1
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
2
|
Ri M, Iida S, Saito K, Saito Y, Maruyama D, Asano A, Fukuhara S, Tsujimura H, Miyazaki K, Ota S, Fukuhara N, Negoro E, Kuroda J, Yoshida S, Ohtsuka E, Norifumi T, Tabayashi T, Takayama N, Saito T, Suzuki Y, Harada Y, Mizuno I, Yoshida I, Maruta M, Takamatsu Y, Katsuya H, Yoshimitsu M, Minami Y, Kanato K, Munakata W, Nagai H. Lipidomic profiling of plasma from patients with multiple myeloma receiving bortezomib: an exploratory biomarker study of JCOG1105 (JCOG1105A1). Cancer Chemother Pharmacol 2025; 95:29. [PMID: 39853402 DOI: 10.1007/s00280-025-04752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
PURPOSE A comprehensive analysis of metabolites (metabolomics) has been proposed as a new strategy for analyzing liquid biopsies and has been applied to identify biomarkers predicting clinical responses or adverse events associated with specific treatments. Here, we aimed to identify metabolites associated with bortezomib (Btz)-related toxicities and response to treatment in newly diagnosed multiple myeloma (MM). METHODS Fifty-four plasma samples from transplant-ineligible MM patients enrolled in a randomized phase II study comparing two less-intensive regimens of melphalan, prednisolone and Btz (MPB) were subjected to the lipidomic profiling analysis. The amount of each lipid metabolite in plasma obtained prior to MPB therapy was compared to toxicity grades and responses to MPB therapy. RESULTS High levels of 7 phospholipids (4 lysophosphatidylcholines and 3 phosphatidylcholines) were observed in cases with Btz-induced ≥ grade 2 peripheral neuropathy (BiPN) (n = 11). In addition, low levels of 3 fatty acids (FAs)-FA (18:2), FA (18:1), and FA (22:6)-were observed in patients who developed severe skin disorders ≥ grade 2 (n = 10). No metabolite significantly associated with treatment response was identified. CONCLUSION We conclude that levels of specific plasma lipid metabolites are associated with the severity of BiPN and skin disorders in patients with MM. These metabolites may serve as candidate biomarkers to predict Btz-induced toxicity in patients with MM before initiating Btz-containing therapy.
Collapse
Affiliation(s)
- Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya, Japan.
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya, Japan
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Dai Maruyama
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
- Department of Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Arisa Asano
- Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya, Japan
| | - Suguru Fukuhara
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Hideki Tsujimura
- Department of Hematology and Medical Oncology, Chiba Cancer Center, Chiba, Japan
| | - Kana Miyazaki
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Noriko Fukuhara
- Department of Hematology, Tohoku University Hospital, Sendai, Japan
| | - Eiju Negoro
- Department of Hematology and Oncology, University of Fukui Hospital, Fukui, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Eiichi Ohtsuka
- Department of Hematology, Oita Prefectural Hospital, Oita, Japan
| | | | - Takayuki Tabayashi
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Nobuyuki Takayama
- Department of Hematology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Toko Saito
- Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhiro Suzuki
- Department of Hematology, NHO Nagoya Medical Center, Nagoya, Japan
| | - Yasuhiko Harada
- Department of Hematology, Toyota Kosei Hospital, Toyota, Japan
| | | | - Isao Yoshida
- Department of Hematologic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Masaki Maruta
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology and Infectious Diseases, Fukuoka University Hospital, Fukuoka, Japan
| | - Hiroo Katsuya
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Keisuke Kanato
- JCOG Data Center/Operating Office, National Cancer Center Hospital, Tokyo, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Nagai
- Department of Hematology, NHO Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
3
|
Yue C, Ma M, Guo J, Li H, Yang Y, Liu Y, Xu B. Altered gut microbe metabolites in patients with alcohol‑induced osteonecrosis of the femoral head: An integrated omics analysis. Exp Ther Med 2024; 28:311. [PMID: 38873043 PMCID: PMC11170330 DOI: 10.3892/etm.2024.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/19/2024] [Indexed: 06/15/2024] Open
Abstract
Excessive alcohol consumption is considered to be a major risk factor of alcohol-induced osteonecrosis of the femoral head (AONFH). The gut microbiota (GM) has been reported to aid in the regulation of human physiology and its composition can be altered by alcohol consumption. The aim of the present study was to improve the understanding of the GM and its metabolites in patients with AONFH. Metabolomic sequencing and 16S rDNA analysis of fecal samples were performed using liquid chromatography-mass spectrometry to characterize the GM of patients with AONFH and healthy normal controls (NCs). Metagenomic sequencing of fecal samples was performed to identify whether GM changes on the species level were associated with the expression of gut bacteria genes or their associated functions in patients with AONFH. The abundance of 58 genera was found to differ between the NC group and the AONFH group. Specifically, Klebsiella, Holdemanella, Citrobacter and Lentilactobacillus were significantly more abundant in the AONFH group compared with those in the NC group. Metagenomic sequencing demonstrated that the majority of the bacterial species that exhibited significantly different abundance in patients with AONFH belonged to the genus Pseudomonas. Fecal metabolomic analysis demonstrated that several metabolites were present at significantly different concentrations in the AONFH group compared with those in the NC group. These metabolites were products of vitamin B6 metabolism, retinol metabolism, pentose and glucuronate interconversions and glycerophospholipid metabolism. In addition, these changes in metabolite levels were observed to be associated with the altered abundance of specific bacterial species, such as Basidiobolus, Mortierella, Phanerochaete and Ceratobasidium. According to the results of the present study, a comprehensive landscape of the GM and metabolites in patients with AONFH was revealed, suggesting the existence of interplay between the gut microbiome and metabolome in AONFH pathogenesis.
Collapse
Affiliation(s)
- Chen Yue
- Evidence Based Medicine Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Maoxiao Ma
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Jiayi Guo
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Hongjun Li
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Yuxia Yang
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Youwen Liu
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Bin Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
4
|
Karno B, Edwards DN, Chen J. Metabolic control of cancer metastasis: role of amino acids at secondary organ sites. Oncogene 2023; 42:3447-3456. [PMID: 37848626 PMCID: PMC11323979 DOI: 10.1038/s41388-023-02868-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most cancer-related deaths are caused by the metastases, which commonly develop at multiple organ sites including the brain, bone, and lungs. Despite longstanding observations that the spread of cancer is not random, our understanding of the mechanisms that underlie metastatic spread to specific organs remains limited. However, metabolism has recently emerged as an important contributor to metastasis. Amino acids are a significant nutrient source to cancer cells and their metabolism which can serve to fuel biosynthetic pathways capable of facilitating cell survival and tumor expansion while also defending against oxidative stress. Compared to the primary tumor, each of the common metastatic sites exhibit vastly different nutrient compositions and environmental stressors, necessitating the need of cancer cells to metabolically thrive in their new environment during colonization and outgrowth. This review seeks to summarize the current literature on amino acid metabolism pathways that support metastasis to common secondary sites, including impacts on immune responses. Understanding the role of amino acids in secondary organ sites may offer opportunities for therapeutic inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Breelyn Karno
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Deanna N Edwards
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jin Chen
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Patel D, Lee TJ, Kumar S, Vyavahare S, Worth A, Hill WD, Hamrick M, Isales CM, Shinde RS, Fulzele S. Alterations in bone metabolites with age in C57BL/6 mice model. Biogerontology 2022; 23:629-640. [PMID: 36056226 PMCID: PMC10918568 DOI: 10.1007/s10522-022-09986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Understanding the pathophysiology behind age-related diseases is an urgent need as the elderly population continues to grow. With age, there is a high risk of musculoskeletal deterioration and associated morbidity and mortality. Although the exact mechanism behind age-related degeneration is unknown, it is well established that alteration in cellular metabolism is one of the important contributing factors. Alteration in signaling pathways with age leads to the accumulation or depletion of several metabolites that play a vital role in musculoskeletal pathophysiology. This study aimed to identify age-related changes in bone tissue metabolites in C57BL/6 mice. We then correlated the differentially expressed metabolites with their functions in bone biology. In both aged males and females, hydroxyproline, glutamine, and alpha-linolenic acid levels were decreased. In aged females, Ornithine (p value = 0.001), L-Proline (p value = 0.008), Uridine (p value = 0.001), Aspartic Acid (p value = 0.004) levels were significantly decreased, and glutamate (p value = 0.002) was elevated. In aged males, N-acetyl-D-glucosamine (pvalue = 0.010), Adrenic acid (pvalue = 0.0099), Arachidonic acid (p value = 0.029) and Allantoin (p value = 0.004) levels were decreased. Metabolic pathway analysis revealed that purine and D-glutamine and D-glutamate metabolism were significantly altered in both sexes, while arginine biosynthesis in females and lipid metabolism in males were highly affected. These differences in metabolic signaling might be one of the reasons for the discrepancy in musculoskeletal disease manifestation between the two sexes. Understanding the role of these metabolites play in the aging bone will allow for new sex-specific targeted therapies against the progression of musculoskeletal diseases.
Collapse
Affiliation(s)
- Dhara Patel
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Alison Worth
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute Cancer Center, Philadelphia, PA, USA
| | - William D Hill
- Medical University of South Carolina, Charleston, SC, 29403, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Rahul S Shinde
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute Cancer Center, Philadelphia, PA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA.
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| |
Collapse
|
6
|
Ma J, Zhu M, Ye X, Wu B, Wang T, Ma M, Li T, Zhang N. Prognostic microRNAs associated with phosphoserine aminotransferase 1 in gastric cancer as markers of bone metastasis. Front Genet 2022; 13:959684. [PMID: 36061202 PMCID: PMC9437321 DOI: 10.3389/fgene.2022.959684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/25/2022] [Indexed: 01/30/2023] Open
Abstract
This study analyzed PSAT1-targeted miRNAs as a prognostic predictor for gastric cancer. The relationship between the clinical manifestations of gastric cancer in patients and phosphoserine aminotransferase 1 (PSAT1) was analyzed using correlation analysis. PSAT1 was highly expressed in gastric cancer, and its low expression was associated with a poor prognosis. By pan-cancer analysis, PSAT1 could affect the tumor immune microenvironment by immune infiltration analysis. Nine microRNAs targeting PSAT1 and associated with gastric cancer were screened by miRwalk and microRNA expression in TCGA tumor tissues. Six microRNAs were obtained by survival curve analysis, including hsa-miR-1-3p, hsa-miR-139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-497-5p. Based on the above six microRNAs, a model for bone metastasis prediction in gastric cancer prediction was constructed. An analysis of a decision curve was performed based on the microRNAs obtained to predict bone metastasis from gastric cancer. It had a positive area under the curve (AUC) value of 0.746, and the decision curve analysis (DCA) indicated that it was clinically significant. Dual-luciferase reporter genes indicated that hsa-miR-497-5p and PSAT1 were targeted, and qRT-PCR results confirmed that hsa-miR-497-5p could down-regulate PSAT1 expression. MicroRNAs targeting the regulation of PSAT1 expression can well predict the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Jingwei Ma
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Meng Zhu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaofeng Ye
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Bo Wu
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Tao Wang
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Muyuan Ma
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Tao Li
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Ning Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia, China
- *Correspondence: Ning Zhang,
| |
Collapse
|
7
|
Wang C, Luo D. The metabolic adaptation mechanism of metastatic organotropism. Exp Hematol Oncol 2021; 10:30. [PMID: 33926551 PMCID: PMC8082854 DOI: 10.1186/s40164-021-00223-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Metastasis is a complex multistep cascade of cancer cell extravasation and invasion, in which metabolism plays an important role. Recently, a metabolic adaptation mechanism of cancer metastasis has been proposed as an emerging model of the interaction between cancer cells and the host microenvironment, revealing a deep and extensive relationship between cancer metabolism and cancer metastasis. However, research on how the host microenvironment affects cancer metabolism is mostly limited to the impact of the local tumour microenvironment at the primary site. There are few studies on how differences between the primary and secondary microenvironments promote metabolic changes during cancer progression or how secondary microenvironments affect cancer cell metastasis preference. Hence, we discuss how cancer cells adapt to and colonize in the metabolic microenvironments of different metastatic sites to establish a metastatic organotropism phenotype. The mechanism is expected to accelerate the research of cancer metabolism in the secondary microenvironment, and provides theoretical support for the generation of innovative therapeutic targets for clinical metastatic diseases.
Collapse
Affiliation(s)
- Chao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
8
|
Kreuzaler P, Panina Y, Segal J, Yuneva M. Adapt and conquer: Metabolic flexibility in cancer growth, invasion and evasion. Mol Metab 2020; 33:83-101. [PMID: 31668988 PMCID: PMC7056924 DOI: 10.1016/j.molmet.2019.08.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been known for close to a century that, on average, tumors have a metabolism that is different from those found in healthy tissues. Typically, tumors show a biosynthetic metabolism that distinguishes itself by engaging in large scale aerobic glycolysis, heightened flux through the pentose phosphate pathway, and increased glutaminolysis among other means. However, it is becoming equally clear that non tumorous tissues at times can engage in similar metabolism, while tumors show a high degree of metabolic flexibility reacting to cues, and stresses in their local environment. SCOPE OF THE REVIEW In this review, we want to scrutinize historic and recent research on metabolism, comparing and contrasting oncogenic and physiological metabolic states. This will allow us to better define states of bona fide tumor metabolism. We will further contextualize the stress response and the metabolic evolutionary trajectory seen in tumors, and how these contribute to tumor progression. Lastly, we will analyze the implications of these characteristics with respect to therapy response. MAJOR CONCLUSIONS In our review, we argue that there is not one single oncogenic state, but rather a diverse set of oncogenic states. These are grounded on a physiological proliferative/wound healing program but distinguish themselves due to their large scale of proliferation, mutations, and transcriptional changes in key metabolic pathways, and the adaptations to widespread stress signals within tumors. We find evidence for the necessity of metabolic flexibility and stress responses in tumor progression and how these responses in turn shape oncogenic progression. Lastly, we find evidence for the notion that the metabolic adaptability of tumors frequently frustrates therapeutic interventions.
Collapse
|
9
|
Yang G, Zhao G, Zhang J, Gao S, Chen T, Ding S, Zhu Y. Global urinary metabolic profiling of the osteonecrosis of the femoral head based on UPLC-QTOF/MS. Metabolomics 2019; 15:26. [PMID: 30830485 DOI: 10.1007/s11306-019-1491-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Osteonecrosis of the femoral head (ONFH), one of the widespread orthopedic diseases with a decrease in bloodstream to the femoral head, is frequently accompanied by cellular death, trabecula fracture, and collapse of the articular surface. The exactly pathological mechanism of ONFH remains to explore and further identify. OBJECTIVES The aim was to identify the global urinary metabolic profiling of ONFH and to detect biomarkers of ONFH. METHODS Urine samples were collected from 26 ONFH patients and 26 healthy people. Ultra-performance liquid chromatography-quadrupole time of flight tandem mass spectrometry (UPLC-QTOF/MS) in combination with multivariate statistical analysis was developed and performed to identify the global urinary metabolic profiling of ONFH. RESULTS The urinary metabolic profiling of ONFH group was significantly separated from the control group by multivariate statistical analysis. 33 distinctly differential metabolites were detected between the ONFH patients and healthy people. Sulfate, urea, Deoxycholic acid and PE(14:0/14:1(9Z)) were screened as the potential biomarkers of ONFH. In addition, the up/down-regulation of sulfur metabolism, cysteine and methionine metabolism, glycerophospholipid metabolism, and histidine metabolism were clearly be associated with the ONFH pathogenic progress. CONCLUSION Our results suggested that metabolomics could serve as a promising approach for identifying the diagnostic biomarkers and elucidating the pathological mechanism of ONFH.
Collapse
Affiliation(s)
- Gang Yang
- Department of Orthopedics, Fuling Center Hospital of Chongqing City, Chongqing, 408000, China
| | - Gang Zhao
- Department of Orthopedics, Fuling Center Hospital of Chongqing City, Chongqing, 408000, China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital, Chongqing Medical University, Youyi Road No. 1, Chongqing, 400016, China
| | - Sichuan Gao
- Department of Orthopedics, The First Affiliated Hospital, Chongqing Medical University, Youyi Road No. 1, Chongqing, 400016, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Zhu
- Department of Orthopedics, Fuling Center Hospital of Chongqing City, Chongqing, 408000, China.
| |
Collapse
|
10
|
Esaki K, Sayano T, Sonoda C, Akagi T, Suzuki T, Ogawa T, Okamoto M, Yoshikawa T, Hirabayashi Y, Furuya S. L-Serine Deficiency Elicits Intracellular Accumulation of Cytotoxic Deoxysphingolipids and Lipid Body Formation. J Biol Chem 2015; 290:14595-609. [PMID: 25903138 DOI: 10.1074/jbc.m114.603860] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 12/18/2022] Open
Abstract
L-serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize L-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external L-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of L-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in L-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external L-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with L-serine but was potentiated by increasing the ratio of L-alanine to L-serine in the medium. Unlike with L-serine, depriving cells of external L-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, L-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of L-alanine to L-serine in cells and tissues lacking Phgdh, and de novo synthesis of L-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited.
Collapse
Affiliation(s)
- Kayoko Esaki
- From the Laboratories of Functional Genomics and Metabolism and the Laboratories for Molecular Psychiatry and Molecular Membrane Neuroscience
| | - Tomoko Sayano
- From the Laboratories of Functional Genomics and Metabolism and Molecular Membrane Neuroscience
| | - Chiaki Sonoda
- From the Laboratories of Functional Genomics and Metabolism and
| | - Takumi Akagi
- Support Unit for Neuromorphological Analysis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, and
| | - Takeshi Suzuki
- Synthetic Biology, Division of Systems Bioengineering, Graduate School of Bioresource and Bioenvironmental Sciences, and
| | - Takuya Ogawa
- the Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi 324-8501, Japan
| | - Masahiro Okamoto
- Synthetic Biology, Division of Systems Bioengineering, Graduate School of Bioresource and Bioenvironmental Sciences, and Bio-Architecture Center, Kyushu University, Fukuoka 812-8581
| | | | | | - Shigeki Furuya
- From the Laboratories of Functional Genomics and Metabolism and Bio-Architecture Center, Kyushu University, Fukuoka 812-8581,
| |
Collapse
|
11
|
Takarada T, Takarada-Iemata M, Takahata Y, Yamada D, Yamamoto T, Nakamura Y, Hinoi E, Yoneda Y. Osteoclastogenesis is negatively regulated by D-serine produced by osteoblasts. J Cell Physiol 2012; 227:3477-87. [PMID: 22252936 DOI: 10.1002/jcp.24048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have shown the functional expression by chondrocytes of serine racemase (SR) which is responsible for the synthesis of D-serine (Ser) from L-Ser in cartilage. In this study, we evaluated the possible functional expression of SR by bone-forming osteoblasts and bone-resorbing osteoclasts. Expression of SR mRNA was seen in osteoblasts localized at the cancellous bone surface in neonatal rat tibial sections and in cultured rat calvarial osteoblasts endowed to release D-Ser into extracellular medium, but not in cultured osteoclasts differentiated from murine bone marrow progenitor cells. Sustained exposure to D-Ser failed to significantly affect alkaline phosphatase activity and Ca(2+) accumulation in cultured osteoblasts, but significantly inhibited differentiation and maturation in a concentration-dependent manner at a concentration range of 0.1-1 mM without affecting cellular survival in cultured osteoclasts. By contrast, L-Ser promoted osteoclastic differentiation in a manner sensitive to the inhibition by D-Ser. Matured osteoclasts expressed mRNA for the amino acid transporter B(0,+) (ATB(0,+) ) and the system alanine, serine, and cysteine amino acid transporter-2 (ASCT2), which are individually capable of similarly incorporating extracellular L- and D-Ser. Knockdown of these transporters by siRNA prevented both the promotion by L-Ser and the inhibition by D-Ser of osteoclastic differentiation in pre-osteoclastic RAW264.7 cells. These results suggest that D-Ser may play a pivotal role in osteoclastogenesis through a mechanism related to the incorporation mediated by both ATB(0,+) and ASCT2 of serine enantiomers in osteoclasts after the synthesis and subsequent release from adjacent osteoblasts.
Collapse
Affiliation(s)
- Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ishida-Kitagawa N, Tanaka K, Bao X, Kimura T, Miura T, Kitaoka Y, Hayashi K, Sato M, Maruoka M, Ogawa T, Miyoshi J, Takeya T. Siglec-15 protein regulates formation of functional osteoclasts in concert with DNAX-activating protein of 12 kDa (DAP12). J Biol Chem 2012; 287:17493-17502. [PMID: 22451653 DOI: 10.1074/jbc.m111.324194] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoclasts are multinucleated giant cells that reside in osseous tissues and resorb bone. Signaling mediated by receptor activator of nuclear factor (NF)-κB (RANK) and its ligand leads to the nuclear factor of activated T cells 2/c1 (NFAT2 or NFATc1) expression, a critical step in the formation of functional osteoclasts. In addition, adaptor proteins harboring immunoreceptor tyrosine-based activation motifs, such as DNAX-activating protein of 12 kDa (DAP12), play essential roles. In this study, we identified the gene encoding the lectin Siglec-15 as NFAT2-inducible, and we found that the protein product links RANK ligand-RANK-NFAT2 and DAP12 signaling in mouse osteoclasts. Both the recognition of sialylated glycans by the Siglec-15 V-set domain and the association with DAP12 through its Lys-272 are essential for its function. When Siglec-15 expression was knocked down, fewer multinucleated cells developed, and those that did were morphologically contracted with disordered actin-ring structures. These changes were accompanied by significantly reduced bone resorption. Siglec-15 formed complexes with Syk through DAP12 in response to vitronectin. Furthermore, chimeric molecules consisting of the extracellular and transmembrane regions of Siglec-15 with a K272A mutation and the cytoplasmic region of DAP12 significantly restored bone resorption in cells with knocked down Siglec-15 expression. Together, these results suggested that the Siglec-15-DAP12-Syk-signaling cascade plays a critical role in functional osteoclast formation.
Collapse
Affiliation(s)
- Norihiro Ishida-Kitagawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192.
| | - Kunitaro Tanaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Xilinqiqige Bao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Takanori Kimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Tadashi Miura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Yoshiki Kitaoka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Kouhei Hayashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Mizuho Sato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192; Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871
| | - Masahiro Maruoka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192; Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Aoba-ku, Sendai, Miyagi 980-8578
| | - Takuya Ogawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| | - Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, 537-8511, Japan
| | - Tatsuo Takeya
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192
| |
Collapse
|
13
|
Bahtiar A, Nakamura T, Kishida K, Katsura J, Nitta M, Ishida-Kitagawa N, Ogawa T, Takeya T. The l-Ser analog #290 promotes bone recovery in OP and RA mice. Pharmacol Res 2011; 64:203-9. [PMID: 21605676 DOI: 10.1016/j.phrs.2011.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 11/29/2022]
Abstract
We previously characterized the l-Ser analog #290, H(tBut)-l-Ser-O-Methyl·HCl, as a novel inhibitor of osteoclastogenesis which functions in both mouse and human cells. Here, we assessed the activity of #290 in animal models of osteoporosis and rheumatoid arthritis. Treatment of animals with #290 both prevented bone loss and led to the recovery of lost bone in osteoporotic mice. When inflammatory arthritis was induced in SKG mice, #290 treatment suppressed arthritis scores and significantly prevented the destruction of calcaneous bones. Additionally, #290 reciprocally modulated the mammalian target of rapamycin (mTOR) pathway in osteoclasts and osteoblasts in vitro, suggesting a dual effect on bone homeostasis. Our results demonstrate that #290 is a potential novel therapeutic tool for the treatment and/or study of diseases associated with bone destruction.
Collapse
Affiliation(s)
- Anton Bahtiar
- Graduate School of Biological Sciences, Nara Institute of Science and, Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Morita Y, Ono A, Serizawa A, Yogo K, Ishida-Kitagawa N, Takeya T, Ogawa T. Purification and identification of lactoperoxidase in milk basic proteins as an inhibitor of osteoclastogenesis. J Dairy Sci 2011; 94:2270-9. [DOI: 10.3168/jds.2010-4039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/26/2011] [Indexed: 12/15/2022]
|
15
|
Bao X, Ogawa T, Se S, Akiyama M, Bahtiar A, Takeya T, Ishida-Kitagawa N. Acid sphingomyelinase regulates osteoclastogenesis by modulating sphingosine kinases downstream of RANKL signaling. Biochem Biophys Res Commun 2011; 405:533-7. [PMID: 21256823 DOI: 10.1016/j.bbrc.2011.01.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/19/2011] [Indexed: 01/13/2023]
Abstract
Acid sphingomyelinase (ASM) was identified as a gene induced by NFAT2 activation in osteoclasts. Suppression of ASM expression in bone marrow macrophages by knockdown enhanced c-Fos/NFAT2 expression, increasing the number of TRAP-positive multinucleated cells in vitro. SphK1 was upregulated during the late stage of osteoclastogenesis, while SphK2 expression remained constant. SphK1 was downregulated following ASM knockdown, while SphK2 levels were unchanged. Experiments using shRNA and catalytically-inactive form demonstrated inhibitory and stimulatory activities on osteoclast formation of SphK1 and SphK2, respectively. These results suggest that ASM regulates osteoclastogenesis by modulating the balance between SphK1 and SphK2 downstream of RANKL signaling.
Collapse
Affiliation(s)
- Xilinqiqige Bao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 2010; 125:421-30. [DOI: 10.1007/s10549-010-0848-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/13/2010] [Indexed: 12/23/2022]
|
17
|
Bahtiar A, Matsumoto T, Nakamura T, Akiyama M, Yogo K, Ishida-Kitagawa N, Ogawa T, Takeya T. Identification of a novel L-serine analog that suppresses osteoclastogenesis in vitro and bone turnover in vivo. J Biol Chem 2009; 284:34157-66. [PMID: 19837662 DOI: 10.1074/jbc.m109.058933] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoclasts are multinucleated giant cells with bone resorbing activity. We previously reported that the expression of the transcription factor NFAT2 (NFATc1) induced by receptor activator of NF-kappaB ligand (RANKL) is essential for the formation of multinucleated cells. We subsequently identified L-Ser in the differentiation medium as necessary for the expression of NFAT2. Here we searched for serine analogs that antagonize the function of L-Ser and suppress the formation of osteoclasts in bone marrow as well as RAW264 cells. An analog thus identified, H-Ser(tBu)-OMe x HCl, appeared to suppress the production of 3-ketodihydrosphingosine by serine palmitoyltransferase, and the expression and localization of RANK, a cognate receptor of RANKL, in membrane lipid rafts was down-regulated in the analog-treated cells. The addition of lactosylceramide, however, rescued the osteoclastic formation. When administered in vivo, the analog significantly increased bone density in mice and prevented high bone turnover induced by treatment with soluble RANKL. These results demonstrate a close connection between the metabolism of L-Ser and bone remodeling and also the potential of the analog as a novel therapeutic tool for bone destruction.
Collapse
Affiliation(s)
- Anton Bahtiar
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|