1
|
Crizotinib Shows Antibacterial Activity against Gram-Positive Bacteria by Reducing ATP Production and Targeting the CTP Synthase PyrG. Microbiol Spectr 2022; 10:e0088422. [PMID: 35674439 PMCID: PMC9241945 DOI: 10.1128/spectrum.00884-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections caused by drug-resistant bacteria are a serious threat to public health worldwide, and the discovery of novel antibacterial compounds is urgently needed. Here, we screened an FDA-approved small-molecule library and found that crizotinib possesses good antimicrobial efficacy against Gram-positive bacteria. Crizotinib was found to increase the survival rate of mice infected with bacteria and decrease pulmonary inflammation activity in an animal model. Furthermore, it showed synergy with clindamycin and gentamicin. Importantly, the Gram-positive bacteria showed a low tendency to develop resistance to crizotinib. Mechanistically, quantitative proteomics and biochemical validation experiments indicated that crizotinib exerted its antibacterial effects by reducing ATP production and pyrimidine metabolism. A drug affinity responsive target stability study suggested crizotinib targets the CTP synthase PyrG, which subsequently disturbs pyrimidine metabolism and eventually reduces DNA synthesis. Subsequent molecular dynamics analysis showed that crizotinib binding occurs in close proximity to the ATP binding pocket of PyrG and causes loss of function of this CTP synthase. Crizotinib is a promising antimicrobial agent and provides a novel choice for the development of treatment for Gram-positive infections. IMPORTANCE Infections caused by drug-resistant bacteria are a serious problem worldwide. Therefore, there is an urgent need to find novel drugs with good antibacterial activity against multidrug-resistant bacteria. In this study, we found that a repurposed drug, crizotinib, exhibits excellent antibacterial activity against drug-resistant bacteria both in vivo and in vitro via suppressing ATP production and pyrimidine metabolism. Crizotinib was found to disturb pyrimidine metabolism by targeting the CTP synthase PyrG, thus reducing DNA synthesis. This unique mechanism of action may explain the decreased development of resistance by Staphylococcus aureus to crizotinib. This study provides a potential option for the treatment of drug-resistant bacterial infections in the future.
Collapse
|
2
|
Aggarwal S, Kumaraswami M. Managing Manganese: The Role of Manganese Homeostasis in Streptococcal Pathogenesis. Front Cell Dev Biol 2022; 10:921920. [PMID: 35800897 PMCID: PMC9253540 DOI: 10.3389/fcell.2022.921920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic streptococci require manganese for survival in the host. In response to invading pathogens, the host recruits nutritional immune effectors at infection sites to withhold manganese from the pathogens and control bacterial growth. The manganese scarcity impairs several streptococcal processes including oxidative stress defenses, de novo DNA synthesis, bacterial survival, and virulence. Emerging evidence suggests that pathogens also encounter manganese toxicity during infection and manganese excess impacts streptococcal virulence by manganese mismetallation of non-cognate molecular targets involved in bacterial antioxidant defenses and cell division. To counter host-imposed manganese stress, the streptococcal species employ a sophisticated sensory system that tightly coordinates manganese stress-specific molecular strategies to negate host induced manganese stress and proliferate in the host. Here we review the molecular details of host-streptococcal interactions in the battle for manganese during infection and the significance of streptococcal effectors involved to bacterial pathophysiology.
Collapse
Affiliation(s)
- Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
3
|
Identification and Tetramer Structure of Hemin-Binding Protein SPD_0310 Linked to Iron Homeostasis and Virulence of Streptococcus pneumoniae. mSystems 2022; 7:e0022122. [PMID: 35414267 PMCID: PMC9238395 DOI: 10.1128/msystems.00221-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron and iron-containing compounds are essential for bacterial virulence and host infection. Hemin is an important supplement compound for bacterial survival in an iron-deficient environment. Despite strong interest in hemin metabolism, the detailed mechanism of hemin transportation in Gram-positive bacteria is yet to be reported. The results of our study revealed that the homologous proteins of SPD_0310 were significantly conservative in Gram-positive bacteria (P < 0.001), and these proteins were identified as belonging to an uncharacterized protein family (UPF0371). The results of thermodynamic and kinetic studies have shown that SPD_0310 has a high hemin-binding affinity. Interestingly, we found that the crystal structure of SPD_0310 presented a homotetramer conformation, which is required for hemin binding. SPD_0310 can interact with many hemin-binding proteins (SPD_0090, SPD_1609, and GAPDH) located on the cell surface, which contributes to hemin transfer to the cytoplasm. It also has a high affinity with other iron transporters in the cytoplasm (SPD_0226 and SPD_0227), which facilitates iron redistribution in cells. More importantly, the knockout of the spd_0310 gene (Δspd_0310) resulted in a decrease in the iron content and protein expression levels of many bacterial adhesion factors. Moreover, the animal model showed that the Δspd_0310 strain has a lower virulence than the wild type. Based on the crystallographic and biochemical studies, we inferred that SPD_0310 is a hemin intermediate transporter which contributes to iron homeostasis and further affects the virulence of Streptococcus pneumoniae in the host. Our study provides not only an important theoretical basis for the in-depth elucidation of the hemin transport mechanism in bacteria but also an important candidate target for the development of novel antimicrobial agents based on metal transport systems. IMPORTANCE Iron is an essential element for bacterial virulence and infection of the host. The detailed hemin metabolism in Gram-positive bacteria has rarely been studied. SPD_0310 belongs to the UPF0371 family of proteins, and results of homology analysis and evolutionary tree analysis suggested that it was widely distributed and highly conserved in Gram-positive bacteria. However, the function of the UPF0371 family remains unknown. We successfully determined the crystal structure of apo-SPD_0310, which is a homotetramer. We found that cytoplasmic protein SPD_0310 with a special tetramer structure has a strong hemin-binding ability and interacts with many iron transporters, which facilitates hemin transfer from the extracellular space to the cytoplasm. The results of detailed functional analyses indicated that SPD_0310 may function as a hemin transporter similar to hemoglobin in animals and contributes to bacterial iron homeostasis and virulence. This study provides a novel target for the development of antimicrobial drugs against pathogenic Gram-positive bacteria.
Collapse
|
4
|
First finding of Streptococcus phocae infections in mink (Neovison vison). Res Vet Sci 2021; 139:145-151. [PMID: 34311216 DOI: 10.1016/j.rvsc.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
Streptococcus phocae infection has been described in salmon, sea otters, and several families of pinnipeds. The pathology of the infected animals has mainly been located in the respiratory tract and reproductive system, and with indications of septicemia. In this study, we report the finding of S. phocae in diagnostic material from three unrelated cases of farmed mink. Since S. phocae initially has been described in pinnipeds, two isolates from wild harbor seals were included. All isolates originated from Denmark. To our knowledge, this is the first report of S. phocae infection in mink. The animals (three mink, two seals) were necropsied, and samples were collected for bacteriology, virology, and histopathology. Additionally, the S. phocae isolates were whole genome sequenced and compared to sequences of previously reported isolates from other host species. S. phocae was isolated from the lungs of one mink and one seal with bacteremia, and from one seal with pneumonia. The two remaining mink had dermal infections on the paws and S. phocae was isolated from the lesions. The analysis of the sequence data showed that the three mink isolates and one seal isolate were closely related. Further investigation is needed to conclude whether S. phocae is establishing as commensal in farmed mink and to uncover the infection related pathology in mink. Streptococcus phocae has been described as an emerging pathogen in other species, therefore future awareness and surveillance of this pathogen is crucial.
Collapse
|
5
|
Cellular Mn/Zn Ratio Influences Phosphoglucomutase Activity and Capsule Production in Streptococcus pneumoniae D39. J Bacteriol 2021; 203:e0060220. [PMID: 33875543 PMCID: PMC8316032 DOI: 10.1128/jb.00602-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Capsular polysaccharide (CPS) is a major virulence determinant for many human-pathogenic bacteria. Although the essential functional roles for CPS in bacterial virulence have been established, knowledge of how CPS production is regulated remains limited. Streptococcus pneumoniae (pneumococcus) CPS expression levels and overall thickness change in response to available oxygen and carbohydrate. These nutrients in addition to transition metal ions can vary significantly between host environmental niches and infection stage. Since the pneumococcus must modulate CPS expression among various host niches during disease progression, we examined the impact of the nutritional transition metal availability of manganese (Mn) and zinc (Zn) on CPS production. We demonstrate that increased Mn/Zn ratios increase CPS production via Mn-dependent activation of the phosphoglucomutase Pgm, an enzyme that functions at the branch point between glycolysis and the CPS biosynthetic pathway in a transcription-independent manner. Furthermore, we find that the downstream CPS protein CpsB, an Mn-dependent phosphatase, does not promote aberrant dephosphorylation of its target capsule-tyrosine kinase CpsD during Mn stress. Together, these data reveal a direct role for cellular Mn/Zn ratios in the regulation of CPS biosynthesis via the direct activation of Pgm. We propose a multilayer mechanism used by the pneumococcus in regulating CPS levels across various host niches. IMPORTANCE Evolving evidence strongly indicates that maintenance of metal homeostasis is essential for establishing colonization and continued growth of bacterial pathogens in the vertebrate host. In this study, we demonstrate the impact of cellular manganese/zinc (Mn/Zn) ratios on bacterial capsular polysaccharide (CPS) production, an important virulence determinant of many human-pathogenic bacteria, including Streptococcus pneumoniae. We show that higher Mn/Zn ratios increase CPS production via the Mn-dependent activation of the phosphoglucomutase Pgm, an enzyme that functions at the branch point between glycolysis and the CPS biosynthetic pathway. The findings provide a direct role for Mn/Zn homeostasis in the regulation of CPS expression levels and further support the ability of metal cations to act as important cellular signaling mediators in bacteria.
Collapse
|
6
|
Al-Tameemi H, Beavers WN, Norambuena J, Skaar EP, Boyd JM. Staphylococcus aureus lacking a functional MntABC manganese import system has increased resistance to copper. Mol Microbiol 2020; 115:554-573. [PMID: 33034093 DOI: 10.1111/mmi.14623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
S. aureus USA300 isolates utilize the copBL and copAZ gene products to prevent Cu intoxication. We created and examined a ΔcopAZ ΔcopBL mutant strain (cop-). The cop- strain was sensitive to Cu and accumulated intracellular Cu. We screened a transposon (Tn) mutant library in the cop- background and isolated strains with Tn insertions in the mntABC operon that permitted growth in the presence of Cu. The mutations were in mntA and they were recessive. Under the growth conditions utilized, MntABC functioned in manganese (Mn) import. When cultured with Cu, strains containing a mntA::Tn accumulated less Cu than the parent strain. Mn(II) supplementation improved growth when cop- was cultured with Cu and this phenotype was dependent upon the presence of MntR, which is a repressor of mntABC transcription. A ΔmntR strain had an increased Cu load and decreased growth in the presence of Cu, which was abrogated by the introduction of mntA::Tn. Over-expression of mntABC increased cellular Cu load and sensitivity to Cu. The presence of a mntA::Tn mutation protected iron-sulfur (FeS) enzymes from inactivation by Cu. The data presented are consistent with a model wherein defective MntABC results in decreased cellular Cu accumulation and protection to FeS enzymes from Cu poisoning.
Collapse
Affiliation(s)
- Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
7
|
Nguyen MT, Matsuo M, Niemann S, Herrmann M, Götz F. Lipoproteins in Gram-Positive Bacteria: Abundance, Function, Fitness. Front Microbiol 2020; 11:582582. [PMID: 33042100 PMCID: PMC7530257 DOI: 10.3389/fmicb.2020.582582] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
When one thinks of the Gram+ cell wall, the peptidoglycan (PG) scaffold in particular comes to mind. However, the cell wall also consists of many other components, for example those that are covalently linked to the PG: the wall teichoic acid and the cell wall proteins tethered by the sortase. In addition, there are completely different molecules that are anchored in the cytoplasmic membrane and span the cell wall. These are lipoteichoic acids and bacterial lipoproteins (Lpp). The latter are in the focus of this review. Lpp are present in almost all bacteria. They fulfill a wealth of different tasks. They represent the window to the outside world by recognizing nutrients and incorporating them into the bacterial cell via special transport systems. Furthermore, they perform very diverse and special tasks such as acting as chaperonin, as cyclomodulin, contributing to invasion of host cells or uptake of plasmids via conjugation. All these functions are taken over by the protein part. Nevertheless, the lipid part of the Lpp plays an as important role as the protein part. It is the released lipoproteins and derived lipopeptides that massively modulate our immune system and ultimately play an important role in immune tolerance or non-tolerance. All these varied activities of the Lpp are considered in this review article.
Collapse
Affiliation(s)
- Minh-Thu Nguyen
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Miki Matsuo
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Silke Niemann
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Mathias Herrmann
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Prasanna M, Soulard D, Camberlein E, Ruffier N, Lambert A, Trottein F, Csaba N, Grandjean C. Semisynthetic glycoconjugate based on dual role protein/PsaA as a pneumococcal vaccine. Eur J Pharm Sci 2018; 129:31-41. [PMID: 30572107 DOI: 10.1016/j.ejps.2018.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/02/2018] [Accepted: 12/15/2018] [Indexed: 11/15/2022]
Abstract
Pneumococcal infections remain a major public health concern worldwide. The currently available vaccines in the market are based on pneumococcal capsular polysaccharides but they still need to be improved to secure an optimal coverage notably in population at risk. To circumvent this, association of virulence pneumococcal proteins to the polysaccharide valencies has been proposed with the hope to observe an additive - if not synergistic - protective effect. Along this line, the use of the highly conserved and ubiquitous pneumococcal surface adhesin A (PsaA) as a protein carrier for a synthetic pneumococcal oligosaccharide is demonstrated herein for the first time. A tetrasaccharide mimicking functional antigenic determinants from the S. pneumoniae serotype 14 capsular polysaccharide (Pn14TS) was chemically synthesised. The mature PsaA (mPsaA) was expressed in E. coli and purified using affinity chromatography. The Pn14PS was conjugated to mPsaA using maleimide-thiol coupling chemistry to obtain mPsaA-Pn14PS conjugate (protein/sugar molar ratio: 1/5.4). The mPsaA retained the structural conformation after the conjugation and lyophilisation. The prepared glycoconjugate adjuvanted with α-galactosylceramide, a potent activator of invariant Natural Killer T cells, was tested in mice for its immunological response upon subcutaneous injection in comparison with mPsaA alone and a model BSA conjugate (BSA-Pn14PS, used here as a control). Mice immunised with the mPsaA-Pn14TS produced a robust IgG response against mPsaA and against the capsular polysaccharide from pneumococcal serotype 14. These data provide the basis for novel pneumococcal vaccine development.
Collapse
Affiliation(s)
- Maruthi Prasanna
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain; Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR CNRS 6286, Université de Nantes, 2 rue de la Houssinière, BP92208, 44322 Nantes Cedex, France
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France
| | - Emilie Camberlein
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR CNRS 6286, Université de Nantes, 2 rue de la Houssinière, BP92208, 44322 Nantes Cedex, France
| | - Nicolas Ruffier
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR CNRS 6286, Université de Nantes, 2 rue de la Houssinière, BP92208, 44322 Nantes Cedex, France
| | - Annie Lambert
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR CNRS 6286, Université de Nantes, 2 rue de la Houssinière, BP92208, 44322 Nantes Cedex, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Cyrille Grandjean
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR CNRS 6286, Université de Nantes, 2 rue de la Houssinière, BP92208, 44322 Nantes Cedex, France.
| |
Collapse
|
9
|
Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int J Med Microbiol 2018; 308:722-737. [DOI: 10.1016/j.ijmm.2017.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
|
10
|
Miao X, He J, Zhang L, Zhao X, Ge R, He QY, Sun X. A Novel Iron Transporter SPD_1590 in Streptococcus pneumoniae Contributing to Bacterial Virulence Properties. Front Microbiol 2018; 9:1624. [PMID: 30079056 PMCID: PMC6062600 DOI: 10.3389/fmicb.2018.01624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae, a Gram-positive human pathogen, has evolved three main transporters for iron acquisition from the host: PiaABC, PiuABC, and PitABC. Our previous study had shown that the mRNA and protein levels of SPD_1590 are significantly upregulated in the ΔpiuA/ΔpiaA/ΔpitA triple mutant, suggesting that SPD_1590 might be a novel iron transporter in S. pneumoniae. In the present study, using spd1590-knockout, -complemented, and -overexpressing strains and the purified SPD_1590 protein, we show that SPD_1590 can bind hemin, probably supplementing the function of PiuABC, to provide the iron necessary for the bacterium. Furthermore, the results of iTRAQ quantitative proteomics and cell-infection studies demonstrate that, similarly to other metal-ion uptake proteins, SPD_1590 is important for bacterial virulence properties. Overall, these results provide a better understanding of the biology of this clinically important bacterium.
Collapse
Affiliation(s)
- Xinyu Miao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiaojiao He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xinlu Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Bom APDA, Corrêa IBS, Argondizzo APC, Medeiros MA, Santos RBD, Souza TLFD, Silva Junior JGD. Conformational analysis of Pneumococcal Surface Antigen A (PsaA) upon zinc binding by fluorescence spectroscopy. AN ACAD BRAS CIENC 2018; 90:2299-2310. [PMID: 29947666 DOI: 10.1590/0001-3765201820170151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/28/2017] [Indexed: 11/22/2022] Open
Abstract
PsaA (pneumococcal surface antigen A) is a S. pneumoniae virulence factor that belongs to the metal transport system. The Manganese PsaA binding has been associated with oxidative stress resistance becoming a pivotal element in the bacteria virulence. It has been shown that Zinc inhibits the Manganese acquisition and promotes bacteria toxicity. We have performed a PsaA conformational analysis both in the presence (Zn-rPsaA) and in the absence of Zinc (free-rPsaA). We performed experiments in the presence of different Zinc concentrations to determine the metal minimum concentration which induced a conformational change. The protein in free and Zn-binding condition was also studied in pH ranging 2.6-8.0 and in temperature ranging 25oC-85oC. pH experiments showed a decrease of fluorescence intensity only in acidic medium. Analysis of the heat-induced denaturation demonstrated that Zinc-binding promoted an increase in melting temperature from 55oC (free-rPsaA) to 78.8oC (Zn-rPsaA) according to fluorescence measurements. In addition, the rPsaA stabilization by Zinc was verified through analysis of urea and guanidine hydrochloride denaturation. Data showed that Zinc promoted an increase in the rPsaA stability and its removal by EDTA can lead to a PsaA intermediate conformation. These findings can be considered in the development of vaccines containing PsaA as antigen.
Collapse
Affiliation(s)
- Ana Paula D Ano Bom
- Lab. of Macromolecules, Bio-Manguinhos, Fiocruz, Av. Brasil, 4365, Room 205, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Izabella B S Corrêa
- Lab. of Macromolecules, Bio-Manguinhos, Fiocruz, Av. Brasil, 4365, Room 205, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Ana Paula C Argondizzo
- Lab. of Recombinant Technologies, Bio-Manguinhos, Fiocruz, Av. Brasil, 4365, Room 209, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marco Alberto Medeiros
- Lab. of Recombinant Technologies, Bio-Manguinhos, Fiocruz, Av. Brasil, 4365, Room 209, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Roger B Dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, 373, Room 21, Ilha do Fundão, 21941-901 Rio de Janeiro, RJ, Brazil
| | - Theo Luiz F de Souza
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, 373, Room 21, Ilha do Fundão, 21941-901 Rio de Janeiro, RJ, Brazil
| | - José G da Silva Junior
- Lab. of Macromolecules, Bio-Manguinhos, Fiocruz, Av. Brasil, 4365, Room 205, Manguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Cao K, Zhang J, Miao XY, Wei QX, Zhao XL, He QY, Sun X. Evolution and molecular mechanism of PitAs in iron transport of Streptococcus species. J Inorg Biochem 2018; 182:113-123. [PMID: 29455001 DOI: 10.1016/j.jinorgbio.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/24/2022]
Abstract
Iron is an essential element for almost all bacteria. The iron ATP-binding cassette (ABC) transporters located on the cell membrane affects bacterial virulence and infection. Although a variety of Fe3+-transporters have been found in bacteria, their evolutionary processes are rarely studied. Pneumococcal iron ABC transporter (PitA), a highly conserved Fe3+-transporter in most pathogenic bacteria, influences the capsule formation and virulence of bacteria. However, multiple sequence alignment revealed that PitA is expressed in four different variants in bacteria, and the structural complexity of these variants increases progressively. To more efficiently import Fe3+ ions into bacterial cells, bacteria have evolved a fused PitA from two separately expressed PitA-1 (SPD_0227) and PitA-2 (SPD_0226) proteins. Further biochemical characterization indicated that both PitA-1 and PitA-2 have weaker Fe3+-binding ability than their protein complex. More importantly, Glutathione S-Transferase (GST) pull-down and isothermal titration calorimetry (ITC) detection showed that PitA-1 and PitA-2 interact with each other via Tyr111-Leu37, Asn112-Gln38, Asn103-Leu33, and Asn103-Thr34. Further molecular dynamics (MD) simulations demonstrated that this interaction in full-length PitA is stronger than that in the two individual proteins. Deletion of PitA family genes could lead to decrease in the ability of iron acquisition and of adhesion and invasion of S. pneumoniae. Our study revealed the evolving state and molecular mechanism of Fe3+-transporter PitAs in bacteria and provided important information for understanding the iron transportation mechanism in bacteria and designing new antibacterial drugs.
Collapse
Affiliation(s)
- Kun Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin-Yu Miao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiu-Xia Wei
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin-Lu Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Hadley RC, Gagnon DM, Brophy MB, Gu Y, Nakashige TG, Britt RD, Nolan EM. Biochemical and Spectroscopic Observation of Mn(II) Sequestration from Bacterial Mn(II) Transport Machinery by Calprotectin. J Am Chem Soc 2018; 140:110-113. [PMID: 29211955 PMCID: PMC5762273 DOI: 10.1021/jacs.7b11207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human calprotectin (CP, S100A8/S100A9 oligomer) is a metal-sequestering host-defense protein that prevents bacterial acquisition of Mn(II). In this work, we investigate Mn(II) competition between CP and two solute-binding proteins that Staphylococcus aureus and Streptococcus pneumoniae, Gram-positive bacterial pathogens of significant clinical concern, use to obtain Mn(II) when infecting a host. Biochemical and electron paramagnetic resonance (EPR) spectroscopic analyses demonstrate that CP outcompetes staphylococcal MntC and streptococcal PsaA for Mn(II). This behavior requires the presence of excess Ca(II) ions, which enhance the Mn(II) affinity of CP. This report presents new spectroscopic evaluation of two Mn(II) proteins important for bacterial pathogenesis, direct observation of Mn(II) sequestration from bacterial Mn(II) acquisition proteins by CP, and molecular insight into the extracellular battle for metal nutrients that occurs during infection.
Collapse
Affiliation(s)
- Rose C. Hadley
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Derek M. Gagnon
- Department of Chemistry, University of California Davis, Davis, CA 95616, United States
| | - Megan Brunjes Brophy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Yu Gu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - R. David Britt
- Department of Chemistry, University of California Davis, Davis, CA 95616, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
14
|
Martin JE, Lisher JP, Winkler ME, Giedroc DP. Perturbation of manganese metabolism disrupts cell division in Streptococcus pneumoniae. Mol Microbiol 2017; 104:334-348. [PMID: 28127804 DOI: 10.1111/mmi.13630] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2017] [Indexed: 12/30/2022]
Abstract
Manganese (Mn) is an essential micronutrient and required cofactor in bacteria. Despite its importance, excess Mn can impair bacterial growth, the mechanism of which remains largely unexplored. Here, we show that proper Mn homeostasis is critical for cellular growth of the major human respiratory pathogen Streptococcus pneumoniae. Perturbations in Mn homeostasis genes, psaBCA, encoding the Mn importer, and mntE, encoding the Mn exporter, lead to Mn sensitivity during aerobiosis. Mn-stressed cells accumulate iron and copper, in addition to Mn. Impaired growth is a direct result of Mn toxicity and does not result from iron-mediated Fenton chemistry, since cells remain sensitive to Mn during anaerobiosis or when hydrogen peroxide biogenesis is significantly reduced. Mn-stressed cells are significantly elongated, whereas Mn-limitation imposed by zinc addition leads to cell shortening. We show that Mn accumulation promotes aberrant dephosphorylation of cell division proteins via hyperactivation of the Mn-dependent protein phosphatase PhpP, a key enzyme involved in the regulation of cell division. We discuss a mechanism by which cellular Mn:Zn ratios dictate PhpP specific activity thereby regulating pneumococcal cell division. We propose that Mn-metalloenzymes are particularly susceptible to hyperactivation or mismetallation, suggesting the need for exquisite cellular control of Mn-dependent metabolic processes.
Collapse
Affiliation(s)
- Julia E Martin
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - John P Lisher
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Graduate Program in Biochemistry Indiana University, Bloomington, IN, 47405, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
15
|
Barwinska-Sendra A, Waldron KJ. The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Adv Microb Physiol 2017; 70:315-379. [PMID: 28528650 DOI: 10.1016/bs.ampbs.2017.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The metals manganese, iron, cobalt, nickel, copper and zinc are essential for almost all bacteria, but their precise metal requirements vary by species, by ecological niche and by growth condition. Bacteria thus must acquire each of these essential elements in sufficient quantity to satisfy their cellular demand, but in excess these same elements are toxic. Metal toxicity has been exploited by humanity for centuries, and by the mammalian immune system for far longer, yet the mechanisms by which these elements cause toxicity to bacteria are not fully understood. There has been a resurgence of interest in metal toxicity in recent decades due to the problematic spread of antibiotic resistance amongst bacterial pathogens, which has led to an increased research effort to understand these toxicity mechanisms at the molecular level. A recurring theme from these studies is the role of intermetal competition in bacterial metal toxicity. In this review, we first survey biological metal usage and introduce some fundamental chemical concepts that are important for understanding bacterial metal usage and toxicity. Then we introduce a simple model by which to understand bacterial metal homeostasis in terms of the distribution of each essential metal ion within cellular 'pools', and dissect how these pools interact with each other and with key proteins of bacterial metal homeostasis. Finally, using a number of key examples from the recent literature, we look at specific metal toxicity mechanisms in model bacteria, demonstrating the role of metal-metal competition in the toxicity mechanisms of diverse essential metals.
Collapse
Affiliation(s)
- Anna Barwinska-Sendra
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J Waldron
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
16
|
Lipoproteins of Gram-Positive Bacteria: Key Players in the Immune Response and Virulence. Microbiol Mol Biol Rev 2016; 80:891-903. [PMID: 27512100 DOI: 10.1128/mmbr.00028-16] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the discovery in 1973 of the first of the bacterial lipoproteins (Lpp) in Escherichia coli, Braun's lipoprotein, the ever-increasing number of publications indicates the importance of these proteins. Bacterial Lpp belong to the class of lipid-anchored proteins that in Gram-negative bacteria are anchored in both the cytoplasmic and outer membranes and in Gram-positive bacteria are anchored only in the cytoplasmic membrane. In contrast to the case for Gram-negative bacteria, in Gram-positive bacteria lipoprotein maturation and processing are not vital. Physiologically, Lpp play an important role in nutrient and ion acquisition, allowing particularly pathogenic species to better survive in the host. Bacterial Lpp are recognized by Toll-like receptor 2 (TLR2) of the innate immune system. The important role of Lpp in Gram-positive bacteria, particularly in the phylum Firmicutes, as key players in the immune response and pathogenicity has emerged only in recent years. In this review, we address the role of Lpp in signaling and modulating the immune response, in inflammation, and in pathogenicity. We also address the potential of Lpp as promising vaccine candidates.
Collapse
|
17
|
Competition for Manganese at the Host-Pathogen Interface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:1-25. [PMID: 27571690 DOI: 10.1016/bs.pmbts.2016.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.
Collapse
|
18
|
Vigonsky E, Fish I, Livnat-Levanon N, Ovcharenko E, Ben-Tal N, Lewinson O. Metal binding spectrum and model structure of the Bacillus anthracis virulence determinant MntA. Metallomics 2015; 7:1407-19. [PMID: 26106847 DOI: 10.1039/c5mt00100e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potentially lethal human pathogen Bacillus anthracis expresses a putative metal import system, MntBCA, which belongs to the large family of ABC transporters. MntBCA is essential for virulence of Bacillus anthracis: deletion of MntA, the system's substrate binding protein, yields a completely non-virulent strain. Here we determined the metal binding spectrum of MntA. In contrast to what can be inferred from growth complementation studies we find no evidence that MntA binds Fe(2+) or Fe(3+). Rather, MntA binds a variety of other metal ions, including Mn(2+), Zn(2+), Cd(2+), Co(2+), and Ni(2+) with affinities ranging from 10(-6) to 10(-8) M. Binding of Zn(2+) and Co(2+) have a pronounced thermo-stabilizing effect on MntA, with Mn(2+) having a milder effect. The thermodynamic stability of MntA, competition experiments, and metal binding and release experiments all suggest that Mn(2+) is the metal that is likely transported by MntBCA and is therefore the limiting factor for virulence of Bacillus anthracis. A homology-model of MntA shows a single, highly conserved metal binding site, with four residues that participate in metal coordination: two histidines, a glutamate, and an aspartate. The metals bind to this site in a mutually exclusive manner, yet surprisingly, mutational analysis shows that for proper coordination each metal requires a different subset of these four residues. ConSurf evolutionary analysis and structural comparison of MntA and its homologues suggest that substrate binding proteins (SBPs) of metal ions use a pair of highly conserved prolines to interact with their cognate ABC transporters. This proline pair is found exclusively in ABC import systems of metal ions.
Collapse
Affiliation(s)
- Elena Vigonsky
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
19
|
Brophy MB, Nolan EM. Manganese and microbial pathogenesis: sequestration by the Mammalian immune system and utilization by microorganisms. ACS Chem Biol 2015; 10:641-51. [PMID: 25594606 PMCID: PMC4372095 DOI: 10.1021/cb500792b] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial and fungal pathogens cause a variety of infectious diseases and constitute a significant threat to public health. The human innate immune system represents the first line of defense against pathogenic microbes and employs a range of chemical artillery to combat these invaders. One important mechanism of innate immunity is the sequestration of metal ions that are essential nutrients. Manganese is one nutrient that is required for many pathogens to establish an infective lifestyle. This review summarizes recent advances in the role of manganese in the host-pathogen interaction and highlights Mn(II) sequestration by neutrophil calprotectin as well as how bacterial acquisition and utilization of manganese enables pathogenesis.
Collapse
Affiliation(s)
- Megan Brunjes Brophy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|