1
|
Szmigiel-Bakalarz K, Kłopotowska D, Wietrzyk J, Malik M, Morzyk-Ociepa B. Vibrational and DFT Studies and Anticancer Activity of Novel Pd(II) and Pt(II) Complexes with Chloro Derivatives of 7-Azaindole-3-Carbaldehyde. Molecules 2024; 29:5909. [PMID: 39769997 PMCID: PMC11678368 DOI: 10.3390/molecules29245909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the cis or trans conformation of the aldehyde group in the ligands, and the presence of trans isomers in the metal complexes obtained in the solid state. In vitro tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3). The platinum complex, trans-[PtCl2(5ClL)2], exhibited superior activity against A2780cis (IC50 = 4.96 ± 0.49 µM) and MDA-MB-231 (IC50 = 4.83 ± 0.38 µM) compared to cisplatin, while the palladium complexes (trans-[PdCl2(4ClL)2] and trans-[PdCl2(5ClL)2]) demonstrated enhanced selectivity with reduced toxicity to normal fibroblasts (IC50 = 11.29 ± 6.65 µM and 14.98 ± 5.59 µM, respectively).
Collapse
Affiliation(s)
- Ksenia Szmigiel-Bakalarz
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Dagmara Kłopotowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wroclaw, Poland; (D.K.); (J.W.)
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wroclaw, Poland; (D.K.); (J.W.)
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | - Barbara Morzyk-Ociepa
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| |
Collapse
|
2
|
Novel cis-Pt(II) Complexes with Alkylpyrazole Ligands: Synthesis, Characterization, and Unusual Mode of Anticancer Action. Bioinorg Chem Appl 2022; 2022:1717200. [PMID: 35281329 PMCID: PMC8906972 DOI: 10.1155/2022/1717200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
One concept of improving anticancer effects of conventional platinum-based antitumor drugs consists of conjugating these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, physicochemical characterization, biological effects, and mechanisms of action of four new analogs of conventional cisplatin, namely, cis-Pt(II) complexes containing either methyl or ethyl pyrazole N-donor ligands and chlorido or iodido ligands. It is noteworthy that while chlorido complexes display activity in a variety of cancer cell lines comparable to cisplatin, iodido complexes are considerably more potent due to their enhanced hydrophobicity and consequently enhanced cellular accumulation. Moreover, all of the studied Pt(II) alkylpyrazole complexes display a higher selectivity for tumor cells and effectively overcome the acquired resistance to cisplatin. Further results focused on the mechanism of action of the studied complexes and showed that in contrast to cisplatin and several platinum-based antitumor drugs, DNA damage by the investigated Pt(II)-alkylpyrazole complexes does not play a major role in their mechanism of action. Our findings demonstrate that inhibition of the tubulin kinesin Eg5, which is essential for forming a functional mitotic spindle, plays an important role in their mechanism of antiproliferative action.
Collapse
|
3
|
Štarha P, Drahoš B, Herchel R. An unexpected in-solution instability of diiodido analogue of picoplatin complicates its biological characterization. Dalton Trans 2021; 50:6071-6075. [PMID: 33913454 DOI: 10.1039/d1dt00740h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex cis-[PtI2(NH3)(pic)] (1; pic = 2-methylpyridine), a diiodido analogue of clinically studied picoplatin (2), is unstable in solution, which is intriguingly connected with the release of its pic ligand. This observation complicates the biological testing of e.g. cytotoxicity in human cancer cells for 1.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Bohuslav Drahoš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
4
|
The importance of indole and azaindole scaffold in the development of antitumor agents. Eur J Med Chem 2020; 203:112506. [PMID: 32688198 DOI: 10.1016/j.ejmech.2020.112506] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
With some indoles and azaindoles being successfully developed as anticancer drugs, the design and synthesis of indole and azaindole derivatives with remarkable antitumor activity has received increasing attention and significant progress has been made. This paper reviews the recent progress in the study of tumorigenesis, mechanism of actions and structure activity relationships about anticancer indole and azindole derivatives. Combining structure activity relationships and molecular targets-related knowledge, this review will help researchers design more effective, safe and cost-effective anticancer indoles and azindoles agents.
Collapse
|
5
|
A comparative study on cisplatin analogs containing 7-azaindole (7AIH) and its seven halogeno-derivatives: Vibrational spectra, DFT calculations and in vitro antiproliferative activity. Crystal and molecular structure of cis-[PtCl2(4Br7AIH)2]·DMF. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Štarha P, Trávníček Z. Azaindoles: Suitable ligands of cytotoxic transition metal complexes. J Inorg Biochem 2019; 197:110695. [DOI: 10.1016/j.jinorgbio.2019.110695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/10/2019] [Accepted: 04/21/2019] [Indexed: 12/28/2022]
|
7
|
Morzyk-Ociepa B, Szmigiel-Bakalarz K, Nentwig M, Oeckler O, Malik-Gajewska M, Turlej E, Wietrzyk J, Michalska D. Platinum(II) and copper(II) complexes of 7-azaindole-3-carboxaldehyde: crystal structures, IR and Raman spectra, DFT calculations and in vitro antiproliferative activity of the platinum(II) complex. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Dysz K, Malik-Gajewska M, Banach J, Morzyk-Ociepa B. Palladium(II) complexes containing seven halogeno-derivatives of 7-azaindole: molecular structures, vibrational spectra, DFT calculations and in vitro cytotoxic activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
In vitro anticancer active cis-Pt(II)-diiodido complexes containing 4-azaindoles. J Biol Inorg Chem 2019; 24:257-269. [DOI: 10.1007/s00775-019-01643-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
|
10
|
Štarha P, Vančo J, Trávníček Z. Platinum iodido complexes: A comprehensive overview of anticancer activity and mechanisms of action. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140:349-382. [PMID: 28985575 DOI: 10.1016/j.ejmech.2017.09.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Since the antitumor activity of cisplatin was discovered in 1967 by Rosenberg, platinum-based anticancer drugs have played an important role in chemotherapy in clinic. Nevertheless, platinum anticancer drugs also have caused severe side effects and cross drug resistance which limited their applications. Therefore, a significant amount of efforts have been devoted to developing new platinum-based anticancer agents with equal or higher antitumor activity but lower toxicity. Until now, a large number of platinum-based complexes have been prepared and extensively investigated in vitro and in vivo. Among them, some platinum-based complexes revealing excellent anticancer activity showed the potential to be developed as novel type of anticancer agents. In this account, we present such platinum-based anticancer complexes which owning various types of ligands, such as, amine carrier ligands, leaving groups, reactive molecule, steric hindrance groups, non-covalently binding platinum (II) complexes, Platinum(IV) complexes and polynuclear platinum complexes. Overall, platinum-based anticancer complexes reported recently years upon modern structure are emphasized.
Collapse
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Congtao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuxin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
12
|
El-Gamal MI, Anbar HS. Recent advances of pyrrolopyridines derivatives: a patent and literature review. Expert Opin Ther Pat 2017; 27:591-606. [DOI: 10.1080/13543776.2017.1280465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammed I. El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Hanan S. Anbar
- Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
13
|
Štarha P, Trávníček Z, Drahoš B, Dvořák Z. In Vitro Antitumor Active Gold(I) Triphenylphosphane Complexes Containing 7-Azaindoles. Int J Mol Sci 2016; 17:ijms17122084. [PMID: 27973440 PMCID: PMC5187884 DOI: 10.3390/ijms17122084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
A series of gold(I) complexes of the general composition [Au(naza)(PPh3)] (1–8) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole or its derivatives (naza) are coordinated to the metal centre through the N1 atom of their pyrrole ring, as proved by a single crystal X-ray analysis of the complexes [Au(3I5Braza)(PPh3)] (7) and [Au(2Me4Claza)(PPh3)]·½H2O (8′). The in vitro cytotoxicity of the complexes 1–8 was studied against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the MRC-5 human normal fibroblast cell line. The complexes 4, 5, and 8, containing deprotonated 3-iodo-7-azaindole, 5-bromo-7-azaindole, and 2-methyl-4-chloro-7-azaindole (2Me4Claza), respectively, showed significantly higher potency (IC50 = 2.8–3.5 µM) than cisplatin (IC50 = 20.3 µM) against the A2780 cells and markedly lower effect towards the MRC-5 non-cancerous cells (IC50 = 26.0–29.2 µM), as compared with the mentioned A2780 cancer cells. The results of the flow cytometric studies of the A2780 cell cycle perturbations revealed a G2-cell cycle phase arrest of the cells treated by the representative complexes 1 and 5, which is indicative of a different mechanism of action from cisplatin (induced S-cell cycle phase arrest). The stability of the representative complex 8 in the water-containing solution as well as its ability to interact with the reduced glutathione, cysteine and bovine serum albumin was also studied using 1H and 31P-NMR spectroscopy (studied in the 50% DMF-d7/50% D2O mixture) and ESI+ mass spectrometry (studied in the 50% DMF/50% H2O mixture); DMF = dimethylformamide. The obtained results are indicative for the release of the N-donor azaindole-based ligand in the presence of the used biomolecules.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Zdeněk Trávníček
- Department of Inorganic Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Bohuslav Drahoš
- Department of Inorganic Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
14
|
Štarha P, Vančo J, Trávníček Z, Hošek J, Klusáková J, Dvořák Z. Platinum(II) Iodido Complexes of 7-Azaindoles with Significant Antiproliferative Effects: An Old Story Revisited with Unexpected Outcomes. PLoS One 2016; 11:e0165062. [PMID: 27906967 PMCID: PMC5131915 DOI: 10.1371/journal.pone.0165062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/05/2016] [Indexed: 12/03/2022] Open
Abstract
A series of platinum(II) diiodido complexes containing 7-azaindole derivatives, having the general formula cis-[PtI2(naza)2] (1–8), has been prepared and thoroughly characterized, including X-ray structure analysis of cis-[PtI2(2Me4Claza)2]∙DMF (8∙DMF; 2Me4Claza = 2-methyl-4-chloro-7-azaindole). Complexes showed high in vitro cytotoxicity against nine human cancer cell lines (IC50 ranging from 0.4 to 12.8 μM), including the cisplatin-resistant ovarian cancer cell line (A2780R; IC50 = 1.0–3.5 μM). The results of in vivo testing, using the L1210 lymphocytic leukaemia model, at the equimolar doses of Pt with cisplatin (2 mg/kg) confirmed the activity of complex 8 comparable to cisplatin. From the mechanistic point of view, evaluated ex vivo by Western blot analyses on the samples of isolated tumour tissues, the treatment of the animals with complex 8, contrary to cisplatin, decreased the levels of tumour suppressor p53 and increased significantly the amount of intracellular anti-apoptotic protein MCL-1L (37 kDa). Additionally, the active form of caspase 3 was significantly elevated in the sample of tumour tissues treated with complex 8, indicating that the activation of p53-independent cell-death pathway was initiated. The light and electron microscopy observations of the cancerous tissues revealed necrosis as a dominant mechanism of cell death, followed by scarce signs of apoptosis. The additional results (e.g. in vitro interaction experiments with selected biomolecules, cell cycle perturbations, gel electrophoretic studies on pUC19 plasmid DNA) supported the hypothesis that the complexes might be involved in the mechanism of action quite different from cisplatin.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Ján Vančo
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
- * E-mail:
| | - Jan Hošek
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Jarmila Klusáková
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics & Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
15
|
Platinum(II) carboxylato complexes containing 7-azaindoles as N-donor carrier ligands showed cytotoxicity against cancer cell lines. J Inorg Biochem 2016; 162:109-116. [PMID: 27350081 DOI: 10.1016/j.jinorgbio.2016.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 12/29/2022]
Abstract
The platinum(II) malonato (Mal) and decanoato (Dec) complexes of the general formulas [Pt(Mal)(naza)2] (1-3) and cis-[Pt(Dec)2(naza)2] (4-7) were prepared, characterized and tested for their in vitro cytotoxicity against cisplatin-sensitive (A2780) and cisplatin-resistant (A2780R) human ovarian carcinoma cell lines and non-cancerous human lung fibroblasts (MRC-5); naza=halogeno-derivatives of 7-azaindole. Complexes 1-7 effectively overcome the acquired resistance of ovarian carcinoma cells to cisplatin. Complexes 2 (IC50=26.6±8.9μM against A2780 and 28.9±6.7μM against A2780R), 4 (IC50=14.5±0.6μM against A2780 and 14.5±3.8μM against A2780R) and 5 (IC50=13.0±1.1μM against A2780 and 13.6±4.9μM against A2780R) indicated decreased toxicity against healthy MRC-5 cells (IC50>50.0μM for 2 and >25.0μM for 4 and 5). The representative complexes 2 and 4 showed mutually different effect on the A2780 cell cycle at IC50 concentrations after 24h exposure. Concretely, the complex 2 caused cell cycle arrest at G0/G1 phase, while 4 induced cell death by apoptosis with high population of cells in sub-G1 cell cycle phase. The hydrolysis and interactions of the selected complexes with biomolecules (glutathione (GSH) and guanosine monophosphate (GMP)) were also studied by means of 1H NMR and ESI+ mass spectra.
Collapse
|
16
|
Narva S, Chitti S, Bala BR, Alvala M, Jain N, Kondapalli VGCS. Synthesis and biological evaluation of pyrrolo[2,3- b ]pyridine analogues as antiproliferative agents and their interaction with calf thymus DNA. Eur J Med Chem 2016; 114:220-31. [DOI: 10.1016/j.ejmech.2016.02.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
|
17
|
Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Morzyk-Ociepa B, Dysz K, Turowska-Tyrk I, Michalska D. New trans-dichloropalladium(II) complexes of 7-azaindole: Crystal and molecular structures, FT-IR, FT-Raman and DFT studies. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Morzyk-Ociepa B, Dysz K, Turowska-Tyrk I, Michalska D. Reinvestigation of the crystal structure, vibrational spectroscopic studies and DFT calculations of 5-bromo-7-azaindole with dual N–H⋅⋅⋅N hydrogen bonds in dimers. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Highly and Broad-Spectrum In Vitro Antitumor Active cis-Dichloridoplatinum(II) Complexes with 7-Azaindoles. PLoS One 2015; 10:e0136338. [PMID: 26309251 PMCID: PMC4550364 DOI: 10.1371/journal.pone.0136338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
The cis-[PtCl2(naza)2] complexes (1–3) containing monosubstituted 7-azaindole halogeno-derivatives (naza), showed significantly higher activity than cisplatin towards ovarian carcinoma A2780, its cisplatin-resistant variant A2780R, osteosarcoma HOS, breast carcinoma MCF7 and cervix carcinoma HeLa cell lines, with the IC50 values of 3.8, 3.5, 4.5, 2.7, and 9.2 μM, respectively, obtained for the most active complex 3. As for 4 and 5 having disubstituted 7-azaindoles in their molecule, the significant cytotoxicity was detected only for 4 against A2780 (IC50 = 4.8 μM), A2780R (IC50 = 3.8 μM) and HOS (IC50 = 4.3 μM), while 5 was evaluated as having only moderate antiproliferative effect against the mentioned cancer cell lines with IC50 = 33.4, 24.7 and 46.7 μM, respectively. All the studied complexes 1–5 effectively avoided the acquired resistance of ovarian carcinoma cell line. On the other hand, the complexes did not reveal any inhibition activity on the purified 20S proteasome from the A2780 cells. The representative complexes 3 and 5 showed low ability to be hydrolysed, but their stability was markedly lowered in the presence of physiological sulphur-containing biomolecule glutathione (GSH), as proved by the 1H NMR spectroscopy and mass spectrometry studies. A rate of interaction of the studied complexes with GSH was affected by an addition of another mechanistically relevant biomolecule guanosine monophosphate. The differences in interactions of 3 and 5 with GSH correlate well with their different cytotoxicity profiles.
Collapse
|
21
|
Štarha P, Trávníček Z, Dvořák Z, Radošová-Muchová T, Prachařová J, Vančo J, Kašpárková J. Potentiating effect of UVA irradiation on anticancer activity of Carboplatin derivatives involving 7-azaindoles. PLoS One 2015; 10:e0123595. [PMID: 25875850 PMCID: PMC4398499 DOI: 10.1371/journal.pone.0123595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
The moderate-to-high in vitro cytotoxicity against ovarian A2780 (IC50 = 4.7–14.4 μM), prostate LNCaP (IC50 = 18.7–30.8 μM) and prostate PC-3 (IC50 = 17.6–42.3 μM) human cancer cell lines of the platinum(II) cyclobutane-1,1'-dicarboxylato complexes [Pt(cbdc)(naza)2] (1–6; cbdc = cyclobutane-1,1'-dicarboxylate(2-); naza = halogeno-substituted 7-azaindoles), derived from the anticancer metallodrug carboplatin, are reported. The complexes containing the chloro- and bromo-substituted 7-azaindoles (1, 2, and 4–6) showed a significantly higher (p < 0.05) cytotoxicity against A2780 cell line as compared to cisplatin used as a reference drug. Addition of the non-toxic concentration (5.0 μM) of L-buthionine sulfoximine (L-BSO, an effective inhibitor of γ-glutamylcysteine synthase) markedly increases the in vitro cytotoxicity of the selected complex 3 against A2780 cancer cell line by a factor of about 4.4. The cytotoxicity against A2780 and LNCaP cells, as well as the DNA platination, were effectively enhanced by UVA light irradiation (λmax = 365 nm) of the complexes, with the highest phototoxicity determined for compound 3, resulting in a 4-fold decline in the A2780 cells viability from 25.1% to 6.1%. The 1H NMR and ESI-MS experiments suggested that the complexes did not interact with glutathione as well as their ability to interact with guanosine monophosphate. The studies also confirmed UVA light induced the formation of the cis [Pt(H2O)2(cbdc`)(naza)] intermediate, where cbdc` represents monodentate-coordinated cbdc ligand, which is thought to be responsible for the enhanced cytotoxicity. This is further supported by the results of transcription mapping experiments showing that the studied complexes preferentially form the bifunctional adducts with DNA under UVA irradiation, in contrast to the formation of the less effective monofunctional adducts in dark.
Collapse
Affiliation(s)
- Pavel Štarha
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Regional Centre of Advanced Technologies and Materials & Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Tereza Radošová-Muchová
- Centre of the Region Haná for Biotechnological and Agricultural Research & Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jitka Prachařová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials & Department of Inorganic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jana Kašpárková
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
22
|
Pracharova J, Saltarella T, Radosova Muchova T, Scintilla S, Novohradsky V, Novakova O, Intini FP, Pacifico C, Natile G, Ilik P, Brabec V, Kasparkova J. Novel Antitumor Cisplatin and Transplatin Derivatives Containing 1-Methyl-7-Azaindole: Synthesis, Characterization, and Cellular Responses. J Med Chem 2014; 58:847-59. [DOI: 10.1021/jm501420k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jitka Pracharova
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Palacky University, Slechtitelu 11, 783 41 Olomouc, Czech Republic
| | - Teresa Saltarella
- Department
of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Tereza Radosova Muchova
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Palacky University, Slechtitelu 11, 783 41 Olomouc, Czech Republic
| | - Simone Scintilla
- Department
of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Vojtech Novohradsky
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department
of Biophysics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 11, 78371 Olomouc, Czech Republic
| | - Olga Novakova
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | | | - Concetta Pacifico
- Department
of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Giovanni Natile
- Department
of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Petr Ilik
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Palacky University, Slechtitelu 11, 783 41 Olomouc, Czech Republic
| | - Viktor Brabec
- Department
of Biophysics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 11, 78371 Olomouc, Czech Republic
| | - Jana Kasparkova
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.,
Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
23
|
Štarha P, Hošek J, Vančo J, Dvořák Z, Suchý P, Popa I, Pražanová G, Trávníček Z. Pharmacological and molecular effects of platinum(II) complexes involving 7-azaindole derivatives. PLoS One 2014; 9:e90341. [PMID: 24603594 PMCID: PMC3948342 DOI: 10.1371/journal.pone.0090341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/31/2014] [Indexed: 12/26/2022] Open
Abstract
The in vitro antitumour activity studies on a panel of human cancer cell lines (A549, HeLa, G-361, A2780, and A2780R) and the combined in vivo and ex vivo antitumour testing on the L1210 lymphocytic leukaemia model were performed on the cis-[PtCl2(naza)2] complexes (1–3) involving the 7-azaindole derivatives (naza). The platinum(II) complexes showed significantly higher in vitro cytotoxic effects on cell-based models, as compared with cisplatin, and showed the ability to avoid the acquired resistance of the A2780R cell line to cisplatin. The in vivo testing of the complexes (applied at the same dose as cisplatin) revealed their positive effect on the reduction of cancerous tissues volume, even if it is lower than that of cisplatin, however, they also showed less serious adverse effects on the healthy tissues and the health status of the treated mice. The results of ex vivo assays revealed that the complexes 1–3 were able to modulate the levels of active forms of caspases 3 and 8, and the transcription factor p53, and thus activate the intrinsic (mitochondrial) pathway of apoptosis. The pharmacological observations were supported by both the histological and immunohistochemical evaluation of isolated cancerous tissues. The applicability of the prepared complexes and their fate in biological systems, characterized by the hydrolytic stability and the thermodynamic aspects of the interactions with cysteine, reduced glutathione, and human serum albumin were studied by the mass spectrometry and isothermal titration calorimetric experiments.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jan Hošek
- Department of Inorganic Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Ján Vančo
- Department of Inorganic Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Pavel Suchý
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Igor Popa
- Department of Inorganic Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Gabriela Pražanová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Zdeněk Trávníček
- Department of Inorganic Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Olomouc, Czech Republic
- * E-mail:
| |
Collapse
|
24
|
4-aminobenzoic acid-coated maghemite nanoparticles as potential anticancer drug magnetic carriers: a case study on highly cytotoxic Cisplatin-like complexes involving 7-azaindoles. Molecules 2014; 19:1622-34. [PMID: 24476602 PMCID: PMC6271776 DOI: 10.3390/molecules19021622] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 01/04/2023] Open
Abstract
This study describes a one-pot synthesis of superparamagnetic maghemite-based 4-aminobenzoic acid-coated spherical core-shell nanoparticles (PABA@FeNPs) as suitable nanocomposites potentially usable as magnetic carriers for drug delivery. The PABA@FeNPs system was subsequently functionalized by the activated species (1* and 2*) of highly in vitro cytotoxic cis-[PtCl2(3Claza)2] (1; 3Claza stands for 3-chloro-7-azaindole) or cis-[PtCl2(5Braza)2] (2; 5Braza stands for 5-bromo-7-azaindole), which were prepared by a silver(I) ion assisted dechlorination of the parent dichlorido complexes. The products 1*@PABA@FeNPs and 2*@PABA@FeNPs, as well as an intermediate PABA@FeNPs, were characterized by a combination of various techniques, such as Mössbauer, FTIR and EDS spectroscopy, thermal analysis, SEM and TEM. The results showed that the products consist of well-dispersed maghemite-based nanoparticles of 13 nm average size that represent an easily obtainable system for delivery of highly cytotoxic cisplatin-like complexes in oncological practice.
Collapse
|