1
|
Zhang S, Gao J, Cai C, Chen J, Li Y, Su X, Sun F, Ye W, Zhang M, Wu S, Yu L, Yu S. Advanced nitrogen removal of sulfur-driven autotrophic denitrification from landfill leachate after partial nitrification and denitrification pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121877. [PMID: 39018860 DOI: 10.1016/j.jenvman.2024.121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Sulfur-driven autotrophic denitrification (S0dAD) was employed to remove residual nitrogen from the biological effluent of landfill leachate after partial nitrification and denitrification pretreatment. The performance of S0dAD were assessed with various NOx--N (NO2--N and NO3--N) loadings over a 185-day operational period. The results demonstrated that a notable NOx--N removal efficiency of 97.8 ± 2.0% was achieved under nitrogen removal rates of 0.12 ± 0.02 kg N/(m3· d), leading to total nitrogen concentrations of 8.6 ± 3.8 mg/L in the effluent. Batch experiments revealed competitive utilization of nitrogenous electron acceptors, with NO2--N demonstrating 2-4 times higher denitrification rates than NO3--N under coexistence conditions. Genus-level microbial community identified that Thiobacillus and Sulfurovum was highly enriched with as key denitrifying bacteria in the S0dAD system. These findings provide insights for advanced nitrogen removal coupling S0dAD with partial nitrification and denitrification process for landfill leachate treatment.
Collapse
Affiliation(s)
- Shusheng Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China; Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, 325500, China
| | - Junliang Gao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chuanyu Cai
- Zhejiang Huge Waste Management Co. Ltd, Hangzhou, 311113, China
| | - Jingjing Chen
- Zhejiang Haihe Environmental Technology Co. Ltd, Jinhua, 321017, China
| | - Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Wenjing Ye
- Longquan Conservation Center of Qianjiangyuan-Baishanzu National Park, Longquan, 323799, China
| | - Meng Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Songwei Wu
- College of Civil Engineering and Architecture, Quzhou University, Quzhou, 324000, China
| | - Liyan Yu
- College of Civil Engineering and Architecture, Quzhou University, Quzhou, 324000, China
| | - Shengwu Yu
- Longquan Conservation Center of Qianjiangyuan-Baishanzu National Park, Longquan, 323799, China.
| |
Collapse
|
2
|
Ren T, Chi Y, Wang Y, Shi X, Jin X, Jin P. Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment. WATER RESEARCH 2021; 206:117742. [PMID: 34653797 DOI: 10.1016/j.watres.2021.117742] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/01/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Thauera, as one of the core members of wastewater biological treatment systems, plays an important role in the process of nitrogen and phosphorus removal from low-carbon source sewage. However, there is a lack of systematic understanding of Thauera's metabolic pathway and genomics. Here we report on the newly isolated Thauera sp. RT1901, which is capable of denitrification using variety carbon sources including aromatic compounds. By comparing the denitrification processes under the conditions of insufficient, adequate and surplus carbon sources, it was found that strain RT1901 could simultaneously use soluble microbial products (SMP) and extracellular polymeric substances (EPS) as electron donors for denitrification. Strain RT1901 was also found to be a denitrifying phosphate accumulating bacterium, able to use nitrate, nitrite, or oxygen as electron acceptors during poly-β-hydroxybutyrate (PHB) catabolism. The annotated genome was used to reconstruct the complete nitrogen and phosphorus metabolism pathways of RT1901. In the process of denitrifying phosphorus accumulation, glycolysis was the only pathway for glycogen metabolism, and the glyoxylic acid cycle replaced the tricarboxylic acid cycle (TCA) to supplement the reduced energy. In addition, the abundance of conventional phosphorus accumulating bacteria decreased significantly and the removal rates of total nitrogen (TN) and chemical oxygen demand (COD) increased after the addition of RT1901 in the low carbon/nitrogen (C/N) ratio of anaerobic aerobic anoxic-sequencing batch reactor (AOA-SBR). This research indicated that the diverse metabolic capabilities of Thauera made it more competitive than other bacteria in the wastewater treatment system.
Collapse
Affiliation(s)
- Tong Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yulei Chi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xuan Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xin Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| |
Collapse
|
3
|
Störiko A, Pagel H, Mellage A, Cirpka OA. Does It Pay Off to Explicitly Link Functional Gene Expression to Denitrification Rates in Reaction Models? Front Microbiol 2021; 12:684146. [PMID: 34220770 PMCID: PMC8250433 DOI: 10.3389/fmicb.2021.684146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental omics and molecular-biological data have been proposed to yield improved quantitative predictions of biogeochemical processes. The abundances of functional genes and transcripts relate to the number of cells and activity of microorganisms. However, whether molecular-biological data can be quantitatively linked to reaction rates remains an open question. We present an enzyme-based denitrification model that simulates concentrations of transcription factors, functional-gene transcripts, enzymes, and solutes. We calibrated the model using experimental data from a well-controlled batch experiment with the denitrifier Paracoccous denitrificans. The model accurately predicts denitrification rates and measured transcript dynamics. The relationship between simulated transcript concentrations and reaction rates exhibits strong non-linearity and hysteresis related to the faster dynamics of gene transcription and substrate consumption, relative to enzyme production and decay. Hence, assuming a unique relationship between transcript-to-gene ratios and reaction rates, as frequently suggested, may be an erroneous simplification. Comparing model results of our enzyme-based model to those of a classical Monod-type model reveals that both formulations perform equally well with respect to nitrogen species, indicating only a low benefit of integrating molecular-biological data for estimating denitrification rates. Nonetheless, the enzyme-based model is a valuable tool to improve our mechanistic understanding of the relationship between biomolecular quantities and reaction rates. Furthermore, our results highlight that both enzyme kinetics (i.e., substrate limitation and inhibition) and gene expression or enzyme dynamics are important controls on denitrification rates.
Collapse
Affiliation(s)
- Anna Störiko
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Holger Pagel
- Biogeophysics, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Adrian Mellage
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Olaf A. Cirpka
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Durand S, Guillier M. Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Front Mol Biosci 2021; 8:667758. [PMID: 34026838 PMCID: PMC8139620 DOI: 10.3389/fmolb.2021.667758] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
In oxygen (O2) limiting environments, numerous aerobic bacteria have the ability to shift from aerobic to anaerobic respiration to release energy. This process requires alternative electron acceptor to replace O2 such as nitrate (NO3 -), which has the next best reduction potential after O2. Depending on the organism, nitrate respiration involves different enzymes to convert NO3 - to ammonium (NH4 +) or dinitrogen (N2). The expression of these enzymes is tightly controlled by transcription factors (TFs). More recently, bacterial small regulatory RNAs (sRNAs), which are important regulators of the rapid adaptation of microorganisms to extremely diverse environments, have also been shown to control the expression of genes encoding enzymes or TFs related to nitrate respiration. In turn, these TFs control the synthesis of multiple sRNAs. These results suggest that sRNAs play a central role in the control of these metabolic pathways. Here we review the complex interplay between the transcriptional and the post-transcriptional regulators to efficiently control the respiration on nitrate.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Maude Guillier
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
5
|
Albina P, Durban N, Bertron A, Albrecht A, Robinet JC, Erable B. Nitrate and nitrite bacterial reduction at alkaline pH and high nitrate concentrations, comparison of acetate versus dihydrogen as electron donors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111859. [PMID: 33352382 DOI: 10.1016/j.jenvman.2020.111859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
This study assesses bacterial denitrification at alkaline pH, up to 12, and high nitrate concentration, up to 400 mM. Two types of electron donors organic (acetate) and inorganic (dihydrogen) were compared. With both types of electron donors, nitrite reduction was the key step, likely to increase the pH and lead to nitrite accumulation. Firstly, an acclimation process was used: nitrate was progressively increased in three cultures set at pH 9, 10, or 11. This method allowed to observe for the first time nitrate reduction up to pH 10 and 100 mM nitrate with dihydrogen, or up to pH 10 and 400 mM nitrate with acetate. Nitrate reduction kinetics were faster in the presence of acetate. To investigate further the impact of the type of electron donor, a transition from acetate to dihydrogen was tested, and the pH evolution was modelled. Denitrification with dihydrogen strongly increases the pH while with acetate the pH evolution depends on the initial pH. The main difference is the production of acidifying CO2 during the acetate oxidation. Finally, the use of long duration cultures with a highly alkaline pH allowed a nitrate reduction up to pH 11.5 with acetate. However, no reduction was possible in hydrogenotrophy as it would have increased the pH further. Instead, bacteria used organic matter from inoculum to reduce nitrate at pH 11.5. Therefore, considering bacterial denitrification in a context of alkaline pH and high nitrate concentration an organic electron donor such as acetate is advantageous.
Collapse
Affiliation(s)
- Pierre Albina
- LGC, CNRS, INPT, UPS, Université de Toulouse, Toulouse, France; LMDC, INSA/UPS Génie Civil, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse Cedex 04, France.
| | - Nadège Durban
- LGC, CNRS, INPT, UPS, Université de Toulouse, Toulouse, France; LMDC, INSA/UPS Génie Civil, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Alexandra Bertron
- LMDC, INSA/UPS Génie Civil, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Achim Albrecht
- Andra, 1-7 rue Jean-Monet, Châtenay-Malabry, 62298, France
| | | | - Benjamin Erable
- LGC, CNRS, INPT, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
6
|
Unden G, Klein R. Sensing of O 2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O 2 and nitrate. Environ Microbiol 2020; 23:5-14. [PMID: 33089915 DOI: 10.1111/1462-2920.15293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Many bacteria are able to use O2 and nitrate as alternative electron acceptors for respiration. Strategies for regulation in response to O2 and nitrate can vary considerably. In the paradigmatic system of E. coli (and γ-proteobacteria), regulation by O2 and nitrate is established by the O2 -sensor FNR and the two-component system NarX-NarL (for nitrate regulation). Expression of narGHJI is regulated by the binding of FNR and NarL to the promoter. A similar strategy by individual regulation in response to O2 and nitrate is verified in many genera by the use of various types of regulators. Otherwise, in the soil bacteria Bacillus subtilis (Firmicutes) and Streptomyces (Actinobacteria), nitrate respiration is subject to anaerobic induction, without direct nitrate induction. In contrast, the NreA-NreB-NreC two-component system of Staphylococcus (Firmicutes) performs joint sensing of O2 and nitrate by interacting O2 and nitrate sensors. The O2 -sensor NreB phosphorylates the response regulator NreC to activate narGHJI expression. NreC-P transmits the signal for anaerobiosis to the promoter. The nitrate sensor NreA modulates NreB function by converting NreB in the absence of nitrate from the kinase to a phosphatase that dephosphorylates NreC-P. Thus, widely different strategies for coordinating the response to O2 and nitrate have evolved in bacteria.
Collapse
Affiliation(s)
- Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| | - Robin Klein
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| |
Collapse
|
7
|
Modifications of the Aerobic Respiratory Chain of Paracoccus Denitrificans in Response to Superoxide Oxidative Stress. Microorganisms 2019; 7:microorganisms7120640. [PMID: 31816877 PMCID: PMC6955949 DOI: 10.3390/microorganisms7120640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
Paracoccus denitrificans is a strictly respiring bacterium with a core respiratory chain similar to that of mammalian mitochondria. As such, it continuously produces and has to cope with superoxide and other reactive oxygen species. In this work, the effects of artificially imposed superoxide stress on electron transport were examined. Exposure of aerobically growing cells to paraquat resulted in decreased activities of NADH dehydrogenase, succinate dehydrogenase, and N,N,N’,N’-tetramethyl-p-phenylenediamine (TMPD) oxidase. Concomitantly, the total NAD(H) pool size in cells was approximately halved, but the NADH/NAD+ ratio increased twofold, thus partly compensating for inactivation losses of the dehydrogenase. The inactivation of respiratory dehydrogenases, but not of TMPD oxidase, also took place upon treatment of the membrane fraction with xanthine/xanthine oxidase. The decrease in dehydrogenase activities could be fully rescued by anaerobic incubation of membranes in a mixture containing 2-mercaptoethanol, sulfide and ferrous iron, which suggests iron–sulfur clusters as targets for superoxide. By using cyanide titration, a stress-sensitive contribution to the total TMPD oxidase activity was identified and attributed to the cbb3-type terminal oxidase. This response (measured by both enzymatic activity and mRNA level) was abolished in a mutant defective for the FnrP transcription factor. Therefore, our results provide evidence of oxidative stress perception by FnrP.
Collapse
|
8
|
Albina P, Durban N, Bertron A, Albrecht A, Robinet JC, Erable B. Influence of Hydrogen Electron Donor, Alkaline pH, and High Nitrate Concentrations on Microbial Denitrification: A Review. Int J Mol Sci 2019; 20:ijms20205163. [PMID: 31635215 PMCID: PMC6834205 DOI: 10.3390/ijms20205163] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
Bacterial respiration of nitrate is a natural process of nitrate reduction, which has been industrialized to treat anthropic nitrate pollution. This process, also known as “microbial denitrification”, is widely documented from the fundamental and engineering points of view for the enhancement of the removal of nitrate in wastewater. For this purpose, experiments are generally conducted with heterotrophic microbial metabolism, neutral pH and moderate nitrate concentrations (<50 mM). The present review focuses on a different approach as it aims to understand the effects of hydrogenotrophy, alkaline pH and high nitrate concentration on microbial denitrification. Hydrogen has a high energy content but its low solubility, 0.74 mM (1 atm, 30 °C), in aqueous medium limits its bioavailability, putting it at a kinetic disadvantage compared to more soluble organic compounds. For most bacteria, the optimal pH varies between 7.5 and 9.5. Outside this range, denitrification is slowed down and nitrite (NO2−) accumulates. Some alkaliphilic bacteria are able to express denitrifying activity at pH levels close to 12 thanks to specific adaptation and resistance mechanisms detailed in this manuscript, and some bacterial populations support nitrate concentrations in the range of several hundred mM to 1 M. A high concentration of nitrate generally leads to an accumulation of nitrite. Nitrite accumulation can inhibit bacterial activity and may be a cause of cell death.
Collapse
Affiliation(s)
- Pierre Albina
- Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse, UPS, INSA. 135, 7 avenue de Rangueil, 31077 Toulouse CEDEX 04, France.
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31030 Toulouse, France.
| | - Nadège Durban
- Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse, UPS, INSA. 135, 7 avenue de Rangueil, 31077 Toulouse CEDEX 04, France.
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31030 Toulouse, France.
| | - Alexandra Bertron
- Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse, UPS, INSA. 135, 7 avenue de Rangueil, 31077 Toulouse CEDEX 04, France.
| | - Achim Albrecht
- Andra (Agence nationale pour la gestion des déchets radioactifs), 92298 Châtenay-Malabry, France.
| | - Jean-Charles Robinet
- Andra (Agence nationale pour la gestion des déchets radioactifs), 92298 Châtenay-Malabry, France.
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31030 Toulouse, France.
| |
Collapse
|
9
|
Vanin AF. What is the Mechanism of Nitric Oxide Conversion into Nitrosonium Ions Ensuring S-Nitrosating Processes in Living Organisms. Cell Biochem Biophys 2019; 77:279-292. [PMID: 31586291 DOI: 10.1007/s12013-019-00886-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Here, I present the data testifying that the conversion of free radical NO molecules to nitrosonium ions (NO+), which are necessary for the realization of one of NO biological effects (S-nitrosation), may occur in living organisms after binding NO molecules to loosely bound iron (Fe2+ ions) with the subsequent mutual one-electron oxidation-reduction of NO molecules (their disproportionation). Inclusion of thiol-containing substances as iron ligands into this process prevents hydrolysis of NO+ ions bound to iron thus providing the formation of stable dinitrosyl iron complexes (DNIC) with thiol ligands. Such complexes act in living organisms as donors of NO and NO+, providing stabilization and transfer of these agents via the autocrine and paracrine pathways. Without loosely bound iron (labile iron pool) and thiols participating in the DNIC formation, NO functioning as one of universal regulators of diverse metabolic processes would be impossible.
Collapse
Affiliation(s)
- Anatoly F Vanin
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Kosygin Str.4, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Sun Z, Pang B, Xi J, Hu HY. Screening and characterization of mixotrophic sulfide oxidizing bacteria for odorous surface water bioremediation. BIORESOURCE TECHNOLOGY 2019; 290:121721. [PMID: 31301572 DOI: 10.1016/j.biortech.2019.121721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Eight species of mixotrophic sulfide oxidizing bacteria (SOB) were isolated from activated sludge and identified using 16S rRNA sequence analysis. The effects of organic substances, dissolved oxygen (DO) and nitrate on sulfide oxidation and bacterial growth were studied in this work. The results showed that Paracoccus sp. (N1), Pseudomonas sp. (N2) and Pseudomonas sp. (S4) have strong adaptability to environments with low DO and high concentrations of organic substance. An SOB additive was optimized in artificial, odorous water. The optimized SOB additive is ablendof 80% N1 and 20% N2 bacteria solution with absorbance equal to 0.5 at a wavelength of 600 nm (OD600), and the optimal dose of the additive is 20 ml/L. Oxidation-reduction potential (ORP), ammonia-nitrogen (NH3-N) and released H2S in an odorous river were measured with and without SOB additive, and the results indicated that the optimized SOB additive has excellent performance for odorous river bioremediation.
Collapse
Affiliation(s)
- Zhuqiu Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bowen Pang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
11
|
Gaimster H, Alston M, Richardson DJ, Gates AJ, Rowley G. Transcriptional and environmental control of bacterial denitrification and N2O emissions. FEMS Microbiol Lett 2019; 365:4768087. [PMID: 29272423 DOI: 10.1093/femsle/fnx277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
In oxygen-limited environments, denitrifying bacteria can switch from oxygen-dependent respiration to nitrate (NO3-) respiration in which the NO3- is sequentially reduced via nitrite (NO2-), nitric oxide (NO) and nitrous oxide (N2O) to dinitrogen (N2). However, atmospheric N2O continues to rise, a significant proportion of which is microbial in origin. This implies that the enzyme responsible for N2O reduction, nitrous oxide reductase (NosZ), does not always carry out the final step of denitrification either efficiently or in synchrony with the rest of the pathway. Despite a solid understanding of the biochemistry underpinning denitrification, there is a relatively poor understanding of how environmental signals and respective transcriptional regulators control expression of the denitrification apparatus. This minireview describes the current picture for transcriptional regulation of denitrification in the model bacterium, Paracoccus denitrificans, highlighting differences in other denitrifying bacteria where appropriate, as well as gaps in our understanding. Alongside this, the emerging role of small regulatory RNAs in regulation of denitrification is discussed. We conclude by speculating how this information, aside from providing a better understanding of the denitrification process, can be translated into development of novel greenhouse gas mitigation strategies.
Collapse
Affiliation(s)
- Hannah Gaimster
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Mark Alston
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
12
|
Osorio H, Mettert E, Kiley P, Dopson M, Jedlicki E, Holmes DS. Identification and Unusual Properties of the Master Regulator FNR in the Extreme Acidophile Acidithiobacillus ferrooxidans. Front Microbiol 2019; 10:1642. [PMID: 31379789 PMCID: PMC6659574 DOI: 10.3389/fmicb.2019.01642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
The ability to conserve energy in the presence or absence of oxygen provides a metabolic versatility that confers an advantage in natural ecosystems. The switch between alternative electron transport systems is controlled by the fumarate nitrate reduction transcription factor (FNR) that senses oxygen via an oxygen-sensitive [4Fe-4S]2+ iron-sulfur cluster. Under O2 limiting conditions, FNR plays a key role in allowing bacteria to transition from aerobic to anaerobic lifestyles. This is thought to occur via transcriptional activation of genes involved in anaerobic respiratory pathways and by repression of genes involved in aerobic energy production. The Proteobacterium Acidithiobacillus ferrooxidans is a model species for extremely acidophilic microorganisms that are capable of aerobic and anaerobic growth on elemental sulfur coupled to oxygen and ferric iron reduction, respectively. In this study, an FNR-like protein (FNRAF) was discovered in At. ferrooxidans that exhibits a primary amino acid sequence and major motifs and domains characteristic of the FNR family of proteins, including an effector binding domain with at least three of the four cysteines known to coordinate an [4Fe-4S]2+ center, a dimerization domain, and a DNA binding domain. Western blotting with antibodies against Escherichia coli FNR (FNREC) recognized FNRAF. FNRAF was able to drive expression from the FNR-responsive E. coli promoter PnarG, suggesting that it is functionally active as an FNR-like protein. Upon air exposure, FNRAF demonstrated an unusual lack of sensitivity to oxygen compared to the archetypal FNREC. Comparison of the primary amino acid sequence of FNRAF with that of other natural and mutated FNRs, including FNREC, coupled with an analysis of the predicted tertiary structure of FNRAF using the crystal structure of the related FNR from Aliivibrio fisheri as a template revealed a number of amino acid changes that could potentially stabilize FNRAF in the presence of oxygen. These include a truncated N terminus and amino acid changes both around the putative Fe-S cluster coordinating cysteines and also in the dimer interface. Increased O2 stability could allow At. ferrooxidans to survive in environments with fluctuating O2 concentrations, providing an evolutionary advantage in natural, and engineered environments where oxygen gradients shape the bacterial community.
Collapse
Affiliation(s)
- Héctor Osorio
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Santiago, Chile
| | - Erin Mettert
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Patricia Kiley
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Eugenia Jedlicki
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Santiago, Chile
- Universidad San Sebastian, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
13
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Olaya-Abril A, Hidalgo-Carrillo J, Luque-Almagro VM, Fuentes-Almagro C, Urbano FJ, Moreno-Vivián C, Richardson DJ, Roldán MD. Exploring the Denitrification Proteome of Paracoccus denitrificans PD1222. Front Microbiol 2018; 9:1137. [PMID: 29896187 PMCID: PMC5987163 DOI: 10.3389/fmicb.2018.01137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 11/24/2022] Open
Abstract
Denitrification is a respiratory process that produces nitrous oxide as an intermediate, which may escape to the atmosphere before its reduction to dinitrogen through the nitrous oxide reductase NosZ. In this work, the denitrification process carried out by Paracoccus denitrificans PD1222 has been explored through a quantitative proteomic analysis. Under anaerobic conditions, with nitrate as sole nitrogen source, the synthesis of all the enzymes involved in denitrification, the respiratory nitrate, nitrite, nitric oxide, and nitrous oxide reductases, was increased. However, the periplasmic and assimilatory nitrate reductases decreased. Synthesis of transporters for alcohols, D-methionine, sulfate and copper, most of the enzymes involved in the tricarboxylic acid cycle, and proteins involved in other metabolic processes like lysine catabolism, fatty acids degradation and acetyl-CoA synthesis, was increased during denitrification in P. denitrificans PD1222. As consequence, an enhanced production of the central metabolite acetyl-CoA was observed. After establishing the key features of the denitrification proteome, its changes by the influence of a competitive electron acceptor, oxygen, or competitive nitrogen source, ammonium, were evaluated.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - David J. Richardson
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - María D. Roldán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
15
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|