1
|
Yaari Z, Cheung JM, Baker HA, Frederiksen RS, Jena PV, Horoszko CP, Jiao F, Scheuring S, Luo M, Heller DA. Nanoreporter of an Enzymatic Suicide Inactivation Pathway. NANO LETTERS 2020; 20:7819-7827. [PMID: 33119310 PMCID: PMC8177003 DOI: 10.1021/acs.nanolett.0c01858] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Enzymatic suicide inactivation, a route of permanent enzyme inhibition, is the mechanism of action for a wide array of pharmaceuticals. Here, we developed the first nanosensor that selectively reports the suicide inactivation pathway of an enzyme. The sensor is based on modulation of the near-infrared fluorescence of an enzyme-bound carbon nanotube. The nanosensor responded selectively to substrate-mediated suicide inactivation of the tyrosinase enzyme via bathochromic shifting of the nanotube emission wavelength. Mechanistic investigations revealed that singlet oxygen generated by the suicide inactivation pathway induced the response. We used the nanosensor to quantify the degree of enzymatic inactivation by measuring response rates to small molecule tyrosinase modulators. This work resulted in a new capability of interrogating a specific route of enzymatic death. Potential applications include drug screening and hit-validation for compounds that elicit or inhibit enzymatic inactivation and single-molecule measurements to assess population heterogeneity in enzyme activity.
Collapse
Affiliation(s)
- Zvi Yaari
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Justin M. Cheung
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Hanan A. Baker
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Rune S. Frederiksen
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Prakrit V. Jena
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christopher, P. Horoszko
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Fang Jiao
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Simon Scheuring
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Minkui Luo
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| |
Collapse
|
2
|
Thompson Z, Cowan JA. Artificial Metalloenzymes: Recent Developments and Innovations in Bioinorganic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000392. [PMID: 32372559 DOI: 10.1002/smll.202000392] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Cellular life is orchestrated by the biochemical components of cells that include nucleic acids, lipids, carbohydrates, proteins, and cofactors such as metabolites and metals, all of which coalesce and function synchronously within the cell. Metalloenzymes allow for such complex chemical processes, as they catalyze a myriad of biochemical reactions both efficiently and selectively, where the metal cofactor provides additional functionality to promote reactivity not readily achieved in their absence. While the past 60 years have yielded considerable insight on how enzymes catalyze these reactions, a need to engineer and develop artificial metalloenzymes has been driven not only by industrial and therapeutic needs, but also by innate human curiosity. The design of miniature enzymes, both rationally and through serendipity, using both organic and inorganic building blocks has been explored by many scientists over the years and significant progress has been made. Herein, recent developments over the past 5 years in areas that have not been recently reviewed are summarized, and prospects for future research in these areas are addressed.
Collapse
Affiliation(s)
- Zechariah Thompson
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - James Allan Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
3
|
Imaging of a clickable anticancer iridium catalyst. J Inorg Biochem 2018; 180:179-185. [DOI: 10.1016/j.jinorgbio.2017.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/06/2017] [Accepted: 12/24/2017] [Indexed: 12/24/2022]
|
4
|
Agbale CM, Cardoso MH, Galyuon IK, Franco OL. Designing metallodrugs with nuclease and protease activity. Metallomics 2017; 8:1159-1169. [PMID: 27714031 DOI: 10.1039/c6mt00133e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The accidental discovery of cisplatin some 50 years ago generated renewed interest in metallopharmaceuticals. Beyond cisplatin, many useful metallodrugs have been synthesized for the diagnosis and treatment of various diseases, but toxicity concerns, and the propensity to induce chemoresistance and secondary cancers make it imperative to search for novel metallodrugs that address these limitations. The Amino Terminal Cu(ii) and Ni(ii) (ATCUN) binding motif has emerged as a suitable template to design catalytic metallodrugs with nuclease and protease activities. Unlike their classical counterparts, ATCUN-based metallodrugs exhibit low toxicity, employ novel mechanisms to irreversibly inactivate disease-associated genes or proteins providing in principle, a channel to circumvent the rapid emergence of chemoresistance. The ATCUN motif thus presents novel strategies for the treatment of many diseases including cancers, HIV and infections caused by drug-resistant bacteria at the genetic level. This review discusses their design, mechanisms of action and potential for further development to expand their scope of application.
Collapse
Affiliation(s)
- Caleb Mawuli Agbale
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana and S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Isaac Kojo Galyuon
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
5
|
Suh J. Progress in Designing Artificial Proteases: A New Therapeutic Option for Amyloid Diseases. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Joyner JC, Cowan JA. Target-directed catalytic metallodrugs. Braz J Med Biol Res 2013; 46:465-85. [PMID: 23828584 PMCID: PMC3854446 DOI: 10.1590/1414-431x20133086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 01/08/2023] Open
Abstract
Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vs metal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.
Collapse
Affiliation(s)
- J C Joyner
- Evans Laboratory of Chemistry, Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
7
|
Prakash J, Kodanko JJ. Metal-based methods for protein inactivation. Curr Opin Chem Biol 2013; 17:197-203. [DOI: 10.1016/j.cbpa.2012.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/29/2012] [Accepted: 12/07/2012] [Indexed: 01/16/2023]
|
8
|
Joyner JC, Hocharoen L, Cowan JA. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates. J Am Chem Soc 2012; 134:3396-410. [PMID: 22200082 DOI: 10.1021/ja208791f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein oxidation. This class of metal chelate-lisinopril complexes possesses a range of high-affinity binding to ACE, introduces the advantage of irreversible catalytic turnover, and marks an important step toward the development of multiple-turnover drugs for selective inactivation of sACE-1.
Collapse
Affiliation(s)
- Jeff C Joyner
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
9
|
Prakash J, Schmitt SM, Dou QP, Kodanko JJ. Inhibition of the purified 20S proteasome by non-heme iron complexes. Metallomics 2012; 4:174-8. [PMID: 22170477 PMCID: PMC3791428 DOI: 10.1039/c2mt00131d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Polypyridyl pentadentate ligands N4Py (1) and Bn-TPEN (2), along with their respective iron complexes, have been investigated for their ability to inhibit the purified 20S proteasome. Results demonstrated that the iron complexes of both ligands are potent inhibitors of the 20S proteasome (IC(50) = 9.2 μM for [Fe(II)(OH(2))(N4Py)](2+) (3) and 4.0 μM for [Fe(II)(OH(2))(Bn-TPEN)](2+) (4)). Control experiments showed that ligand 1 or Fe(II) alone showed no inhibition, whereas 2 was moderately active (IC(50) = 96 μM), suggesting that iron, when bound to these ligands, plays a key role in proteasome inhibition. Results from time-dependent inactivation studies suggest different modes of action for the iron complexes. Time-dependent decay of proteasome activity was observed upon incubation in the presence of 4, which accelerated in the presence of DTT, suggesting reductive activation of O(2) and oxidation of the 20S proteasome as a mode of action. In contrast, loss of 20S proteasome activity was not observed with 3 over time, suggesting inhibition through direct binding of the iron complex to the enzyme. Inhibition of the 20S proteasome by 4 was not blocked by reactive oxygen species scavengers, consistent with a unique oxidant being responsible for the time-dependent inhibition observed.
Collapse
Affiliation(s)
- Jai Prakash
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Sara M. Schmitt
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology School of Medicine Wayne State University, Detroit, MI 48201, USA
| | - Q. Ping Dou
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology School of Medicine Wayne State University, Detroit, MI 48201, USA
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
10
|
Bradford S, Cowan JA. Catalytic metallodrugs targeting HCV IRES RNA. Chem Commun (Camb) 2012; 48:3118-20. [DOI: 10.1039/c2cc17377h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Grasso G, Giuffrida ML, Rizzarelli E. Metallostasis and amyloid β-degrading enzymes. Metallomics 2012; 4:937-49. [DOI: 10.1039/c2mt20105d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
|
13
|
Prakash J, Kodanko JJ. Selective Inactivation of Serine Proteases by Nonheme Iron Complexes. Inorg Chem 2011; 50:3934-45. [DOI: 10.1021/ic102320j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jai Prakash
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
14
|
Fernández-Musoles R, López-Díez JJ, Torregrosa G, Vallés S, Alborch E, Manzanares P, Salom JB. Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction. Peptides 2010; 31:1926-33. [PMID: 20600419 DOI: 10.1016/j.peptides.2010.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 12/22/2022]
Abstract
Endothelin-converting enzyme (ECE), a key peptidase in the endothelin (ET) system, cleaves inactive big ET-1 to produce active ET-1, which binds to ET(A) receptors to exert its vasoconstrictor and pressor effects. ECE inhibition could be beneficial in the treatment of hypertension. In this study, a set of eight lactoferricin B (LfcinB)-derived peptides, previously characterized in our laboratory as angiotensin-converting enzyme (ACE) inhibitory peptides, was examined for their inhibitory effects on ECE. In vitro inhibitory effects on ECE activity were assessed using both the synthetic fluorogenic peptide substrate V (FPS V) and the natural substrate big ET-1. To study vasoactive effects, an ex vivo functional assay was developed using isolated rabbit carotid artery segments. With FPS V, only four LfcinB-derived peptides induced inhibition of ECE activity, whereas the eight peptides showed ECE inhibitory effects with big ET-1 as substrate. Regarding the ex vivo assays, six LfcinB-derived peptides showed inhibition of big ET-1-induced, ECE-dependent vasoconstriction. A positive correlation between the inhibitory effects of LfcinB-derived peptides on ECE activity when using big ET-1 and the inhibitory effects on ECE-dependent vasoconstriction was shown. ECE-independent vasoconstriction induced by ET-1 was not affected, thus discarding effects of LfcinB-derived peptides on ET(A) receptors or intracellular signal transduction mechanisms. In conclusion, a combined in vitro and ex vivo method to assess the effects of potentially antihypertensive peptides on the ET system has been developed and applied to show the inhibitory effects on ECE-dependent vasoconstriction of six LfcinB-derived peptides, five of which were dual vasopeptidase (ACE/ECE) inhibitors.
Collapse
Affiliation(s)
- Ricardo Fernández-Musoles
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Burjassot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Nepravishta R, Bellomaria A, Polizio F, Paci M, Melino S. Reticulon RTN1-CCT Peptide: A Potential Nuclease and Inhibitor of Histone Deacetylase Enzymes. Biochemistry 2009; 49:252-8. [DOI: 10.1021/bi9012676] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | - Sonia Melino
- Department of Sciences and Chemical Technologies
| |
Collapse
|
16
|
Affiliation(s)
- Kathryn L Haas
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708-0346, USA
| | | |
Collapse
|
17
|
Abstract
A new paradigm for drug activity is presented, which includes both recognition and subsequent irreversible inactivation of therapeutic targets. Application to both RNA and protein biomolecules has been demonstrated. In contrast to RNA targets that are subject to strand scission chemistry mediated by ribose H-atom abstraction, proteins appear to be inactivated either through oxidative damage to amino acid side chains around the enzyme active site, or by backbone hydrolysis.
Collapse
Affiliation(s)
| | - J. A. Cowan
- Correspondence to: Dr. J. A. Cowan, Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210. Tel: 614 292 2703; Fax: 614 292 1685;
| |
Collapse
|
18
|
Abouelatta AI, Campanali AA, Ekkati AR, Shamoun M, Kalapugama S, Kodanko JJ. Oxidation of the Natural Amino Acids by a Ferryl Complex: Kinetic and Mechanistic Studies with Peptide Model Compounds. Inorg Chem 2009; 48:7729-39. [DOI: 10.1021/ic900527c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ahmed I. Abouelatta
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202
| | - Ashley A. Campanali
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202
| | - Anil R. Ekkati
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202
| | - Mark Shamoun
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202
| | - Suneth Kalapugama
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202
| |
Collapse
|
19
|
Lee TY, Suh J. Target-selective peptide-cleaving catalysts as a new paradigm in drug design. Chem Soc Rev 2009; 38:1949-57. [PMID: 19551175 DOI: 10.1039/b710345j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This tutorial review describes the evolution of peptide-hydrolyzing metal catalysts towards artificial metalloproteases cleaving target proteins selectively. The catalytic cleavage of the backbone of a protein related to a disease may effect a cure. In particular, a new therapeutic option for amyloid diseases such as Alzheimer's disease, diabetes and Parkinson's disease has been presented. The new paradigm of drug design based on artificial metalloproteases should be of interest to researchers in the areas of biomimetic chemistry, as well as medicinal chemistry.
Collapse
Affiliation(s)
- Tae Yeon Lee
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | | |
Collapse
|
20
|
Abstract
Unique properties of metal complexes, such as structural diversity, adjustable ligand exchange kinetics, fine-tuned redox activities, and distinct spectroscopic signatures, make them exciting scaffolds not only for binding to nucleic acids but increasingly also to proteins as non-traditional targets. This feature article discusses recent trends in this field. These include the use of chemically inert metal complexes as structural scaffolds for the design of enzyme inhibitors, new strategies for inducing selective coordination chemistry at the protein binding site, recent advances in the development of catalytic enzyme inhibitors, and the design of metal complexes that can inject electrons or holes into redox enzymes. A common theme in many of the discussed examples is that binding selectivity is at least in part achieved through weak interactions between the ligand sphere and the protein binding site. These examples hint to an exciting future in which "organic-like" molecular recognition principles are combined with properties that are unique to metals and thus promise to yield compounds with novel and unprecedented properties.
Collapse
Affiliation(s)
- Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043, Marburg, Germany.
| |
Collapse
|
21
|
Suh J, Chei WS. Metal complexes as artificial proteases: toward catalytic drugs. Curr Opin Chem Biol 2008; 12:207-13. [DOI: 10.1016/j.cbpa.2008.01.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/21/2007] [Accepted: 01/18/2008] [Indexed: 11/16/2022]
|
22
|
Gokhale NH, Bradford S, Cowan JA. Catalytic Inactivation of Human Carbonic Anhydrase I by a Metallopeptide−Sulfonamide Conjugate is Mediated by Oxidation of Active Site Residues. J Am Chem Soc 2008; 130:2388-9. [PMID: 18251475 DOI: 10.1021/ja0778038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikhil H. Gokhale
- Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Seth Bradford
- Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - J. A. Cowan
- Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| |
Collapse
|
23
|
Abstract
Drug discovery remains a top priority in medical science. The phenomenon of drug resistance has heightened the need for both new classes of pharmaceutical, as well as novel modes of action. A new paradigm for drug activity is presented, which includes both recognition and subsequent irreversible inactivation of therapeutic targets. Application to both RNA and enzyme therapeutic targets has been demonstrated, while incorporation of both binding and catalytic centers provides a double-filter mechanism for improved target selectivity and lower dosing. In contrast to RNA targets that are subject to strand scission chemistry mediated by ribose H-atom abstraction, proteins appear to be inactivated through oxidative damage to amino acid side chains around the enzyme active site. Methods to monitor both intracellular delivery and activity against RNA targets have been developed based on plasmid expression of the green fluorescent protein (GFP). Herein, the activity of representative metallodrugs is described in the context of both in vitro and cellular assays, and the mechanism of action is discussed. Studies with scavengers of reactive oxygen species (ROS) confirmed hydrogen peroxide to be an obligatory diffusible intermediate, prior to formation of a Cu-bound hydroxyl radical species generated from Fenton-type chemistry.
Collapse
|
24
|
Gokhale NH, Bradford S, Cowan JA. Stimulation and oxidative catalytic inactivation of thermolysin by copper.Cys-Gly-His-Lys. J Biol Inorg Chem 2007; 12:981-7. [PMID: 17618468 DOI: 10.1007/s00775-007-0270-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 06/09/2007] [Indexed: 10/23/2022]
Abstract
[Cu(2+).Cys-Gly-His-Lys] stimulates thermolysin (TLN) activity at low concentration (below 10 microM) and inhibits the enzyme at higher concentration, with binding affinities of 2.0 and 4.9 microM, respectively. The metal-free Cys-Gly-His-Lys peptide also stimulates TLN activity, with an apparent binding affinity of 2.2 microM. Coordination of copper through deprotonated imine nitrogens, the histidyl nitrogen, and the free N-terminal amino group is consistent with the characteristic absorption spectrum of a Cu(2+)-amino-terminal copper and nickel binding motif (lambda (max) approximately 525 nm). The lack of thiol coordination is suggested by both the absence of a thiol to Cu(2+) charge transfer band and electrochemical studies, since the electrode potential (vs. Ag/AgCl) 0.84 V (DeltaE = 92 mV) for the Cu(3+/2+) redox couple obtained for [Cu(2+).Cys-Gly-His-Lys] was found to be in close agreement with that of a related complex [Cu(2+).Lys-Gly-His-Lys](+) (0.84 V, DeltaE = 114 mV). The N-terminal cysteine appears to be available as a zinc-anchoring residue and plays a critical functional role since the [Cu(2+).Lys-Gly-His-Lys](+) homologue exhibits neither stimulation nor inhibition of TLN. Under oxidizing conditions (ascorbate/O(2)) the catalyst is shown to mediate the complete irreversible inactivation of TLN at concentrations where enzyme activity would otherwise be stimulated. The observed rate constant for inactivation of TLN activity was determined as k (obs) = 7.7 x 10(-2) min(-1), yielding a second-order rate constant of (7.7 +/- 0.9) x 10(4) M(-1) min(-1). Copper peptide mediated generation of reactive oxygen species that subsequently modify active-site residues is the most likely pathway for inactivation of TLN rather than cleavage of the peptide backbone.
Collapse
Affiliation(s)
- Nikhil H Gokhale
- Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|