1
|
Sun L, Zuo C, Ma B, Liu X, Guo Y, Wang X, Han M. Intratumoral injection of two dosage forms of paclitaxel nanoparticles combined with photothermal therapy for breast cancer. CHINESE HERBAL MEDICINES 2025; 17:156-165. [PMID: 39949814 PMCID: PMC11814247 DOI: 10.1016/j.chmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 02/16/2025] Open
Abstract
Objective In order to enhance the efficacy of anti-breast cancer, paclitaxel nanoparticles (PTX NPs) and polypyrrole nanoparticles (PPy NPs) were combined with photothermal therapy and chemotherapy. At the same time, the two dosage forms of PTX NPs and PTX NPs gel were compared. Methods PTX NPs were prepared by self-assembly method, and then the cytotoxicity in vitro was investigated by Methyl thiazolyl tetrazolium (MTT) and other methods, and the efficacy and side effects in vivo were further investigated. Results The average hydrated diameter, PDI and electric potential of PTX NPs were (210.20 ± 1.57) nm, (0.081 ± 0.003) mV and (15.80 ± 0.35) mV, respectively. MTT results showed that the IC50 value of PTX NPs on 4 T1 cells was 0.490 μg/mL, while that of PTX injection was 1.737 μg/mL. The cell inhibitory effect of PTX NPs was about 3.5 times higher than that of PTX injection. The tumor inhibition rates of PTX NPs and gel were 48.64% and 56.79%, respectively. Together with local photothermal stimulation, the tumor inhibition rate of the PTX NPs reached 91.05%, surpassing that of the gel under the same conditions (48.98%), moreover, the organ index and H&E staining results of PTX NPs showed a decrease in toxicity. Conclusion This combination therapy can significantly enhance the effect of anti-breast cancer, and the synergistic effect of chemotherapy and light and heat provides a feasible and effective strategy for the treatment of tumor.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Baonan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinxin Liu
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Heilongjiang 150076, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
2
|
Habibi A, Davari A, Isazadeh K. A novel LL-37@NH2@Fe3O4 inhibits the proliferation of the leukemia K562 cells: in-vitro study. Sci Rep 2024; 14:22245. [PMID: 39333586 PMCID: PMC11436878 DOI: 10.1038/s41598-024-71946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
LL-37 can inhibit the growth of K562 cancer cells when it is conjugated with iron oxide nanoparticles. In this study, Fe3O4 nanoparticles were synthesized using the co-precipitation method and then modified with the LL-37 peptide through an NH2 bridge. The accuracy of the synthesis process was confirmed through various analytical tests, including FTIR, XRD, FESEM, and EDX. To assess the treatment's effectiveness, a viability test was carried out on K562 leukemia cells and normal peripheral blood mononuclear cells. In addition, flow cytometry and Hoechst staining were used to investigate the mechanism of action of the drug. The expression levels of the Bcl-2, Bax, and TP53 genes in the treated cells and the control group were measured using qRT-PCR. The results indicated that the size of the nanoparticles ranged between 34 and 40 nm. The NH2@LL-37@Fe3O4 nanoparticles more effectively inhibited the growth of cancer cells in a concentration-dependent manner, as compared to Fe3O4 alone. Further analysis revealed that apoptosis occurred through increased expression of TP53 and Bax genes compared to the Bcl-2 gene. Therefore, induction of apoptosis and inhibition of growth in K562 cells was attributed to the impact of iron oxide magnetic nanoparticles conjugated with the LL-37 peptide through the TP53/Bax/Bcl-2 pathway.
Collapse
Affiliation(s)
- Alireza Habibi
- Department of Basic Sciences, Faculty of Sciences, Imam Hossein University, Tehran, Iran.
| | - Aynaz Davari
- Department of Molecular-Cell Biology, Faculty of Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Khosro Isazadeh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| |
Collapse
|
3
|
Ibrahim JN, El-Hakim S, Semaan J, Ghosn S, El Ayoubi H, Elnar AA, Tohme N, El Boustany C. Sodium Butyrate (NaB) and Sodium Propionate (NaP) Reduce Cyclin A2 Expression, Inducing Cell Cycle Arrest and Proliferation Inhibition of Different Breast Cancer Subtypes, Leading to Apoptosis. Biomedicines 2024; 12:1779. [PMID: 39200243 PMCID: PMC11351769 DOI: 10.3390/biomedicines12081779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Sodium butyrate (NaB) and sodium propionate (NaP) have recently garnered attention for their role in regulating inflammation and controlling signaling pathways of cell growth and apoptosis, potentially preventing cancer development. However, their therapeutic effect and the underlying mechanisms involved remain elusive in breast cancer. This study aims at investigating the anticancer role of NaB and NaP in different types of breast cancer by assessing their antiproliferative effect on MCF-7 and MDA-MB-231 cells (through an MTT assay), as well as their ability to alter the cell cycle and cyclin expression (using flow cytometry and RT-qPCR, respectively), and to promote apoptosis (using Annexin V-FITC conjugated and sub-G1 phase techniques). MDA-MB-231 cell proliferation was inhibited by NaB and NaP in a dose- and time-dependent manner with respective IC50 values of 2.56 mM and 6.49 mM. Treatment induced cell arrest in the G1 phase which was further supported by the significant reduction in cyclin A2 and cyclin B1 expressions. Finally, NaB, and less significantly NaP, induced apoptosis in a dose-dependent manner with higher concentrations required for MDA-MB-231 than MCF-7. Our findings elucidate the cyclin-dependent inhibitory effect of NaB and NaP on the progression of different breast cancer subtypes, thus highlighting their therapeutic potential in breast cancer.
Collapse
Affiliation(s)
- José-Noel Ibrahim
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut 1102, Lebanon
| | - Sandy El-Hakim
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Josiane Semaan
- Department of Laboratory Science, Faculty of Public Health—Branch 2, Lebanese University, Fanar 2611, Lebanon; (J.S.); (S.G.); (H.E.A.); (A.A.E.); (N.T.); (C.E.B.)
| | - Stéphanie Ghosn
- Department of Laboratory Science, Faculty of Public Health—Branch 2, Lebanese University, Fanar 2611, Lebanon; (J.S.); (S.G.); (H.E.A.); (A.A.E.); (N.T.); (C.E.B.)
| | - Hiba El Ayoubi
- Department of Laboratory Science, Faculty of Public Health—Branch 2, Lebanese University, Fanar 2611, Lebanon; (J.S.); (S.G.); (H.E.A.); (A.A.E.); (N.T.); (C.E.B.)
| | - Arpiné Ardzivian Elnar
- Department of Laboratory Science, Faculty of Public Health—Branch 2, Lebanese University, Fanar 2611, Lebanon; (J.S.); (S.G.); (H.E.A.); (A.A.E.); (N.T.); (C.E.B.)
| | - Najat Tohme
- Department of Laboratory Science, Faculty of Public Health—Branch 2, Lebanese University, Fanar 2611, Lebanon; (J.S.); (S.G.); (H.E.A.); (A.A.E.); (N.T.); (C.E.B.)
| | - Charbel El Boustany
- Department of Laboratory Science, Faculty of Public Health—Branch 2, Lebanese University, Fanar 2611, Lebanon; (J.S.); (S.G.); (H.E.A.); (A.A.E.); (N.T.); (C.E.B.)
| |
Collapse
|
4
|
Hohnsen J, Rryci L, Obretenova D, Friedel J, Jouchaghani S, Klein A. Functionalizing Thiosemicarbazones for Covalent Conjugation. Molecules 2024; 29:3680. [PMID: 39125087 PMCID: PMC11314635 DOI: 10.3390/molecules29153680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Thiosemicarbazones (TSCs) with their modular character (thiosemicarbazides + carbonyl compound) allow broad variation of up to four substituents on the main R1R2C=N(1)-NH-C(S)-N(4)R3R4 core and are thus interesting tools for the formation of conjugates or the functionalization of nanoparticles (NPs). In this work, di-2-pyridyl ketone was introduced for the coordination of metals and 9-anthraldehyde for luminescence as R1 and R2 to TSCs. R3 and R4 substituents were varied for the formation of conjugates. Amino acids were introduced at the N4 position to produce [R1R2TSC-spacer-amino acid] conjugates. Further, functions such as phosphonic acid (R-P(O)(OH)2), D-glucose, o-hydroquinone, OH, and thiol (SH) were introduced at the N4 position producing [R1R2TSC-spacer-anchor group] conjugates for direct NP anchoring. Phenyl, cyclohexyl, benzyl, ethyl and methyl were used as spacer units. Both phenyl phosphonic acid TSC derivatives were bound on TiO2 NPs as a first example of direct NP anchoring. [R1R2TSC-spacer-end group] conjugates including OH, S-Bn (Bn = benzyl), NH-Boc (Boc = tert-butyloxycarbonyl), COOtBu, C≡CH, or N3 end groups were synthesized for potential covalent binding to functional molecules or functionalized NPs through amide, ester, or triazole functions. The synthesis of the thiosemicarbazides H2NNH-C(S)-NR3R4 starting from amines, including amino acids, SCCl2 or CS2, and hydrazine and their condensation with dipyridyl ketone and anthraldehyde led to 34 new TSC derivatives. They were synthesized in up to six steps with overall yields ranging from 10 to 85% and were characterized by a combination of nuclear magnetic resonance spectroscopy and mass spectrometry. UV-vis absorption and photoluminescence spectroscopy allowed us to easily trace the dipyridyl imine and anthracene chromophores.
Collapse
Affiliation(s)
| | | | | | | | | | - Axel Klein
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry and Biochemistry, Institute for Inorganic and Materials Chemistry, Greinstraße 6, 50939 Koeln, Germany; (J.H.); (L.R.); (D.O.); (J.F.); (S.J.)
| |
Collapse
|
5
|
Mahdavi Niyaki Z, Salehzadeh A, Peymani M, Zaefizadeh M. Exploring the Therapeutic Potential of Fe 3O 4@Glu-Oleuropein Nanoparticles in Targeting KRAS Pathway-Regulating lncRNAs in Colorectal Cancer Cells. Biol Trace Elem Res 2024; 202:3073-3085. [PMID: 37792268 DOI: 10.1007/s12011-023-03892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Cancer, the leading cause of death worldwide, has witnessed significant advancements in treatment through targeted therapies. Among the proto-oncogenes prevalent in human cancers, KRAS stands out, and recent research has focused on long noncoding RNAs (lncRNAs) as regulators of miRNAs targeting the KRAS oncogene. This study specifically explores lncRNAs involved in the KRAS pathway in colorectal cancer (CRC). To investigate this, researchers employed iron oxide nanoparticles coated with glucose and conjugated with Oleuropein (Fe3O4@Glu-Oleuropein NPs) to evaluate their impact on candidate lncRNAs associated with KRAS pathway deregulation. The study utilized TCGA data to identify genes affected by KRAS mutation and lncRNAs linked to KRAS in CRC. Enrichr and MsigDB databases helped identify relevant pathways. Genes with a correlation coefficient above 0.5 and a P-value less than 0.01 with candidate lncRNAs were selected. MTT and flow cytometry assays determined the anti-proliferative and apoptotic effects of Fe3O4@Glu-Oleuropein NPs on CRC cells (SW480) and normal cells (HEK293). The findings showed that increased expression of FEZF1-AS1, GAS6-AS1, and LINC00920 correlated with mutated KRAS, and co-expressed genes were significantly involved in hypoxia, KRAS signaling, DNA repair, and IL-2/STAT5 signaling pathways. Fe3O4@Glu-Oleuropein NPs exhibited higher toxicity toward cancer cells, with IC50 values of 92 μg/ml for SW480 and 281 μg/ml for HEK293. Flow cytometry analysis revealed a substantial increase in necrotic and apoptotic cells when treated with Fe3O4@Glu-Oleuropein, along with down-regulation of GAS6-AS1, LINC00920, and FEZF1-AS1 lncRNAs in treated cells. In conclusion, this study highlights the therapeutic potential of Fe3O4@Glu-Oleuropein on colon cancer cells in vitro. The identification of lncRNAs involved in the KRAS pathway provides insights into the underlying mechanisms and offers avenues for further research in targeted cancer therapies.
Collapse
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Zaefizadeh
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
6
|
Marathe K, Naik J, Maheshwari V. Synthesis, characterisation and in vitro anticancer activity of conjugated protease inhibitor-silver nanoparticles (AgNPs-PI) against human breast MCF-7 and prostate PC-3 cancer cell lines. Bioprocess Biosyst Eng 2024; 47:931-942. [PMID: 38709274 DOI: 10.1007/s00449-024-03023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
The conjugated silver nanoparticles using biomolecules have attracted great attention of researchers because physical dimensions and surface chemistry play important roles in toxicity and biocompatibility of AgNPs. Hence, in the current study, synthesis of bio-conjugated AgNPs with protein protease inhibitor (PI) isolated from Streptomyces spp. is reported. UV-visible spectra of PI and AgNPs showed stronger peaks at 280 and 405 nm, confirming the synthesis of conjugated AgNPs-PI. TEM and SEM images of AgNPs-PI showed spherical-shaped nanoparticles with a slight increase in particle size and thin amorphous layer around the surface of silver nanomaterial. Circular dichroism, FT-IR and fluorescence spectral studies confirmed AgNPs-PI conjugation. Conjugated AgNPs-PI showed excellent anticancer potential than AgNPs and protease inhibitor separately on human breast MCF-7 and prostate PC-3 cell lines. The findings revealed that surface modification of AgNPs with protein protease inhibitor stabilised the nanomaterial and increased its anticancer activity.
Collapse
Affiliation(s)
- Kiran Marathe
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India.
| | - Jitendra Naik
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India
| | - Vijay Maheshwari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India
| |
Collapse
|
7
|
Rastogi S, Ansari MN, Saeedan AS, Singh SK, Mukerjee A, Kaithwas G. Novel furan chalcone modulates PHD-2 induction to impart antineoplastic effect in mammary gland carcinoma. J Biochem Mol Toxicol 2024; 38:e23679. [PMID: 38486411 DOI: 10.1002/jbt.23679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Normoxic inactivation of prolyl hydroxylase-2 (PHD-2) in tumour microenvironment paves the way for cancer cells to thrive under the influence of HIF-1α and NF-κB. Henceforth, the present study is aimed to identify small molecule activators of PHD-2. A virtual screening was conducted on a library consisting of 265,242 chemical compounds, with the objective of identifying molecules that exhibit structural similarities to the furan chalcone scaffold. Further, PHD-2 activation potential of screened compound was determined using in vitro 2-oxoglutarate assay. The cytotoxic activity and apoptotic potential of screened compound was determined using various staining techniques, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 4',6-diamidino-2-phenylindole (DAPI), 1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), and acridine orange/ethidium bromide (AO/EB), against MCF-7 cells. 7,12-Dimethylbenz[a]anthracene (DMBA) model of mammary gland cancer was used to study the in vivo antineoplastic efficacy of screened compound. [(E)-1-(4-fluorophenyl)-3-(furan-2-yl) prop-2-en-1-one] (BBAP-7) was screened and validated as a PHD-2 activator by an in vitro 2-oxo-glutarate assay. The IC50 of BBAP-7 on MCF-7 cells is 18.84 µM. AO/EB and DAPI staining showed nuclear fragmentation, blebbing and condensation in MCF-7 cells following BBAP-7 treatment. The red-to-green intensity ratio of JC-1 stained MCF-7 cells decreased after BBAP-7 treatment, indicating mitochondrial-mediated apoptosis. DMBA caused mammary gland dysplasia, duct hyperplasia and ductal carcinoma in situ. Carmine staining, histopathology, and scanning electron microscopy demonstrated that BBAP-7, alone or with tirapazamine, restored mammary gland surface morphology and structural integrity. Additionally, BBAP-7 therapy significantly reduced oxidative stress and glycolysis. The findings reveal that BBAP-7 activates PHD-2, making it a promising anticancer drug.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia
| | - Sunil Kumar Singh
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Alok Mukerjee
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Mikaeili Ghezeljeh S, Salehzadeh A, Ataei-E Jaliseh S. Iron oxide nanoparticles coated with Glucose and conjugated with Safranal (Fe 3O 4@Glu-Safranal NPs) inducing apoptosis in liver cancer cell line (HepG2). BMC Chem 2024; 18:33. [PMID: 38360669 PMCID: PMC10870579 DOI: 10.1186/s13065-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Magnetic nanoparticles can be considered a reliable tool for targeted drug delivery to cancer tissues. Based on this, in this study, the anticancer effect of iron oxide nanoparticles coated with glucose and conjugated with Safranal (Fe3O4@Glu-Safranal NPs) on a liver cancer cell line (HepG2) was investigated. Physicochemical properties of nanoparticles were characterized using FT-IR, XRD, VSM, EDS-mapping, SEM and TEM imaging, zeta potential, and DLS analyses. MTT test was used to investigate the inhibitory effect of nanoparticles on cancer and normal cell lines. Also, the reactive oxygen species (ROS) level, the population of apoptotic cells, and cell cycle analysis were evaluated in control and nanoparticle-treated cells. The synthesized particles were spherical, in a size range of 17-49 nm, without impurities, with a surface charge of - 13 mV and hydrodynamic size of 129 nm, and with magnetic saturation of 22.5 emu/g. The 50% inhibitory concentration (IC50) of Safranal, Fe3O4, Fe3O4@Glu-Safranal and Cisplatin drug on liver cancer cells were 474, 1546, 305 and 135 µg/mL, respectively. While, the IC50 of Fe3O4@Glu-Safranal for normal cell line was 680 µg/mL. Treating liver cancer cells with nanoparticles significantly increased the population of apoptotic cells from 2.5% to 34.7%. Furthermore, the population of the cells arrested at the G2/M phase increased in nanoparticle-treated cells. Due to the biocompatibility of the constituent compounds of these nanoparticles, their magnetic properties, and their inhibitory effects on cancer cells, Fe3O4@Glu-Safranal NPs can be further considered as a promising anticancer compound.
Collapse
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | | |
Collapse
|
9
|
Mohamed MR, Osman SA, Hassan AA, Raafat AI, Refaat MM, Fathy SA. Gemcitabine and synthesized silver nanoparticles impact on chemically induced hepatocellular carcinoma in male rats. Int J Immunopathol Pharmacol 2024; 38:3946320241263352. [PMID: 39046434 PMCID: PMC11271163 DOI: 10.1177/03946320241263352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/02/2024] [Indexed: 07/25/2024] Open
Abstract
Objective: Gemcitabine (GEM) is a deoxycytidine analog chemotherapeutic drug widely used to treat many cancers. Silver nanoparticles (AgNPs) are important nanomaterials used to treat many diseases. Using gamma radiation in nanoparticle preparation is a new eco-friendly method. This study aims to evaluate the efficiency of co-treating gemcitabine and silver nanoparticles in treating hepatocellular carcinoma. Method: The AgNPs were characterized using UV-visible spectroscopy, XRD, TEM, and EDX. The MTT cytotoxicity in vitro assay of gemcitabine, doxorubicin, and cyclophosphamide was assessed against Wi38 normal fibroblast and HepG2 HCC cell lines. After HCC development, rats received (10 µg/g b.wt.) of AgNPs three times a week for 4 weeks and/or GEM (5 mg/kg b.wt.) twice weekly for 4 weeks. Liver function enzymes were investigated. Cytochrome P450 and miR-21 genes were studied. Apoptosis was determined by using flow cytometry, and apoptotic modifications in signaling pathways were evaluated via Bcl-2, Bax, Caspase-9, and SMAD-4. Results: The co-treatment of GEM and AgNPs increased apoptosis by upregulating Bax and caspase 9 while diminishing Bcl2 and SMAD4. It also improved cytochrome P450 m-RNA relative expression. The results also proved the cooperation between GEM and AgNPs in deactivating miR21. The impact of AgNPs as an adjuvant treatment with GEM was recognized. Conclusions: The study showed that co-treating AgNPs and GEM can improve the efficiency of GEM alone in treating HCC. This is achieved by enhancing intrinsic and extrinsic apoptotic pathways while diminishing some drawbacks of using GEM alone.
Collapse
Affiliation(s)
- Mohamed R Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Soheir A Osman
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Asmaa A Hassan
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Refaat
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shadia A Fathy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Mollaei M, Homayouni Tabrizi M, Es-Haghi A. The folate-linked chitosan-coated Kaempferol/HSA nano-transporters (FCKH-NTs) as the selective apoptotic inducer in human MCF-7 breast cancer cell line. Drug Dev Ind Pharm 2023; 49:658-665. [PMID: 37814890 DOI: 10.1080/03639045.2023.2268739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Kaempferol, the natural bioactive flavonoid, has been utilized as an efficient anti-breast cancer compound. In the current study, the Kaempferol's cellular uptake and its aqueous solubility were improved by using human serum albumin (HSA) as the Kaempferol adjuvant and encapsulating it with the folate-linked chitosan polymer to evaluate the apoptotic, activity of the novel-formulated Kaempferol in human MCF-7 breast cancer cells. METHODS The folate-linked chitosan-coated Kaempferol/HSA nano-transporters (FCKH-NTs) were synthesized and characterized using FTIR, FESEM, DLS, and Zeta potential analysis. The nano-transporters' selective cytotoxicity was studied by applying an MTT assay on the cancerous MCF-7 cells compared with normal HFF cell lines. Cell death type determination was determined by analyzing the expression of apoptotic (BAX and Cas-8) and anti-apoptotic genes (BCL2 and NF-κB). The FCKH-NTs apoptotic activity was verified by studying the flow cytometry and AO/PI staining results. RESULT The 126-nm FCKH-NTs (PDI = 0.282) selectively induced apoptotic death in human MCF-7 breast cancer cells by up-regulating the BAX, Nf- κB, and Cas-8 gene expression. The apoptotic activity of FCKH-NTs was verified by detecting the SubG1-arrested cancer cells and increased apoptotic bodies in AO/PI staining images. CONCLUSION The FCKH-NTs exhibited a selective-cytotoxic impact on human MCF-7 breast cancer cells compared with normal HFF cells, which can be due to the folate receptor-mediated endocytosis mechanism of the nano-transporters. Therefore, the FCKH-NTs have the potential to be used as a selective anti-breast cancer compound.
Collapse
Affiliation(s)
- Mahshad Mollaei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
11
|
Habibi A, Bakhshi N, Moradi shoili Z, Amirmozafari N. Iron Oxide Nanoparticles Conjugated to Thiosemicarbazone Reduce the Survival of Cancer Cells by Increasing the Gene Expression of MicroRNA let-7c in Lung Cancer A549 Cells. ARCHIVES OF IRANIAN MEDICINE 2022; 25:807-816. [PMID: 37543908 PMCID: PMC10685841 DOI: 10.34172/aim.2022.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/07/2021] [Indexed: 08/08/2023]
Abstract
BACKGROUND Cancer cells have a higher demand for iron to grow and proliferate. A new complex of iron nanoparticles and thiosemicarbazones was synthesized. Confirmation tests included UV-visible, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and zeta potential. METHODS MTT assay, flow cytometry and qRT-PCR were used to investigate anti-proliferative effect, amount of apoptosis and the effect of Fe3 O4 @Glu/BTSC on changes in gene expression of microRNA let-7c (let-7c), respectively. The specifications of Fe3 O4 @ Glu/BTSC were confirmed at 5 nm. RESULTS Fe3O4@Glu/BTSC was more effective than BTSC and Fe3 O4 on A549 cells (IC50=166.77 µg/mL) but its effect on healthy cells was smaller (CC50=189.15 µg/mL). The drug selectivity index (SI) was calculated to be 1.13. The initial apoptosis rate was 46.33% for Fe3 O4 @Glu/BTSC, 28.27% for BTSC and 26.02% for Fe3 O4 . BTSC and BTSC@Fe3 O4 inhibited the cell cycle progression in the Sub-G1 and S phases. let-7c expression was 6.9 times higher in treated cells compared to the control group. The expression rate was 2.2 with BTSC compared to the control group and 1.6 times for Fe3 O4. CONCLUSION Fe3 O4 @Glu/BTSC has proper anti-proliferative effects against lung cancer cells by increasing the expression of let-7c and inhibiting the cell cycle with the apoptosis activation pathway.
Collapse
Affiliation(s)
- Alireza Habibi
- Departman of Basic Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Nesa Bakhshi
- Departman of Molecular Cell Biology, Faculty of Science, Islamic Azad University of Lahijan, Lahijan, Iran
| | | | - Nour Amirmozafari
- Departman of Microbiology, School of Medicine, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ma Y, Liu J, Cui X, Hou J, Yu F, Wang J, Wang X, Chen C, Tong L. Hyaluronic Acid Modified Nanostructured Lipid Carrier for Targeting Delivery of Kaempferol to NSCLC: Preparation, Optimization, Characterization, and Performance Evaluation In Vitro. Molecules 2022; 27:4553. [PMID: 35889427 PMCID: PMC9318624 DOI: 10.3390/molecules27144553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022] Open
Abstract
Lung cancer seriously threatens the health of human beings, with non-small cell lung cancer (NSCLC) accounting for 80%. Nowadays, the potential position of nano-delivery in treating cancer has been the subject of continuous research. The present research aimed to prepare two molecular weight hyaluronic acid (HA)-modified kaempferol (KA)-loaded nanostructured lipid carriers (HA-KA-NLCs) by the method of melting ultrasonic and electrostatic adsorption, and to assess the antitumor effect of the preparations on A549 cells. The characterization and safety evaluation of the preparations illustrated that they are acceptable for drug delivery for cancer. Subsequently, differential scanning calorimetry (DSC) curve and transmission electron microscopy (TEM) images indicated that the drug was adequately incorporated in the carrier, and the particle appeared as a sphere. Moreover, HA-KA-NLC showed predominant in vitro antitumor effects, inhibiting proliferation, migration, and invasion, promoting apoptosis and increasing cellular uptake of A549 cells. Otherwise, the Western blot assay revealed that preparations could activate epithelial-mesenchymal transition (EMT)-related signaling pathways and modulate the expression of E-cadherin, N-cadherin, and Vimentin in A549 cells. Our present findings demonstrated that HA-KA-NLC could be considered as a secure and effective carrier for targeted tumor delivery and may have potential application prospects in future clinic therapy of NSCLC.
Collapse
Affiliation(s)
- Yufei Ma
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Jinli Liu
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157000, China;
| | - Xinyu Cui
- Department of Public Health, Mudanjiang Medical University, Mudanjiang 157000, China;
| | - Jiafu Hou
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Fengbo Yu
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Jinghua Wang
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Xiaoxue Wang
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Cong Chen
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| | - Lei Tong
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang 157000, China; (Y.M.); (J.H.); (F.Y.); (J.W.); (X.W.); (C.C.)
| |
Collapse
|
13
|
Khan AA, Ahmad R, Alanazi AM, Alsaif N, Abdullah M, Wani TA, Bhat MA. Determination of anticancer potential of a novel pharmacologically active thiosemicarbazone derivative in colorectal cancer cell lines. Saudi Pharm J 2022; 30:815-824. [PMID: 35812146 PMCID: PMC9257852 DOI: 10.1016/j.jsps.2022.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Thiosemicarbazones have received noteworthy attention due to their numerous pharmacological activities. Various thiosemicarbazone derivatives have been reported to play a key role as potential chemotherapeutic agents for the management of cancer. Herein, we aimed to establish the anticancer efficacy of novel thiosemicarbazone derivative C4 against colon cancer in vitro. The MTT viability assay identified C4 as a promising anticancer compound in a panel of cancer cell lines with the most potent activity against colon cancer cells. Further, anticancer potential of C4 was evaluated against HT-29 and SW620 colon cancer cell lines considering the factors like cell adhesion and migration, oxidative stress, cell cycle arrest, and apoptosis. Our results showed that C4 significantly inhibited the migration and adhesion of colon cancer cells. C4 significantly increased the intracellular reactive oxygen species (ROS) and induced apoptotic cell death. Cell cycle analysis revealed that C4 interfered in the cell cycle distribution and arrested the cells at the G2/M phase of the cell cycle. Consistent with these results C4 also down-regulated the Bcl-XL and Bcl-2 and up-regulated the caspase-3 expression. These findings introduced C4 as the potential anticancer agent against colon cancer.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
- Corresponding authors.
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
- Corresponding authors.
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Nawaf Alsaif
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Maha Abdullah
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Tanveer A. Wani
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Mashooq A. Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| |
Collapse
|
14
|
Badrooh M, Shokrollahi F, Javan S, Ghasemipour T, Rezaei Mojdehi S, Farahnak H, Jahani Sayyad Noveiri M, Hedayati M, Salehzadeh A. Trigger of apoptosis in adenocarcinoma gastric cell line (AGS) by a complex of thiosemicarbazone and copper nanoparticles. Mol Biol Rep 2022; 49:2217-2226. [PMID: 35001246 DOI: 10.1007/s11033-021-07043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Seeking novel anticancer agents with minimal side effects against gastric cancer is vitally important. Copper, as an important trace element, takes roles in different physiologic pathways. Also, there is a higher demand for copper in cancer cells than normal ones. Copper complexes containing a therapeutic ligand could be promising candidates for gastric cancer chemotherapy. METHODS AND RESULTS In this work, copper oxide nanoparticles were synthesized, functionalized with glutamic acid (CuO@Glu) and conjugated with thiosemicarbazone (CuO@Glu/TSC NPs). The NPs were characterized and their antiproliferative potential against AGS cancer cells was investigated using MTT, flow cytometry, Hoechst staining, and caspase 3 activation assays. The FT-IR results showed the proper binding of TSC to CuO@Glu NPs and crystallinity of the prepared NPs was confirmed by the XRD pattern. The EDX analysis confirmed the presence of Cu, N, C, O, and S elements and lack of impurities. The Hydrodynamic size and zeta potential of the CuO@Glu/TSC NPs were 168 nm and 27.5 mV, respectively. The NPs had spherical shape and were in a size range of 10 to 60 nm in diameter. This work revealed that CuO@Glu/TSC NPs efficiently inhibited the proliferation of AGS cells with significantly lower IC50 value (203 µg/mL) than normal HEK293 cells (IC50 = 435 µg/mL). Flow cytometry and Hoechst staining obviously revealed apoptosis induction among CuO@Glu/TSC treated cells, and caspase-3 activity significantly increased by 1.4 folds. CONCLUSIONS This study introduced CuO@Glu/TSC as an efficient anticancer against gastric cancer cells with lower toxicity toward normal cells which could be employed for cancer treatment after further studies.
Collapse
Affiliation(s)
- Mahsa Badrooh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Faezeh Shokrollahi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Shaghayegh Javan
- Department of Medical Sciences, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | | | | | - Haniyeh Farahnak
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Mohammad Hedayati
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
15
|
Habibzadeh SZ, Salehzadeh A, Moradi-Shoeili Z, Shandiz SAS. Iron oxide nanoparticles functionalized with 3-chloropropyltrimethoxysilane and conjugated with thiazole alter the expression of BAX, BCL2, and p53 genes in AGS cell line. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | | |
Collapse
|
16
|
A Novel Copper Oxide Nanoparticle Conjugated by Thiosemicarbazone Promote Apoptosis in Human Breast Cancer Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Cytotoxic Potential of Nickel Oxide Nanoparticles Functionalized with Glutamic Acid and Conjugated with Thiosemicarbazide (NiO@Glu/TSC) Against Human Gastric Cancer Cells. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02124-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Shahrokhshahi A, Salehzadeh A, Vaziri HR, Moradi‐Shoeili Z. The Co(
OH
)
2
@
Glu‐TSC
nanoflakes enhance the apoptosis in hepatoma
G2
cell. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch Islamic Azad University Rasht Iran
| | - Hamid Reza Vaziri
- Department of Biology, Faculty of Sciences University of Guilan Rasht Iran
| | | |
Collapse
|
19
|
Green Synthesis of TiFe2O4@Ag Nanocomposite Using Spirulina platensis; Characterization of Their Anticancer Activity and Evaluation of Their Effect on the Expression of Bax, p53, and Bcl-2 Genes in AGS cell line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Cytotoxicity of Bio-Synthesized MgFe2O4@Ag Nanocomposite on Gastric Cancer Cell Line and Evaluation Its Effect on Bax, p53 and Bcl-2 Genes Expression. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02087-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|