1
|
Chen Y, Qian M, Gao F, Li G, Peng K, Sun Q, Sun Y, Liu G, Ge Y, Yang M, Wu X. Potential effect of Irisin on sarcopenia: a systematic review. BMC Musculoskelet Disord 2025; 26:520. [PMID: 40420047 DOI: 10.1186/s12891-025-08767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
OBJECTIVE Sarcopenia, a progressive musculoskeletal disorder associated with aging, is characterized by the deterioration of muscle mass, strength, and physical performance. This condition significantly increases the risk of debilitating consequences including functional impairment, diminished life quality, and increased mortality. With the progress of aging, it will affect a large number of people in the world and bring many problems. Despite its clinical significance, there are no medicine used to treatment sarcopenia by FDA approval in clinical. This systematic review synthesizes current evidence on the diagnostic and therapeutic potential of irisin-a myokine induced by exercise-in sarcopenia, aiming to address two key questions: (1) Can irisin serve as a reliable biomarker for sarcopenia diagnosis? (2) Does irisin hold promise as a therapeutic agent for sarcopenia management? METHODS A comprehensive literature search was conducted across multiple databases (Web of Science, PubMed, Cochrane Library, and Embase) to examine the relationship between irisin and sarcopenia. Eligible studies meeting our inclusion criteria underwent rigorous quality assessment. RESULT 364 studies were identified, of which only 21 met the inclusion criteria-12 involving human studies and 9 involving animal and cell experiments. In human studies, irisin may serve as a potential diagnostic marker for sarcopenia in the elderly and postmenopausal women. In addition, as a myokine of exercise induced, increased circulating levels of irisin may enhanced skeletal muscle mass. Moreover, animal and cellular experiments suggest that increased levels of irisin help improve muscle mass. CONCLUSION In conclusion, this review indicates that irisin has potential therapeutic effects for sarcopenia and may become a promising treatment for sarcopenia in the future. However, there is currently a lack of high-quality studies on the use of irisin in treating sarcopenia, and the relevant mechanisms of action are not yet clear. Therefore, more studies are needed to clarify the relationship between irisin and sarcopenia in the future.
Collapse
Affiliation(s)
- Yixiao Chen
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Min Qian
- International Medical Service Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Feng Gao
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Guoqing Li
- Department of Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Kangzu Peng
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Qingnan Sun
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Yifei Sun
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Gang Liu
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Yufeng Ge
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- National Center for Orthopaedics, Beijing, China.
| | - Minghui Yang
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- National Center for Orthopaedics, Beijing, China.
| | - Xinbao Wu
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- National Center for Orthopaedics, Beijing, China.
| |
Collapse
|
2
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Abstract
Clinical studies revealed a relationship between osteoporosis and sarcopenia. Based on this background, crosstalk between muscle and bone has emerged as a novel research field in the past decade. Among the interactions that occur between muscle and bone, humoral factors, such as osteokines and myokines, affect distant muscles and bones, respectively. Recent studies proposed several important myokines that have an impact on bone, such as myostatin and irisin. Signaling by these myokines has potential as a target for drug development and biomarkers for exercise. Mechanical stress, endocrine disorders, and chronic kidney disease partly affect bone through various myokines in crosstalk between muscle and bone. Moreover, the involvement of extracellular vesicles from bone or muscle as communication tools in the interactions between muscle and bone was recently proposed. Further clinical studies are needed to clarify the significance of myokine regulation under physiological and pathophysiological states in humans.
Collapse
Affiliation(s)
- Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
4
|
Zerlotin R, Oranger A, Pignataro P, Dicarlo M, Sanesi L, Suriano C, Storlino G, Rizzi R, Mestice A, Di Gioia S, Mori G, Grano M, Colaianni G, Colucci S. Irisin prevents trabecular bone damage and tumor invasion in a mouse model of multiple myeloma. JBMR Plus 2024; 8:ziae066. [PMID: 38855797 PMCID: PMC11162589 DOI: 10.1093/jbmrpl/ziae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Bone disease associated with multiple myeloma (MM) is characterized by osteolytic lesions and pathological fractures, which remain a therapeutic priority despite new drugs improving MM patient survival. Antiresorptive molecules represent the main option for the treatment of MM-associated bone disease (MMBD), whereas osteoanabolic molecules are under investigation. Among these latter, we here focused on the myokine irisin, which is able to enhance bone mass in healthy mice, prevent bone loss in osteoporotic mouse models, and accelerate fracture healing in mice. Therefore, we investigated irisin effect on MMBD in a mouse model of MM induced by intratibial injection of myeloma cells followed by weekly administration of 100 μg/kg of recombinant irisin for 5 wk. By micro-Ct analysis, we demonstrated that irisin improves MM-induced trabecular bone damage by partially preventing the reduction of femur Trabecular Bone Volume/Total Volume (P = .0028), Trabecular Number (P = .0076), Trabecular Fractal Dimension (P = .0044), and increasing Trabecular Separation (P = .0003) in MM mice. In cortical bone, irisin downregulates the expression of Sclerostin, a bone formation inhibitor, and RankL, a pro-osteoclastogenic molecule, while in BM it upregulates Opg, an anti-osteoclastogenic cytokine. We found that in the BM tibia of irisin-treated MM mice, the percentage of MM cells displays a reduction trend, while in the femur it decreases significantly. This is in line with the in vitro reduction of myeloma cell viability after 48 h of irisin stimulation at both 200 and 500 ng/mL and, after 72 h already at 100 ng/mL rec-irisin. These results could be due to irisin ability to downregulate the expression of Notch 3, which is important for cell-to-cell communication in the tumor niche, and Cyclin D1, supporting an inhibitory effect of irisin on MM cell proliferation. Overall, our findings suggest that irisin could be a new promising strategy to counteract MMBD and tumor burden in one shot.
Collapse
Affiliation(s)
- Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Patrizia Pignataro
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Manuela Dicarlo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Lorenzo Sanesi
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Clelia Suriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Giuseppina Storlino
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rita Rizzi
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Anna Mestice
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| |
Collapse
|
5
|
Falsetti I, Palmini G, Donati S, Aurilia C, Iantomasi T, Brandi ML. Irisin and Its Role in Postmenopausal Osteoporosis and Sarcopenia. Biomedicines 2024; 12:928. [PMID: 38672282 PMCID: PMC11048342 DOI: 10.3390/biomedicines12040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Menopause, an extremely delicate phase in a woman's life, is characterized by a drop in estrogen levels. This decrease has been associated with the onset of several diseases, including postmenopausal osteoporosis and sarcopenia, which often coexist in the same person, leading to an increased risk of fractures, morbidity, and mortality. To date, there are no approved pharmacological treatments for sarcopenia, while not all of those approved for postmenopausal osteoporosis are beneficial to muscles. In recent years, research has focused on the field of myokines, cytokines, or peptides secreted by skeletal muscle fibers following exercise. Among these, irisin has attracted great interest as it possesses myogenic properties but at the same time exerts anabolic effects on bone and could therefore represent the link between muscle and bone. Therefore, irisin could represent a new therapeutic strategy for the treatment of osteoporosis and also serve as a new biomarker of sarcopenia, thus facilitating diagnosis and pharmacological intervention. The purpose of this review is to provide an updated summary of what we know about the role of irisin in postmenopausal osteoporosis and sarcopenia.
Collapse
Affiliation(s)
- Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Gaia Palmini
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (F.I.R.M.O Onlus), 50129 Florence, Italy;
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (F.I.R.M.O Onlus), 50129 Florence, Italy;
| |
Collapse
|
6
|
Hu W, Lu Y, Duan Y, Yang Y, Wang M, Guo J, Xu J, Lu X, Ma Q. Regulation of Immune Inflammation and Promotion of Periodontal Bone Regeneration by Irisin-Loaded Bioactive Glass Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38315709 DOI: 10.1021/acs.langmuir.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Clinical solutions of bone defects caused by periodontitis involve surgical treatment and subsequent anti-infection treatment using antibiotics. Such a strategy faces a key challenge in that the excessive host immune response results in the damage of periodontal tissues. Consequently, it is of great importance to develop novel periodontitis treatment that allows the regulation of the host immune response and promotes the generation of periodontal tissues. Irisin has a good bone regeneration ability and could reduce the inflammatory reaction by regulating the differentiation of macrophages. In this study, we loaded irisin onto bioactive glass nanoparticles (BGNs) to prepare a composite, irisin-BGNs (IR-BGNs) with anti-inflammatory, bacteriostatic, and tissue regeneration functions, providing a novel idea for the design of ideal materials for repairing oral tissue defects caused by periodontitis. We also verified that the IR-BGNs had better anti-inflammatory properties on RAW264.7 cells compared to irisin and BGNs alone. Strikingly, when hPDLCs were stimulated with IR-BGNs, they exhibited increased expression of markers linked to osteogenesis, ALP activity, and mineralization ability in comparison to the negative control. Furthermore, on the basis of RNA sequencing results, we validated that the p38 pathway can contribute to the osteogenic differentiation of the IR-BGNs. This work may offer new thoughts on the design of ideal materials for repairing oral tissue defects.
Collapse
Affiliation(s)
- Wenzhu Hu
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yanlai Lu
- . Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiyuan Duan
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yuxin Yang
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Mingxin Wang
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jingyao Guo
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jing Xu
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Xiaolin Lu
- . State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Qian Ma
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
7
|
Li X, Lindholm B. The role of irisin in kidney diseases. Clin Chim Acta 2024; 554:117756. [PMID: 38218331 DOI: 10.1016/j.cca.2023.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024]
Abstract
Irisin is a hormone that is produced mainly by skeletal muscles in response to exercise. It has been found to have a close correlation with obesity and diabetes mellitus for its energy expenditure and metabolic properties. Recent research has revealed that irisin also possesses anti-inflammatory, anti-oxidative and anti-apoptotic properties, which make it associated with major chronic diseases, such as chronic kidney disease (CKD), liver diseases, osteoporosis, atherosclerosis and Alzheimer s disease. The identification of irisin has not only opened up new possibilities for monitoring metabolic and non-metabolic diseases but also presents a promising therapeutic target due to its multiple biological functions. Studies have shown that circulating irisin levels are lower in CKD patients than in non-CKD patients and decrease with increasing CKD stage. Furthermore, irisin also plays a role in many CKD-related complications like protein energy wasting (PEW), cardiovascular disease (CVD) and chronic kidney disease-mineral and bone disorder (CKD-MBD). In this review, we present the current knowledge on the role of irisin in kidney diseases and their complications.
Collapse
Affiliation(s)
- Xiejia Li
- Department of Nephrology, The 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China; Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Bengt Lindholm
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Hosoi T, Yakabe M, Hashimoto S, Akishita M, Ogawa S. The roles of sex hormones in the pathophysiology of age-related sarcopenia and frailty. Reprod Med Biol 2024; 23:e12569. [PMID: 38476959 PMCID: PMC10927916 DOI: 10.1002/rmb2.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Background Sarcopenia is an age-related condition characterized by a progressive and systemic decline in skeletal muscle mass, quality, and strength. The incidence of sarcopenia contains sex-specific aspects, indicating the contribution of sex hormones to its pathophysiology. This review focuses on changing trends in sarcopenia, discusses alterations in definitions and diagnostic criteria, and emphasizes the association between sarcopenia and sex hormones. Methods A literature search was performed on PubMed for related articles published between 1997 and December 2023 using appropriate keywords. Main Findings Results Advances in research have emphasized the significance of muscle quality and strength over muscle mass, resulting in new diagnostic criteria for sarcopenia. Androgens demonstrated anabolic effects on skeletal muscles and played a significant role in the pathophysiology of sarcopenia. In clinical settings, androgen replacement therapy has exhibited certain positive outcomes for treating sarcopenia, despite concerns about potential side effects. Conversely, estrogen is involved in skeletal muscle maintenance, but the detailed mechanisms remain unclear. Moreover, results regarding the clinical application of estrogen replacement therapy for treating sarcopenia remained inconsistent. Conclusion The elucidation of molecular mechanisms that involve sex hormones is eagerly awaited for novel therapeutic interventions for sarcopenia.
Collapse
Affiliation(s)
- Tatsuya Hosoi
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Seiji Hashimoto
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| |
Collapse
|
9
|
Zhao R, Chen Y, Wang D, Zhang C, Song H, Ni G. Role of irisin in bone diseases. Front Endocrinol (Lausanne) 2023; 14:1212892. [PMID: 37600697 PMCID: PMC10436578 DOI: 10.3389/fendo.2023.1212892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Bone diseases are common among middle-aged and elderly people, and harm to activities of daily living (ADL) and quality of life (QOL) for patients. It is crucial to search for key regulatory factors associated with the development of bone diseases and explore potential therapeutic targets for bone diseases. Irisin is a novel myokine that has been discovered in recent years. Accumulating evidence indicates that irisin has beneficial effects in the treatment of various diseases such as metabolic, cardiovascular and neurological disorders, especially bone-related diseases. Recent studies had shown that irisin plays the role in various bone diseases such as osteoarthritis, osteoporosis and other bone diseases, suggesting that irisin may be a potential molecule for the prevention and treatment of bone diseases. Therefore, in this review, by consulting the related domestic and international literature of irisin and bone diseases, we summarized the specific regulatory mechanisms of irisin in various bone diseases, and provided a systematic theoretical basis for its application in the diagnosis and treatment of the bone diseases.
Collapse
Affiliation(s)
- Ruobing Zhao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yan Chen
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Henan Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Storlino G, Dicarlo M, Zerlotin R, Pignataro P, Sanesi L, Suriano C, Oranger A, Mori G, Passeri G, Colucci S, Grano M, Colaianni G. Irisin Protects against Loss of Trabecular Bone Mass and Strength in Adult Ovariectomized Mice by Stimulating Osteoblast Activity. Int J Mol Sci 2023; 24:9896. [PMID: 37373043 DOI: 10.3390/ijms24129896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Irisin is a peptide secreted by skeletal muscle that plays a major role in bone metabolism. Experiments in mouse models have shown that administration of recombinant irisin prevents disuse-induced bone loss. In this study, we aimed to evaluate the effects of irisin treatment for the prevention of bone loss in the ovariectomized (Ovx) mouse, the animal model commonly used to investigate osteoporosis caused by estrogen deficiency. Micro-Ct analysis conducted on Sham mice (Sham-veh) and Ovx mice treated with vehicle (Ovx-veh) or recombinant irisin (Ovx-irisn) showed bone volume fraction (BV/TV) decreases in femurs (Ovx-veh 1.39± 0.71 vs. Sham-veh 2.84 ± 1.23; p = 0.02) and tibia at both proximal condyles (Ovx-veh 1.97 ± 0.68 vs. Sham-veh 3.48 ± 1.26; p = 0.03) and the subchondral plate (Ovx-veh 6.33 ± 0.36 vs. Sham-veh 8.18 ± 0.41; p = 0.01), which were prevented by treatment with a weekly dose of irisin for 4 weeks. Moreover, histological analysis of trabecular bone showed that irisin increased the number of active osteoblasts per bone perimeter (Ovx-irisin 32.3 ± 3.9 vs. Ovx-veh 23.5 ± 3.6; p = 0.01), while decreasing osteoclasts (Ovx-irisin 7.6 ± 2.4 vs. Ovx-veh 12.9 ± 3.04; p = 0.05). The possible mechanism by which irisin enhances osteoblast activity in Ovx mice is upregulation of the transcription factor Atf4, one of the key markers of osteoblast differentiation, and osteoprotegerin, thereby inhibiting osteoclast formation.
Collapse
Affiliation(s)
- Giuseppina Storlino
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Manuela Dicarlo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Patrizia Pignataro
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Lorenzo Sanesi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Clelia Suriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Giovanni Passeri
- Unit of Clinica e Terapia Medica, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| |
Collapse
|
11
|
Irisin reduces bone fracture by facilitating osteogenesis and antagonizing TGF-β/Smad signaling in a growing mouse model of osteogenesis imperfecta. J Orthop Translat 2023; 38:175-189. [DOI: 10.1016/j.jot.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
12
|
Nishio R, Dohi T, Fukase T, Takeuchi M, Takahashi N, Endo H, Doi S, Okai I, Iwata H, Okazaki S, Miyauchi K, Daida H, Minamino T. Impact of simple equation for estimating appendicular skeletal muscle mass in patients with stable coronary artery disease undergoing percutaneous coronary intervention. IJC HEART & VASCULATURE 2022; 44:101163. [PMID: 36545275 PMCID: PMC9762183 DOI: 10.1016/j.ijcha.2022.101163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Background Sarcopenia, which is evaluated based on appendicular skeletal muscle mass (ASM) using dual-energy X-ray absorptiometry and bioelectrical impedance analysis, is a prognostic predictor for adverse outcomes in patients with coronary artery disease (CAD). However, a simple equation for estimating ASM is yet to be validated in clinical practice. Methods We enrolled 2211 patients with CAD who underwent percutaneous coronary intervention at our hospital between 2010 and 2017. The mean age was 68 years and 81.5 % were men. Patients were divided into 2 groups based on each ASM index (ASMI): low; male < 7.3 and female < 5.0 and high; male ≥ 7.3 and female ≥ 5.0. ASM was calculated using the following equation: 0.193 × bodyweight + 0.107 × height - 4.157 × gender - 0.037 × age - 2.631. Primary endpoints were major adverse cardiac events (MACE, which includes cardiovascular death, non-fatal myocardial infarction, non-fatal stroke, and hospitalization for heart failure), and all-cause mortality. Results During the median follow-up period of 4.8 years, cumulative incidence of events were significantly higher in the low ASMI group. Cox proportional hazards model revealed that the low ASMI group had a significantly higher risk of primary endpoints than the high ASMI group (all-cause mortality; hazard ratio (HR): 2.13, 95 % confidence interval [CI]: 1.40-3.22, p < 0.001 and 4-point MACE; HR: 1.72, 95 % CI: 1.12-2.62, p = 0.01). Similar trends were observed after stratification by age of 65 years. Conclusion Low ASMI, evaluated using the aforementioned equation, is an independent predictor of MACE and all-cause mortality in patients with CAD.
Collapse
Key Words
- ASM, appendicular skeletal muscle mass
- ASMI, appendicular skeletal muscle mass index
- AWGS, Asian Working Group for Sarcopenia
- Appendicular skeletal mass index
- BIA, bioelectrical impedance analysis
- CAD, coronary artery disease
- CI, confidence interval
- CKD, chronic kidney disease
- CVD, cardiovascular deaths
- Coronary artery disease
- DXA, dual-energy X-ray absorptiometry
- HR, hazard ratio
- LVEF, left ventricular ejection fraction
- MACE, major adverse cardiac events
- PCI, percutaneous coronary intervention
- Percutaneous coronary intervention
Collapse
Affiliation(s)
- Ryota Nishio
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan,Corresponding author at: Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tatsuya Fukase
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuhiro Takeuchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihito Takahashi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirohisa Endo
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinichiro Doi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Iwao Okai
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Iwata
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinya Okazaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Katsumi Miyauchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
13
|
Zhou BN, Zhang Q, Lin XY, Hu J, Zhao DC, Jiang Y, Xing XP, Li M. The roles of sclerostin and irisin on bone and muscle of orchiectomized rats. BMC Musculoskelet Disord 2022; 23:1049. [PMID: 36456918 PMCID: PMC9716692 DOI: 10.1186/s12891-022-05982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The reduction in androgen level gives rise to a decrease in bone mineral density (BMD) and muscle strength, but the exact mechanisms are unclear. We investigated the roles of novel cytokines of sclerostin and irisin on bone and muscle of orchiectomized rats. METHODS Twenty 3-month-old male rats were randomized to receive sham or orchiectomy (ORX) operation. Rats were euthanized after 8 weeks of surgery, and serum levels of sclerostin and irisin were measured by enzyme-linked immunosorbent assay at baseline and execution. Grip strength was measured by a grip strength tester at baseline and before execution. BMD and bone microarchitecture were measured by microcomputed tomography. The samples of bone and muscle were harvested at execution. Bone biomechanics were measured by three-point bending tests and vertebral body indentation tests. Bone and muscle histological features were analyzed by hematoxylin and eosin stain, Von Kossa's stain and tartrate resistant acid phosphatase stain. Simple linear regression analyses were used to analyze the relationships between serum levels of sclerostin, irisin and grip strength and BMD of ORX rats. RESULTS Serum sclerostin level increased from 279 ± 44 pg/mL to 586 ± 57 pg/mL since baseline to 8 weeks after ORX (P = 0.002), which was significantly higher than that in sham rats (406 ± 20 pg/mL at execution) (P = 0.012). Serum irisin level decreased from 4.12 ± 0.20 ng/mL to 3.55 ± 0.29 ng/mL since baseline to 8 weeks of ORX (P = 0.048), which was significantly lower than sham rats (4.84 ± 0.37 pg/mL at execution) (P = 0.013). Trabecular BMD, parameters of bone microarchitecture, bone strength, grip strength and the myofibers size of soleus muscles were significantly lower in ORX rats than in sham group. Grip strength was positively correlated with femoral trabecular BMD (r = 0.713, P < 0.001) and bone volume/total volume (r = 0.712, P < 0.001) in all rats. The serum sclerostin level was negatively correlated to femoral trabecular BMD (r = -0.508, P = 0.022) and grip strength (r = -0.492, P = 0.028). Serum irisin level was positively correlated with femoral trabecular BMD (r = 0.597, P = 0.005), but no obvious correlation was found between irisin level and muscle strength in all rats. CONCLUSIONS Reduced BMD, impaired bone microarchitecture, weak strength of bone and muscle, and thin myofibers were induced by androgen deficiency of ORX rats. Serum sclerostin and irisin levels were significantly changed after ORX, which might be closely correlated with the occurrence of osteoporosis and sarcopenia in ORX rats.
Collapse
Affiliation(s)
- Bing-na Zhou
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Qian Zhang
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Xiao-yun Lin
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Jing Hu
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Di-chen Zhao
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Yan Jiang
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Xiao-ping Xing
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Mei Li
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
14
|
Irisin and Bone in Sickness and in Health: A Narrative Review of the Literature. J Clin Med 2022; 11:jcm11226863. [PMID: 36431340 PMCID: PMC9699623 DOI: 10.3390/jcm11226863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Irisin is a hormone-like myokine produced by the skeletal muscle in response to exercise. Upon its release into the circulation, it is involved in the browning process and thermogenesis, but recent evidence indicates that this myokine could also regulate the functions of osteoblasts, osteoclasts, and osteocytes. Most human studies have reported that serum irisin levels decrease with age and in conditions involving bone diseases, including both primary and secondary osteoporosis. However, it should be emphasized that recent findings have called into question the importance of circulating irisin, as well as the validity and reproducibility of current methods of irisin measurement. In this review, we summarize data pertaining to the role of irisin in the bone homeostasis of healthy children and adults, as well as in the context of primary and secondary osteoporosis. Additional research is required to address methodological issues, and functional studies are required to clarify whether muscle and bone damage per se affect circulating levels of irisin or whether the modulation of this myokine is caused by the inherent mechanisms of underlying diseases, such as genetic or inflammatory causes. These investigations would shed further light on the effects of irisin on bone homeostasis and bone disease.
Collapse
|
15
|
Bao JF, She QY, Hu PP, Jia N, Li A. Irisin, a fascinating field in our times. Trends Endocrinol Metab 2022; 33:601-613. [PMID: 35872067 DOI: 10.1016/j.tem.2022.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/30/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022]
Abstract
Irisin is a muscle-secreted hormone that is generated by cleavage of membrane protein FNDC-5 (fibronectin type III domain-containing protein 5). Irisin is considered to be a mediator of exercise-induced metabolic improvements, such as browning of white adipose tissue, and is known to alleviate several chronic non-metabolic diseases. Thus, irisin may be an ideal therapeutic target for metabolic and non-metabolic diseases. However, several controversies regarding irisin have hindered its clinical translation. We review the generation, regulation (especially in exercise), and metabolic as well as therapeutic effects of irisin on metabolic and non-metabolic diseases. Furthermore, we discuss controversies regarding irisin and highlight potential future research directions.
Collapse
Affiliation(s)
- Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Qin-Ying She
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, 510999 Guangzhou, China
| | - Pan-Pan Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Nan Jia
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.
| |
Collapse
|
16
|
Kinoshita Y, Takafuji Y, Okumoto K, Takada Y, Ehara H, Mizukami Y, Kawao N, Jo JI, Tabata Y, Kaji H. Irisin improves delayed bone repair in diabetic female mice. J Bone Miner Metab 2022; 40:735-747. [PMID: 35925402 DOI: 10.1007/s00774-022-01353-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/16/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Irisin is a proteolytic product of fibronectin type II domain-containing 5, which is related to the improvement in glucose metabolism. Numerous studies have suggested that irisin is a crucial myokine linking muscle to bone in physiological and pathophysiological states. MATERIALS AND METHODS We examined the effects of local irisin administration with gelatin hydrogel sheets and intraperitoneal injection of irisin on the delayed femoral bone repair caused by streptozotocin (STZ)-induced diabetes in female mice. We analyzed the femurs of mice using quantitative computed tomography and histological analyses and then measured the mRNA levels in the damaged mouse tissues. RESULTS Local irisin administration significantly blunted the delayed bone repair induced by STZ 10 days after a femoral bone defect was generated. Local irisin administration significantly blunted the number of Osterix-positive cells that were suppressed by STZ at the damaged site 4 days after a femoral bone defect was generated, although it did not affect the mRNA levels of chondrogenic and adipogenic genes 4 days after bone injury in the presence or absence of diabetes. On the other hand, intraperitoneal injection of irisin did not affect delayed bone repair induced by STZ 10 days after bone injury. Irisin significantly blunted the decrease in Osterix mRNA levels induced by advanced glycation end products or high-glucose conditions in ST2 cells in the presence of bone morphogenetic protein-2. CONCLUSIONS We first showed that local irisin administration with gelatin hydrogel sheets improves the delayed bone repair induced by diabetic state partially by enhancing osteoblastic differentiation.
Collapse
Affiliation(s)
- Yuko Kinoshita
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuto Takada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroki Ehara
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-Cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-Cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
17
|
Kawao N, Kawaguchi M, Ohira T, Ehara H, Mizukami Y, Takafuji Y, Kaji H. Renal failure suppresses muscle irisin expression, and irisin blunts cortical bone loss in mice. J Cachexia Sarcopenia Muscle 2022; 13:758-771. [PMID: 34997830 PMCID: PMC8818650 DOI: 10.1002/jcsm.12892] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic renal failure induces bone mineral disorders and sarcopenia. Skeletal muscle affects other tissues, including bone, by releasing myokines. However, the effects of chronic renal failure on the interactions between muscle and bone remain unclear. METHODS We investigated the effects of renal failure on bone, muscle, and myokines linking muscle to bone using a mouse 5/6 nephrectomy (Nx) model. Muscle mass and bone mineral density (BMD) were analysed by quantitative computed tomography 8 weeks after Nx. RESULTS Nephrectomy significantly reduced muscle mass in the whole body (12.1% reduction, P < 0.05), grip strength (10.1% reduction, P < 0.05), and cortical BMD at the femurs of mice (9.5% reduction, P < 0.01) 8 weeks after surgery, but did not affect trabecular BMD at the femurs. Among the myokines linking muscle to bone, Nx reduced the expression of irisin, a proteolytic product of fibronectin type III domain-containing 5 (Fndc5), in the gastrocnemius muscles of mice (38% reduction, P < 0.01). Nx increased myostatin mRNA levels in the gastrocnemius muscles of mice (54% increase, P < 0.01). In simple regression analyses, cortical BMD, but not trabecular BMD, at the femurs was positively related to Fndc5 mRNA levels in the gastrocnemius muscles of mice (r = 0.651, P < 0.05). The weekly administration of recombinant irisin to mice ameliorated the decrease in cortical BMD, but not muscle mass or grip strength, induced by Nx (6.2% reduction in mice with Nx vs. 3.3% reduction in mice with Nx and irisin treatment, P < 0.05). CONCLUSIONS The present results demonstrated that renal failure decreases the expression of irisin in the gastrocnemius muscles of mice. Irisin may contribute to cortical bone loss induced by renal failure in mice as a myokine linking muscle to bone.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Miku Kawaguchi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroki Ehara
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
18
|
Shahabi S, Esfarjani F, Reisi J, Momenzadeh S, Jami MS, Zamani S. The Effects of 8-Week Resistance and Endurance Trainings on Bone Strength Compared to Irisin Injection Protocol in Mice. Adv Biomed Res 2022; 10:40. [PMID: 35071108 PMCID: PMC8744425 DOI: 10.4103/abr.abr_220_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/06/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background Osteoporosis is a prevalent elderly complication that is characterized by decreased bone mineral density and increased fracture risk because of dysregulation in bone mineralization and resorption. Physical activity can enhance bone strength by exerting mechanical forces and myokines. Irisin is a myokine that is increased following physical exercise and can affect bones. In this study, 8 weeks of resistance and endurance exercises are applied in mice compared to irisin injection to assess the contribution of the protocols and this myokine to bone strength. Materials and Methods Thirty-five male NMRI mice were separated into five groups; control, placebo, irisin injection, resistance exercise, and endurance exercise. 8-week of exercise protocols and irisin injection protocol (100 μg/kg/week) was applied. Plasma irisin concentration and bone strength were measured using enzyme-linked immunoassay and 3-point bending assay, respectively. Statistical analyses were done through one-way ANOVA and Tukey test, and P < 0.05 was considered the significant difference. Results Serum irisin concentration and bone strength in resistance exercise and irisin-injected groups were significantly higher than control and placebo groups (P < 0.0001). Serum irisin concentration, but not bone strength, of the endurance exercise group was also significantly higher than control and placebo groups (P < 0.0001) but lower than resistance and irisin-injected groups. Conclusion Resistance exercise and irisin injection, but not endurance exercise, are likely to be effective in increasing bone strength. There may be a threshold for plasma irisin level to affect bones which the applied protocols of irisin injection and resistance exercise but not endurance exercise can reach.
Collapse
Affiliation(s)
- Shirin Shahabi
- Department of Exercise Physiology, Faculty of Sport Sciences, Isfahan University, Iran
| | - Fahimeh Esfarjani
- Department of Exercise Physiology, Faculty of Sport Sciences, Isfahan University, Iran
| | - Jalil Reisi
- Department of Exercise Physiology, Faculty of Sport Sciences, Isfahan University, Iran
| | - Sedigheh Momenzadeh
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Saeed Zamani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Pereira LJ, Andrade EF, Barroso LC, Lima RRD, Macari S, Paiva SM, Silva TA. Irisin effects on bone: systematic review with meta-analysis of preclinical studies and prospects for oral health. Braz Oral Res 2022; 36:e055. [DOI: 10.1590/1807-3107bor-2022.vol36.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
|
20
|
Ehara H, Takafuji Y, Tatsumi K, Okada K, Mizukami Y, Kawao N, Matsuo O, Kaji H. Role of plasminogen activator inhibitor-1 in muscle wasting induced by a diabetic state in female mice. Endocr J 2021; 68:1421-1428. [PMID: 34248092 DOI: 10.1507/endocrj.ej21-0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Muscle wasting is a complication in patients with diabetes and leads to a reduced quality of life. However, the detailed mechanisms of diabetes-induced muscle wasting remain unknown. Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor that suppresses plasminogen activator activity, is involved in the pathophysiology of various diseases, including diabetes. In the present study, we examined the role of endogenous PAI-1 in the decrease in muscle mass and the impaired grip strength induced by the diabetic state by employing streptozotocin (STZ)-treated PAI-1-deficient female mice. The analyses of skeletal muscles and grip strength were performed in PAI-1-deficient and wild-type mice 4 weeks after the induction of a diabetic state by STZ administration. PAI-1 deficiency did not affect muscle mass in the lower limbs measured by quantitative computed tomography or tissue weights of the tibialis anterior, gastrocnemius and soleus muscles of female mice with or without STZ treatment. On the other hand, PAI-1 deficiency significantly aggravated grip strength decreased by STZ in female mice. PAI-1 deficiency did not affect the mRNA levels of Pax7, MyoD, myogenin or myosin heavy chain in either the tibialis anterior or soleus muscles of female mice with or without STZ treatment. In conclusion, we revealed for the first time that PAI-1 deficiency aggravates grip strength impaired by the diabetic state in female mice, although it did not affect diabetes-decreased muscle mass.
Collapse
Affiliation(s)
- Hiroki Ehara
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
21
|
Evaluation of the Effects of Systemic Irisin Hormone Application on Osseointegration of Titanium Implants: An Experimental Study. J Craniofac Surg 2021; 33:e402-e405. [PMID: 34611101 DOI: 10.1097/scs.0000000000008267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT This study aimed to conduct a biomechanical investigation of the effects of systemic irisin hormone application on the osseointegration of titanium implants in rat tibias. After surgical implementation of titanium implants in the metaphyseal part of the tibiae of rats, the rats were randomly divided into 2 equal groups: control group (n = 10) and irisin group (n = 10). After surgery in the control group, the rats received no further treatment during the 4-week experimental period. The rats in the irisin group were given 100 ng/kg irisin every day for the 4-week experimental period after surgery. At the end of the experimental period, the rats were euthanized. Implants and surrounding bone tissues were collected for biomechanical (Newton) bone implant connection analysis. The Student t test was used for statistical analysis. There were no significant differences in the biomechanical osseointeration values (Newton) of the groups (P > 0.05, P = 0.59). Also, in the irisin group, there was numerically but not statistically more bone implant connection than in the controls. Within the limitations of this study, irisin did not affect the osseointegration of titanium implants.
Collapse
|
22
|
Kornel A, Den Hartogh DJ, Klentrou P, Tsiani E. Role of the Myokine Irisin on Bone Homeostasis: Review of the Current Evidence. Int J Mol Sci 2021; 22:9136. [PMID: 34502045 PMCID: PMC8430535 DOI: 10.3390/ijms22179136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a highly dynamic tissue that is constantly adapting to micro-changes to facilitate movement. When the balance between bone building and resorption shifts more towards bone resorption, the result is reduced bone density and mineralization, as seen in osteoporosis or osteopenia. Current treatment strategies aimed to improve bone homeostasis and turnover are lacking in efficacy, resulting in the search for new preventative and nutraceutical treatment options. The myokine irisin, since its discovery in 2012, has been shown to play an important role in many tissues including muscle, adipose, and bone. Evidence indicate that irisin is associated with increased bone formation and decreased bone resorption, leading to reduced risk of osteoporosis in post-menopausal women. In addition, low serum irisin levels have been found in individuals with osteoporosis and osteopenia. Irisin targets key signaling proteins, promoting osteoblastogenesis and reducing osteoclastogenesis. The present review summarizes the existing evidence regarding the effects of irisin on bone homeostasis.
Collapse
Affiliation(s)
- Amanda Kornel
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.K.); (D.J.D.H.)
| | - Danja J. Den Hartogh
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.K.); (D.J.D.H.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Panagiota Klentrou
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.K.); (D.J.D.H.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
| |
Collapse
|
23
|
Huberman MA, d'Adesky ND, Niazi QB, Perez-Pinzon MA, Bramlett HM, Raval AP. Irisin-Associated Neuroprotective and Rehabilitative Strategies for Stroke. Neuromolecular Med 2021; 24:62-73. [PMID: 34215971 DOI: 10.1007/s12017-021-08666-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/19/2021] [Indexed: 10/20/2022]
Abstract
Irisin, a newly discovered protein hormone that is secreted in response to low frequency whole body vibration (LFV), could be a promising post-stroke rehabilitation therapy for patients who are frail and cannot comply with regular rehabilitation therapy. Irisin is generated from a membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5). Aside from being highly expressed in muscle, FNDC5 is highly expressed in the brain. The cleaved form of FNDC5 was found in the cerebrospinal fluid as well as in various regions of the brain. Numerous studies suggest that irisin plays a key role in brain metabolism and inflammation regulation. Both the metabolism and inflammation govern stroke outcome, and in a published study, we demonstrated that LFV therapy following middle cerebral artery occlusion significantly reduced innate immune response, improved motor function and infarct volume in reproductively senescent female rats. The observed effect of LFV therapy could be working via irisin, therefore, the current review focuses to understand various aspects of irisin including its mechanism of action on the brain.
Collapse
Affiliation(s)
- Melissa Ann Huberman
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nathan D d'Adesky
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Qismat Bahar Niazi
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
24
|
Kawao N, Iemura S, Kawaguchi M, Mizukami Y, Takafuji Y, Kaji H. Role of irisin in effects of chronic exercise on muscle and bone in ovariectomized mice. J Bone Miner Metab 2021; 39:547-557. [PMID: 33566209 DOI: 10.1007/s00774-020-01201-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Exercise is beneficial for the prevention and treatment of osteoporosis. Skeletal muscle affects other tissues via myokines, the release of which is regulated by acute exercise. However, the effects of chronic exercise on myokines linking muscle to bone have not been fully elucidated. Therefore, we investigated the effects of chronic exercise on bone and myokines using ovariectomized (OVX) mice. MATERIALS AND METHODS Treadmill exercise with moderate intensity was performed for 8 weeks after OVX or sham surgery. We measured bone mineral density (BMD) at the femurs and tibias of mice by quantitative computed tomography and myokine mRNA levels in the gastrocnemius and soleus muscles. RESULTS Treadmill exercise ameliorated decreases in trabecular and cortical BMD in the femurs of OVX mice. Irisin is a proteolytic product of fibronectin type III domain-containing 5 (Fndc5). Among the myokines examined, treadmill exercise increased irisin protein and Fndc5 mRNA levels in the gastrocnemius and soleus muscles of sham and OVX mice. Treadmill exercise increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA levels in the gastrocnemius muscles of mice. Fndc5 mRNA levels in the gastrocnemius muscles positively correlated with trabecular BMD, but not with cortical BMD, at the femurs and tibias of mice in simple regression analyses. CONCLUSIONS We demonstrated that chronic exercise elevated irisin expression in the gastrocnemius and soleus muscles of estrogen-deficient mice. Irisin might be related to increases in trabecular BMD in mice; however, further studies are needed to clarify the involvement of irisin in the effects of chronic exercise on muscle/bone interactions.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Shunki Iemura
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Miku Kawaguchi
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
25
|
Zhu X, Li X, Wang X, Chen T, Tao F, Liu C, Tu Q, Shen G, Chen JJ. Irisin deficiency disturbs bone metabolism. J Cell Physiol 2021; 236:664-676. [PMID: 32572964 PMCID: PMC7722136 DOI: 10.1002/jcp.29894] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Balancing the process of bone formation and resorption is important in the maintenance of healthy bone. Therefore, the discovery of novel factors that can regulate bone metabolism remains needed. Irisin is a newly identified hormone-like peptide. Recent studies have reported the involvement of irisin in many physiological and pathological conditions with bone mineral density changes, including osteopenia and osteoporotic fractures. In this study, we generated the first line of Osx-Cre:FNDC5/irisin KO mice, in which FNDC5/irisin was specifically deleted in the osteoblast lineage. Gene and protein expressions of irisin were remarkably decreased in bones but no significant differences in other tissues were observed in knockout mice. FNDC5/irisin deficient mice showed a lower bone density and significantly delayed bone development and mineralization from early-stage to adulthood. Our phenotypical analysis exhibited decreased osteoblast-related gene expression and increased osteoclast-related gene expression in bone tissues, and reduced adipose tissue browning due to bone-born irisin deletion. By harvesting and culturing MSCs from the knockout mice, we found that osteoblastogenesis was inhibited and osteoclastogenesis was increased. By using irisin stimulated wildtype primary cells as a gain-of-function model, we further revealed the effects and mechanisms of irisin on promoting osteogenesis and inhibiting osteoclastogenesis in vitro. In addition, positive effects of exercise, including bone strength enhancement and body weight loss were remarkably weakened due to irisin deficiency. Interestingly, these changes can be rescued by supplemental administration of recombinant irisin during exercise. Our study indicates that irisin plays an important role in bone metabolism and the crosstalk between bone and adipose tissue. Irisin represents a potential molecule for the prevention and treatment of bone metabolic diseases.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Department of Oral & Cranio‐Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Xiangfen Li
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Xiaoxuan Wang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Ting Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Fengjuan Tao
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Chuanju Liu
- Department of Orthopedics Surgery and Department of Cell Biology, New York University School of Medicine, New York, New York
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Guofang Shen
- Department of Oral & Cranio‐Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jake J. Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
26
|
Iemura S, Kawao N, Akagi M, Kaji H. Role of Dkk2 in the Muscle/bone Interaction of Androgen-Deficient Mice. Exp Clin Endocrinol Diabetes 2020; 129:770-775. [PMID: 33352594 DOI: 10.1055/a-1331-7021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Androgen deficiency is known to cause both osteoporosis and sarcopenia. Myokines, humoral factors secreted from the skeletal muscles, have recently been getting attention as the key factors related to the interactions between muscle and bone. Dickkopf (Dkk) 2 is known as an inhibitor of canonical Wnt/β-catenin signaling, and Wnt/β-catenin signaling is crucial for the maintenance of muscle and bone. The present study was therefore performed to investigate the roles of Dkk2 in the alterations of muscle and bone of androgen-deficient mice with orchidectomy (ORX). ORX significantly enhanced Dkk2 mRNA levels, but not other Dkks and secreted frizzled related proteins, in the soleus muscles of mice. Moreover, ORX enhanced serum Dkk2 levels, but not Dkk2 mRNA levels in the tibial bone tissues, the white adipose tissues and liver of mice. In simple regression analyses, serum Dkk2 levels were negatively related to trabecular bone mineral density at the tibias in mice employed in the experiments. In vitro experiments, testosterone suppressed Dkk2 mRNA levels in mouse muscle C2C12 cells. In conclusion, we showed that androgen deficiency enhances Dkk2 expression and secretion in the muscles of mice. Dkk2 might be involved in androgen deficiency-induced muscle wasting and osteopenia as a myokine linking muscle to bone.
Collapse
Affiliation(s)
- Shunki Iemura
- Department of Orthopaedic Surgery, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Masao Akagi
- Department of Orthopaedic Surgery, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
27
|
Barbalho SM, Flato UAP, Tofano RJ, Goulart RDA, Guiguer EL, Detregiachi CRP, Buchaim DV, Araújo AC, Buchaim RL, Reina FTR, Biteli P, Reina DOBR, Bechara MD. Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications. Int J Mol Sci 2020; 21:3607. [PMID: 32443765 PMCID: PMC7279354 DOI: 10.3390/ijms21103607] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is capable of secreting different factors in order to communicate with other tissues. These mediators, the myokines, show potentially far-reaching effects on non-muscle tissues and can provide a molecular interaction between muscle and body physiology. Sarcopenia is a chronic degenerative neuromuscular disease closely related to cardiomyopathy and chronic heart failure, which influences the production and release of myokines. Our objective was to explore the relationship between myokines, sarcopenia, and cardiovascular diseases (CVD). The autocrine, paracrine, and endocrine actions of myokines include regulation of energy expenditure, insulin sensitivity, lipolysis, free fatty acid oxidation, adipocyte browning, glycogenolysis, glycogenesis, and general metabolism. A sedentary lifestyle accelerates the aging process and is a risk factor for developing sarcopenia, metabolic syndrome, and CVD. Increased adipose tissue resulting from the decrease in muscle mass in patients with sarcopenia may also be involved in the pathology of CVD. Myokines are protagonists in the complex condition of sarcopenia, which is associated with adverse clinical outcomes in patients with CVD. The discovery of new pathways and the link between myokines and CVD remain a cornerstone toward multifaceted interventions and perhaps the minimization of the damage resulting from muscle loss induced by factors such as atherosclerosis.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
- School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17506-000, São Paulo, Brazil;
- Department of Biochemistry and Nutrition, Food Technology School, Marília 17525-902, São Paulo, Brazil
| | - Uri Adrian Prync Flato
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
- School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17506-000, São Paulo, Brazil;
| | - Ricardo José Tofano
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
- School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17506-000, São Paulo, Brazil;
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
- School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17506-000, São Paulo, Brazil;
- Department of Biochemistry and Nutrition, Food Technology School, Marília 17525-902, São Paulo, Brazil
| | - Cláudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
- School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17506-000, São Paulo, Brazil;
| | - Rogério Leone Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB–USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012901, São Paulo, Brazil
| | - Fábio Tadeu Rodrigues Reina
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
| | - Piero Biteli
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
| | - Daniela O. B. Rodrigues Reina
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (U.A.P.F.); (R.J.T.); (R.d.A.G.); (E.L.G.); (C.R.P.D.); (D.V.B.); (A.C.A.); (R.L.B.); (F.T.R.R.); (P.B.); (D.O.B.R.R.)
| | - Marcelo Dib Bechara
- School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17506-000, São Paulo, Brazil;
| |
Collapse
|