1
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
3
|
Uy GL, Hsu YMS, Schmidt AP, Stock W, Fletcher TR, Trinkaus KM, Westervelt P, DiPersio JF, Link DC. Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia. Leuk Res 2015; 39:1437-42. [PMID: 26467815 DOI: 10.1016/j.leukres.2015.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 01/24/2023]
Abstract
In acute lymphoblastic leukemia (ALL) the bone marrow microenvironment provides growth and survival signals that may confer resistance to chemotherapy. Granulocyte colony-stimulating factor (G-CSF) potently inhibits lymphopoiesis by targeting stromal cells that comprise the lymphoid niche in the bone marrow. To determine whether lymphoid niche disruption by G-CSF sensitizes ALL cells to chemotherapy, we conducted a pilot study of G-CSF in combination with chemotherapy in patients with relapsed or refractory ALL. Thirteen patients were treated on study; three patients achieved a complete remission (CR/CRi) for an overall response rate of 23%. In the healthy volunteers, G-CSF treatment disrupted the lymphoid niche, as evidenced by reduced expression of CXCL12, interleukin-7, and osteocalcin. However, in most patients with relapsed/refractory ALL expression of these genes was markedly suppressed at baseline. Thus, although G-CSF treatment was associated with ALL cell mobilization into the blood, and increased apoptosis of bone marrow resident ALL cells, alterations in the bone marrow microenvironment were modest and highly variable. These data suggest that disruption of lymphoid niches by G-CSF to sensitize ALL cells to chemotherapy may be best accomplished in the consolidation where the bone marrow microenvironment is more likely to be normal.
Collapse
Affiliation(s)
- Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yen-Michael S Hsu
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Amy P Schmidt
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Theresa R Fletcher
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kathryn M Trinkaus
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Peter Westervelt
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - John F DiPersio
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Daniel C Link
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
4
|
Jiang C, Li Z, Quan H, Xiao L, Zhao J, Jiang C, Wang Y, Liu J, Gou Y, An S, Huang Y, Yu W, Zhang Y, He W, Yi Y, Chen Y, Wang J. Osteoimmunology in orthodontic tooth movement. Oral Dis 2014; 21:694-704. [PMID: 25040955 DOI: 10.1111/odi.12273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 02/05/2023]
Abstract
The skeletal and immune systems share a multitude of regulatory molecules, including cytokines, receptors, signaling molecules, and signaling transducers, thereby mutually influencing each other. In recent years, several novel insights have been attained that have enhanced our current understanding of the detailed mechanisms of osteoimmunology. In orthodontic tooth movement, immune responses mediated by periodontal tissue under mechanical force induce the generation of inflammatory responses with consequent alveolar bone resorption, and many regulators are involved in this process. In this review, we take a closer look at the cellular/molecular mechanisms and signaling involved in osteoimmunology and at relevant research progress in the context of the field of orthodontic tooth movement.
Collapse
Affiliation(s)
- C Jiang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Quan
- Qingdao First Sanatorium of Jinan Military Distract of PLA, Qingdao, Shandong, China
| | - L Xiao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Zhao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - C Jiang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Y Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Liu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Gou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S An
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Huang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Yu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W He
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Yi
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Chen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Guerrini MM, Takayanagi H. The immune system, bone and RANKL. Arch Biochem Biophys 2014; 561:118-23. [PMID: 24929185 DOI: 10.1016/j.abb.2014.06.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/19/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022]
Abstract
Bone and immune systems are tightly linked. In the past years, many molecules originally believed to belong to the immune system were found to function in bone cells. It is now evident that the two systems are coregulated by many shared cytokines and signaling molecules. Here we exemplify the complex interaction between bone metabolism and immune response focusing on the multifaceted role of receptor activator of NF-κB ligand (RANKL). RANKL is expressed by cells of both systems, is an essential regulator of bone degradation and exerts either pro or anti-inflammatory effects on the immune response. In the present review, we summarize the multiple functions of RANKL in bone and in the immune systems, aiming to provide an overview of the field of osteoimmunology.
Collapse
Affiliation(s)
- Matteo M Guerrini
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Japan Science and Technology Agency (JST), Explorative Research for Advanced Technology (ERATO) Program, Takayanagi Osteonetwork Project, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Japan Science and Technology Agency (JST), Explorative Research for Advanced Technology (ERATO) Program, Takayanagi Osteonetwork Project, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|