMP2 and GDF5 does not depend on more complex signal transduction pathways such as smad and MAPK signaling but on direct stabilization of XIAP by BMPR2.
Collapse
Affiliation(s)
- Zhipei Liu
- Department of Cardiac Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zouvelou V, Luder HU, Mitsiadis TA, Graf D. Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:361-74. [DOI: 10.1002/jez.b.21262] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Le Page C, Puiffe ML, Meunier L, Zietarska M, de Ladurantaye M, Tonin PN, Provencher D, Mes-Masson AM. BMP-2 signaling in ovarian cancer and its association with poor prognosis. J Ovarian Res 2009; 2:4. [PMID: 19366455 PMCID: PMC2674440 DOI: 10.1186/1757-2215-2-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 04/14/2009] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND We previously observed the over-expression of BMP-2 in primary cultures of epithelial ovarian cancer (EOC) cells as compared to normal epithelial cells based on Affymetrix microarray profiling 1. Here we investigate the effect of BMP-2 on several parameters of ovarian cancer tumorigenesis using the TOV-2223, TOV-1946 and TOV-112D EOC cell lines. METHODS We treated each EOC cell line with recombinant BMP-2 and assayed various parameters associated with tumorigenesis. More specifically, cell signaling events induced by BMP-2 treatment were investigated by western-blot using anti-phosphospecific antibodies. Induction of Id1, Snail and Smad6 mRNA expression was investigated by real time RT-PCR. The ability of cells to migrate was tested using the scratch assay. Cell-cell adhesion was analyzed by the ability of cells to form spheroids. We also investigated BMP-2 expression in tissue samples from a series of EOC patients. RESULTS Treatment of these cell lines with recombinant BMP-2 induced a rapid phosphorylation of Smad1/5/8 and Erk MAPKs. Increased expression of Id1, Smad6 and Snail mRNAs was also observed. Only in the TOV-2223 cell line were these signaling events accompanied by an alteration in cell proliferation. We also observed that BMP-2 efficiently increased the motility of all three cell lines. In contrast, BMP-2 treatment decreased the ability of TOV-1946 and TOV-112D cell lines to form spheroids indicating an inhibition of cell-cell adhesion. The expression of BMP-2 in tumor tissues from patients was inversely correlated with survival. CONCLUSION These results suggest that EOC cell secretion of BMP-2 in the tumor environment contributes to a modification of tumor cell behavior through a change in motility and adherence. We also show that BMP-2 expression in tumor tissues is associated with a poorer prognosis for ovarian cancer patients.
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR/CHUM)/Institut du cancer de Montréal, Montréal, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
[Roles of TGF-b superfamily in the genesis, development and maintenance of cartilage]. YI CHUAN = HEREDITAS 2009; 30:953-9. [PMID: 18779142 DOI: 10.3724/sp.j.1005.2008.00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transforming growth factor beta (TGF-beta) superfamily is composed of TGF-beta subfamily and bone morphogenetic protein (BMP) subfamily. The ligands, ligand antagonists, receptors and intracellular transductors that engage in the TGF-beta superfamily signaling pathway play their unique roles during endochondral ossification via regulating the lineage differentiation, proliferation, maturation, apoptosis and mineralization of chondrocytes. BMP signaling dominates chondro-genesis through initiating the chondrocytic commitment of mesenchymal cells and maintaining the chondrocytic phenotype. During the development of growth plate, BMP signaling promotes the maturation of chondrocytes to facilitate ossification, whereas TGF-beta signaling inhibits the hypertrophic differentiation to preserve adequate chondrocytes within the growth plate. Both TGF-beta signaling and BMP signaling are indispensable for the maintenance and repair of articular cartilage. Therefore, it indicates that TGF-beta superfamily may function essentially all throughout the development of skeletons.
Collapse
|
44
|
Wang JY. Effects of Feiyanning Decoction on gene expression of nuclear factor-κB activated by tumor necrosis factor-α in lung adenocarcinoma cell line. ACTA ACUST UNITED AC 2009; 7:249-54. [DOI: 10.3736/jcim20090310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
de Jesus Perez VA, Alastalo TP, Wu JC, Axelrod JD, Cooke JP, Amieva M, Rabinovitch M. Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways. ACTA ACUST UNITED AC 2009; 184:83-99. [PMID: 19139264 PMCID: PMC2615088 DOI: 10.1083/jcb.200806049] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in bone morphogenetic protein (BMP) receptor II (BMPRII) are associated with pulmonary artery endothelial cell (PAEC) apoptosis and the loss of small vessels seen in idiopathic pulmonary arterial hypertension. Given the low penetrance of BMPRII mutations, abnormalities in other converging signaling pathways may be necessary for disease development. We hypothesized that BMPRII supports normal PAEC function by recruiting Wingless (Wnt) signaling pathways to promote proliferation, survival, and motility. In this study, we report that BMP-2, via BMPRII-mediated inhibition of GSK3-beta, induces beta-catenin (beta-C) accumulation and transcriptional activity necessary for PAEC survival and proliferation. At the same time, BMP-2 mediates phosphorylated Smad1 (pSmad1) or, with loss of BMPRII, pSmad3-dependent recruitment of Disheveled (Dvl) to promote RhoA-Rac1 signaling necessary for motility. Finally, using an angiogenesis assay in severe combined immunodeficient mice, we demonstrate that both beta-C- and Dvl-mediated RhoA-Rac1 activation are necessary for vascular growth in vivo. These findings suggest that the recruitment of both canonical and noncanonical Wnt pathways is required in BMP-2-mediated angiogenesis.
Collapse
|
46
|
Fong YC, Li TM, Wu CM, Hsu SF, Kao ST, Chen RJ, Lin CC, Liu SC, Wu CL, Tang CH. BMP-2 increases migration of human chondrosarcoma cells via PI3K/Akt pathway. J Cell Physiol 2008; 217:846-55. [DOI: 10.1002/jcp.21568] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Wu S, Fadoju D, Rezvani G, De Luca F. Stimulatory effects of insulin-like growth factor-I on growth plate chondrogenesis are mediated by nuclear factor-kappaB p65. J Biol Chem 2008; 283:34037-44. [PMID: 18922796 DOI: 10.1074/jbc.m803754200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) is an important regulator of endochondral ossification. However, little is known about the signaling pathways activated by IGF-I in growth plate chondrocytes. We have previously shown that NF-kappaB-p65 facilitates growth plate chondrogenesis. In this study, we first cultured rat metatarsal bones with IGF-I and/or pyrrolidine dithiocarbamate (PDTC), a known NF-kappaB inhibitor. The IGF-I-mediated stimulation of metatarsal growth and growth plate chondrogenesis was neutralized by PDTC. In rat growth plate chondrocytes, IGF-I induced NF-kappaB-p65 nuclear translocation. The inhibition of NF-kappaB-p65 expression and activity (by p65 short interfering RNA and PDTC, respectively) in chondrocytes reversed the IGF-I-mediated induction of cell proliferation and differentiation and the IGF-I-mediated prevention of cell apoptosis. Moreover, the inhibition of the phosphatidylinositol 3-kinase and Akt abolished the effects of IGF-I on NF-kappaB activation. In conclusion, our findings indicate that IGF-I stimulates growth plate chondrogenesis by activating NF-kappaB-p65 in chondrocytes.
Collapse
Affiliation(s)
- Shufang Wu
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134, USA
| | | | | | | |
Collapse
|
48
|
Hamamura K, Zhang P, Yokota H. IGF2-driven PI3 kinase and TGFbeta signaling pathways in chondrogenesis. Cell Biol Int 2008; 32:1238-46. [PMID: 18675921 PMCID: PMC2586935 DOI: 10.1016/j.cellbi.2008.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/23/2008] [Accepted: 07/07/2008] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor-2 (IGF2) is essential for fetal development as well as maintenance of adult organs such as brain and liver. Although genetic polymorphisms of IGF2 are linked to cytoskeletal variations little is known about the mechanisms of IGF2 action in proliferation and differentiation of chondrocytes for skeletal growth. A genome-wide mRNA expression analysis using C28/I2 chondrocyte cells studied potential signaling pathways underlying the responses to IGF2. Microarray data predicted involvement of the phosphatidylinositol 3-kinase (PI3K) and transforming growth factor beta (TGFbeta) signaling pathways. Protein analyses revealed IGF2 administration activated phosphorylation of Akt and GSK3beta in the PI3K pathway. LY294002 (selective inhibitor of PI3K) blocked Akt phosphorylation and abolished IGF2-driven elevation of the mRNA levels of the proteoglycans, Aggrecan and Versican. LY294002 did not suppress upregulation of TGFbeta mRNA induced by IGF2, so IGF2 activates PI3K and TGFbeta pathways. IGF2-driven transcriptional activation of proteoglycan genes such as Aggrecan and Versican is mediated by the PI3K pathway.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Departments of Biomedical Engineering, and Anatomy & Cell Biology Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Ping Zhang
- Departments of Biomedical Engineering, and Anatomy & Cell Biology Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hiroki Yokota
- Departments of Biomedical Engineering, and Anatomy & Cell Biology Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
49
|
Degeorge BR, Rosenberg M, Eckstein V, Gao E, Herzog N, Katus HA, Koch WJ, Frey N, Most P. BMP-2 and FGF-2 synergistically facilitate adoption of a cardiac phenotype in somatic bone marrow c-kit+/Sca-1+ stem cells. Clin Transl Sci 2008; 1:116-25. [PMID: 20443832 PMCID: PMC2863128 DOI: 10.1111/j.1752-8062.2008.00034.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to explore the effect of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2)- paracrine factors implicated in both cardiac embryogenesis and cardiac repair following myocardial infarction (MI)-on murine bone marrow stem cell (mBMSC) differentiation in an ex vivo cardiac microenvironment. For this purpose, green fluorescent protein (GFP) expressing hematopoietic lineage negative (lin-) c-kit ligand (c-kit) and stem cell antigen-1 (Sca-1) positive (GFP-lin-/c-kit+/sca+) mBMSC were co-cultured with neonatal rat ventricular cardiomyocytes (NVCMs). GFP+ mBMSC significantly induced the expression of BMP-2 and FGF-2 in NVCMs, and approximately 4% GFP+ mBMSCs could be recovered from the co-culture at day 10. The addition of BMP-2 in concert with FGF-2 significantly enhanced the amount of integrated GFP+ mBMSCs by 5-fold ( approximately 20%), whereas the addition of anti-BMP-2 and/or anti-FGF-2 antibodies completely abolished this effect. An analysis of calcium cycling revealed robust calcium transients in GFP+ mBMSCs treated with BMP-2/FGF-2 compared to untreated co-cultures. BMP-2 and FGF-2 addition led to a significant induction of early (NK2 transcription factor related, locus 5; Nkx2.5, GATA binding protein 4; GATA-4) and late (myosin light chain kinase [MLC-2v], connexin 43 [Cx43]) cardiac marker mRNA expression in mBMSCs following co-culture. In addition, re-cultured fluorescence-activated cell sorting (FACS)-purified BMP-2/FGF-2-treated mBMSCs revealed robust calcium transients in response to electrical field stimulation which were inhibited by the L-type calcium channel (LTCC) inhibitor, nifedipine, and displayed caffeine-sensitive intracellular calcium stores. In summary, our results show that mBMSCs can adopt a functional cardiac phenotype through treatment with factors essential to embryonic cardiogenesis that are induced after cardiac ischemia. This study provides the first evidence that mBMSCs with long-term self-renewal potential possess the capability to serve as a functional cardiomyocyte precursor through the appropriate paracrine input and cross-talk within an appropriate cardiac microenvironment.
Collapse
Affiliation(s)
- Brent R Degeorge
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jiang S, Zhang S, Langenfeld J, Lo SC, Rogers MB. Mycoplasma infection transforms normal lung cells and induces bone morphogenetic protein 2 expression by post-transcriptional mechanisms. J Cell Biochem 2008; 104:580-94. [PMID: 18059017 DOI: 10.1002/jcb.21647] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone morphogenetic protein 2 (BMP2) is an essential growth factor and morphogen, whose pattern and level of expression profoundly influences development and physiology. We present the novel finding that mycoplasma infection induces BMP2 RNA production in six cell lines of diverse types (mesenchymal, epithelial, and myeloid). Mycoplasma infection triggered the expression of mature secreted BMP2 protein in BEAS-2B cells (immortalized human bronchial epithelial cells), which normally do not express BMP2, and further increased BMP2 production in A549 cells (lung adenocarcinoma cells). Indeed, mycoplasma is as strong an experimental inducer as inflammatory cytokines and retinoic acid. Second, we showed that post-transcriptional mechanisms including regulation of RNA stability, rather than transcriptional mechanisms, contributed to the increased BMP2 expression in mycoplasma-infected cells. Furthermore, a novel G-rich oligonucleotide, AS1411 that binds the post-transcriptional regulator nucleolin induced BMP2 exclusively in infected cells. Finally, BMP2 stimulated proliferation in BEAS-2B cells transformed by chronic mycoplasma infection, as demonstrated by treatment with Noggin, a BMP2 antagonist. These findings have important implications regarding the effects of mycoplasma on BMP2-regulated processes, including cell proliferation, differentiation, and apoptosis.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Biochemistry and Molecular Biology, UMDNJ-NJ Medical School, Newark, New Jersey 07101-1709, USA
| | | | | | | | | |
Collapse
|