1
|
Buss DJ, Deering J, Reznikov N, McKee MD. Understanding the structural biology of osteomalacia through multiscale 3D X-ray and electron tomographic imaging: a review of X-linked hypophosphatemia, the Hyp mouse model, and imaging methods. JBMR Plus 2025; 9:ziae176. [PMID: 39896117 PMCID: PMC11783288 DOI: 10.1093/jbmrpl/ziae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Biomineralization in bones and teeth is a highly regulated extracellular event. In the skeleton, mineralization at the tissue level is controlled within the collagenous extracellular matrix by both circulating and local factors. While systemic regulation of mineral ion homeostasis has been well-studied over many decades, much less is known about the regulation of mineralization at the local level directly within the extracellular matrix. Some local regulators have been identified, such as tissue-nonspecific alkaline phosphatase (TNAP), phosphate-regulating endopeptidase homolog X-linked (PHEX), pyrophosphate, and osteopontin, and others are currently under investigation. Dysregulation of the actions of enzyme-inhibitor substrate pairs engaged in mineralization (as we describe by the Stenciling Principle for extracellular matrix mineralization) leads to osteomalacic "soft bone" diseases, such as hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH). This review addresses how advances in 3D imaging tools and software now allow contextual and correlative viewing and interpretation of mineralized tissue structure across most length scales. Contextualized and integrated 3D multiscale data obtained from these imaging modalities have afforded an unprecedented structural biology view of bone from the macroscale to the nanoscale. Such correlated volume imaging data is highly quantitative, providing not only an integrated view of the skeleton in health, but also a means to observe alterations that occur in disease. In the context of the many hierarchical levels of skeletal organization, here we summarize structural features of bone over multiple length scales, with a focus on nano- and microscale features as viewed by X-ray and electron tomography imaging methods (submicron μCT and FIB-SEM). We additionally summarize structural changes observed after dysregulation of the mineralization pathway, focusing here on the Hyp mouse model for XLH. More specifically, we summarize how mineral patterns/packs at the microscale (3D crossfibrillar mineral tessellation), and how this is defective in Hyp mouse bone and Hyp enthesis fibrocartilage.
Collapse
Affiliation(s)
- Daniel J Buss
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Joseph Deering
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Akabane C, Kimura M, Yamamoto Y, Shimizu N, Weinkamer R, Wagermaier W, Fratzl P, Kashiwagi Y, Sawada K, Murakami S. Nanostructural Analysis of Age-Related Changes Affecting Human Dentin. Calcif Tissue Int 2025; 116:12. [PMID: 39751850 DOI: 10.1007/s00223-024-01318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
Human dentin performs its function throughout life, even though it is not remodeled like bone. Therefore, dentin must have extreme durability against daily repetitive loading. Elucidating its durability requires a comprehensive understanding of its shape, structure, and anisotropy at various levels of its structure. However, few studies have examined the nanostructure of dentin as a whole and not much is known about its age-related changes. Our aim is to characterize the mineral particle characteristics of human dentin and age-related changes using synchrotron scanning small- and wide-angle X-ray scattering. 30 molar and premolar teeth extracted from 16 to 77-year-old individuals for orthodontic or periodontal reasons were used. Synchrotron-based X-ray scattering was employed to acquire two-dimensional maps of nanostructural features. These maps revealed a negative gradient of particle size toward the pulp chamber. The preferential orientation of particles was position-dependent, with a higher orientation in the area from the pulp horn to the cusp tip and root region. These patterns were maintained in different tooth types. The mineral particle thickness of the inner crown increased significantly with age. This increase could relate to the filling of tubules and, therefore, likely contribute to the deterioration of the mechanical performance of teeth with age.
Collapse
Affiliation(s)
- Chika Akabane
- Research and Development Headquarters, LION Corporation, 7 Chome-2-1, Hirai, Edogawa, Tokyo, 132-0035, Japan.
| | - Mitsuo Kimura
- Research and Development Headquarters, LION Corporation, 7 Chome-2-1, Hirai, Edogawa, Tokyo, 132-0035, Japan
| | - Yukio Yamamoto
- Research and Development Headquarters, LION Corporation, 7 Chome-2-1, Hirai, Edogawa, Tokyo, 132-0035, Japan
| | - Nobukata Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki, Japan
- Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo, Japan
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Yoichiro Kashiwagi
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keigo Sawada
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
3
|
Couoh LR, Bucio L, Ruvalcaba JL, Manoel B, Tang T, Gourrier A, Grandfield K. Tooth acellular extrinsic fibre cementum incremental lines in humans are formed by parallel branched Sharpey's fibres and not by its mineral phase. J Struct Biol 2024; 216:108084. [PMID: 38479547 DOI: 10.1016/j.jsb.2024.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
In humans, the growth pattern of the acellular extrinsic fibre cementum (AEFC) has been useful to estimate the age-at-death. However, the structural organization behind such a pattern remains poorly understood. In this study tooth cementum from seven individuals from a Mexican modern skeletal series were analyzed with the aim of unveiling the AEFC collagenous and mineral structure using multimodal imaging approaches. The organization of collagen fibres was first determined using: light microscopy, transmission electron microscopy (TEM), electron tomography, and plasma FIB scanning electron microscopy (PFIB-SEM) tomography. The mineral properties were then investigated using: synchrotron small-angle X-ray scattering (SAXS) for T-parameter (correlation length between mineral particles); synchrotron X-ray diffraction (XRD) for L-parameter (mineral crystalline domain size estimation), alignment parameter (crystals preferred orientation) and lattice parameters a and c; as well as synchrotron X-ray fluorescence for spatial distribution of calcium, phosphorus and zinc. Results show that Sharpey's fibres branched out fibres that cover and uncover other collagen bundles forming aligned arched structures that are joined by these same fibres but in a parallel fashion. The parallel fibres are not set as a continuum on the same plane and when they are superimposed project the AEFC incremental lines due to the collagen birefringence. The orientation of the apatite crystallites is subject to the arrangement of the collagen fibres, and the obtained parameter values along with the elemental distribution maps, revealed this mineral tissue as relatively homogeneous. Therefore, no intrinsic characteristics of the mineral phase could be associated with the alternating AEFC incremental pattern.
Collapse
Affiliation(s)
- Lourdes R Couoh
- Dirección de Antropología Física, Instituto Nacional de Antropología e Historia, Paseo de la Reforma y Gandhi, Chapultepec Polanco 11560, CDMX, México.
| | - Lauro Bucio
- Laboratorio de Cristalofísica y Materiales Naturales, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, CDMX, México
| | - José Luis Ruvalcaba
- Laboratorio Nacional de Ciencias para la Investigación y Conservación del Patrimonio Cultural, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, CDMX, México
| | - Britta Manoel
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs 38000, Grenoble, France; Bruker AXS Advanced X-ray Solutions GmbH, Östliche Rheinbrückenstraße 49 76187, Karlsruhe, Germany
| | - Tengteng Tang
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada
| | | | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada.
| |
Collapse
|
4
|
Biguetti CC, Lakkasetter Chandrashekar B, Simionato GB, Momesso NR, Duarte MAH, Rodrigues DC, Matsumoto MA. Influence of age and gender on alveolar bone healing post tooth extraction in 129 Sv mice: a microtomographic, histological, and biochemical characterization. Clin Oral Investig 2023; 27:4605-4616. [PMID: 37261497 DOI: 10.1007/s00784-023-05087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVES To analyze the effect of biological sex and aging on craniofacial bone features in 129 Sv mice and their influence on dental socket healing post tooth extraction. MATERIALS AND METHODS A total of 52 129 Sv mice were used, of which 28 were young (3-4 months) and 24 were aged (17-18 months), equally distributed according to biological sex. After an upper right incisor extraction, mice specimens were collected at 7, 14, and 21-days post-surgery for microtomographic (microCT) and comprehensive histological analysis. Mandible, skull bones, and maxillae at 21 days were analyzed by microCT, while blood plasma samples were collected for the detection of key bone turnover markers (P1NP and CTX-1) by enzyme-linked immunosorbent (ELISA) assay. RESULTS Aged females depicted significantly decreased mineralized bone content in alveolar sockets in comparison to young females and aged males at day 7, and aged males at day 14. Mandible RCA and Ma.AR of aged females were also significantly decreased in comparison with young females. Histological evaluation revealed that all alveolar sockets healed at 21 days with inflammation resolution and deposition of new bone. Immunohistochemistry for TRAP revealed increased area density for osteoclasts in alveolar sockets of aged females when compared to young females at 21 days. While a significant increase in CTX-1 levels was detected in blood plasma of aged females when compared to young females, P1NP levels did not significantly change between young and older females. No significant changes were observed for males. CONCLUSIONS Age and gender can significantly affect craniofacial bones of 129 Sv mice, especially maxilla and mandible in females. Considering the altered bone resorption parameters and delayed alveolar bone healing in older females, careful deliberation is necessary during development of pre-clinical models for craniofacial research. CLINICAL RELEVANCE Aging can be a contributing factor to slower bone healing in craniofacial bones. However, there are no sufficient experimental studies that have addressed this phenomenon along with biological sex taken into consideration.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Department of Surgery and Biomechanics, School of Podiatric Medicine, University of Texas Rio Grande Valley, Harlingen, TX, USA.
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil.
| | | | - Gustavo Baroni Simionato
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil
| | - Nataira Regina Momesso
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dental Materials and Endodontics, School of Dentistry of Bauru, University of Sao Paulo (USP), Bauru, São Paulo, Brazil
| | | | - Mariza Akemi Matsumoto
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil
| |
Collapse
|