1
|
Chen Y, Wang Q, Li M, Fang Y, Bi X, Wu J, Han Q, Zhu H, Shen Z, Wang X. Nell-1 inhibits lipopolysaccharide-activated macrophages into M1 phenotype through the modulation of NF-κB pathway. J Mol Histol 2025; 56:108. [PMID: 40095095 DOI: 10.1007/s10735-025-10385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Nel-like molecule-1 (Nell-1), as a novel osteo-inductive molecule with great potential for clinical applications, has various functions including promoting chondrogenesis, suppressing osteoclastic activity, promoting osteogenesis, suppressing inflammation and promoting vascularization. Its anti-inflammatory potential has been widely studied. However, its anti-inflammatory potential in macrophage and possible underlying molecular mechanisms are poorly understood. Therefore, the present study aims to evaluate the anti-inflammatory potential and the regulation to macrophage polarization of Nell-1 in human myeloid cell line (THP-1) derived macrophages. M1-related markers and M2-related markers were studied in THP-1 derived macrophages. The suppressive potential of Nell-1 on lipopolysaccharide (LPS)-induced translocation of nuclear factor-kappa B (NF-κB) in THP-1 macrophage was studied. Results showed that Nell-1 significantly reduced M1 macrophage-related surface marker cluster of differentiation 86 (CD86) and inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) and reversed the LPS-induced M1 polarization of macrophages by upregulating the M2-specific markers of vascular endothelial growth factor (VEGF), arginase-1(Arg-1), and cluster of differentiation 206 (CD206) in vitro. In addition, the possible mechanism of the anti-inflammatory effects of Nell-1 is via regulating NF-κB pathway. Hence, Nell-1 is a potential suppressor of inflammation and is involved in the regulation of macrophage polarization. Nell-1 may be a potential candidate for treating inflammatory diseases and promoting tissue regeneration.
Collapse
Affiliation(s)
- Yue Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qiang Wang
- Jinan Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong Province, China
| | - Mengyue Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yixuan Fang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiuting Bi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jiameng Wu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qi Han
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Hongfan Zhu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Zhien Shen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaoying Wang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Zhai S, Zhang L, Li X, Yu Q, Liu C. Clustering human dental pulp fibroblasts spontaneously activate NLRP3 and AIM2 inflammasomes and induce IL-1β secretion. Regen Ther 2024; 27:12-20. [PMID: 38487102 PMCID: PMC10937208 DOI: 10.1016/j.reth.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Objectives The objective of the present study was to investigate whether NOD-like receptor family pyrin domain-containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes pathways were involved in an experimental model of fibroblast activation named nemosis, which was used to mimic circumstances without bacteria stimulation. Methods Nemosis of human dental pulp fibroblast (DPFs) was induced by three-dimensional culture in U-shaped 96-well plates and investigated by scanning electron microscopy (SEM). DPFs monolayers were used as control. Annexin V-FITC/7-AAD apoptosis assay was performed on the DPFs spheroids by flowcytometry. Caspase-1 activity detection assay was conducted on the DPFs spheroids. Quantitative real-time polymerase chain reaction (qRT-PCR), cytokine measurements, Western blot and the effect of COX-2 inhibitor on spheroids was studied. Results SEM study observed human dental pulp fibroblast clusters and cell membranes damage on the surface of DPFs spheroids. The percentages of necrotic cells from DPFs spheroids gradually increased as the incubation time increased. A statistically significant increase in caspase-1 activity was observed after DPFs spheroids formation. DPFs spheroids displayed significant amounts of NLRP3, AIM2 mRNA and protein expression, caspase-1 mRNA expression and cleaved Caspase-1 protein expression and high IL-1β concentrations (P < 0.05) than DPFs monolayers. Specific COX-2 inhibitor (NS-398) decreased NLRP3 mRNA and protein expression, cleaved Caspase-1 protein expression, Caspase-1 activity and IL-1β mRNA expression and IL-1β concentrations (P < 0.05). However, Specific COX-2 inhibitor had no impact on AIM2 mRNA and protein expression, caspase-1 mRNA expression and pro-Caspase-1 protein expression. Conclusions In conclusion, clustering human DPFs spontaneously activated NLRP3 and AIM2 inflammasomes and induced IL-1β secretion which could be partially attenuated by COX-2 inhibitor. Thus, nemosis could become a powerful model for studying mechanisms underlying aseptic pulpitis.
Collapse
Affiliation(s)
- Shafei Zhai
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| | - Lihui Zhang
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| | - Xue Li
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, China
| | - Changkui Liu
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| |
Collapse
|
3
|
Sarfi S, Azaryan E, Naseri M. Immune System of Dental Pulp in Inflamed and Normal Tissue. DNA Cell Biol 2024; 43:369-386. [PMID: 38959180 DOI: 10.1089/dna.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.
Collapse
Affiliation(s)
- Sepideh Sarfi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsaneh Azaryan
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular, and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Chang MC, Wu JH, Chen SY, Hsu YT, Yeung SY, Pan YH, Jeng JH. Inducing cyclooxygenase-2 expression, prostaglandin E 2 and prostaglandin F 2α production of human dental pulp cells by activation of toll-like receptor-3, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and p38 signaling. J Dent Sci 2024; 19:1190-1199. [PMID: 38618082 PMCID: PMC11010691 DOI: 10.1016/j.jds.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Bacterial infection was the major etiology for pulpal/root canal infection. This study aimed to investigate the activation of toll-like receptor-3 (TLR) on cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) and PGF2α production of human dental pulp cells (HDPCs) and associated signaling. Materials and methods HDPCs were exposed to different concentrations of Poly (I:C) (a TLR3 activator). Cell viability was determined by 3- (4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and alkaline phosphatase (ALP) activity was evaluated by ALP staining. Activation of extracellular signal-regulated kinase (ERK) and p38 by Poly (I:C) was determined by immunofluorescent staining. The COX-2 protein expression was analyzed by Western blot. PGE2 and PGF2α production was measured by enzyme-linked immunosorbent assay. The mRNA expression was studied by real-time polymerase-chain reaction. Moreover, HDPCs were exposed to Poly(I:C) with/without U0126 or SB203580 treatment and analysis of COX-2 expression and prostanoid production were conducted. Results Poly (I:C) showed little effect on ALP activity, but decreased viability of HDPCs. It stimulated COX-2 mRNA and protein expression. Poly (I:C) induced PGE2 and PGF2α production of HDPCs. Poly (I:C) activated p-ERK, and p-p38 protein expression. Treatment by U0126 (a mitogen-activated protein kinase kinase (MEK)/ERK inhibitor) and SB203580 (a p38 inhibitor) attenuated Poly (I:C)-induced COX-2 mRNA and protein expression as well as PGE2 and PGF2α production. Conclusion TLR3 activation is involved in the infection and inflammatory responses of pulp tissues, via MEK/ERK, and p38 signaling to mediate COX-2 expression as well as PGE2 and PGF2α production, contributing to the pathogenesis and progression of pulpal/periapical diseases.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ju-Hui Wu
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyuan-Yow Chen
- Department of Dentistry, Cathay General Hospital, Taipei, Taiwan
| | - Yung-Ting Hsu
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, USA
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Kantrong N, Kumtawee J, Damrongrungruang T, Puasiri S, Makeudom A, Krisanaprakornkit S, Chailertvanitkul P. An in vitro anti-inflammatory effect of Thai propolis in human dental pulp cells. J Appl Oral Sci 2023; 31:e20230006. [PMID: 37283330 DOI: 10.1590/1678-7757-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVE To explore the potential for development of Thai propolis extract as a pulp capping agent to suppress pulpal inflammation from dental pulp infections. This study aimed to examine the anti-inflammatory effect of the propolis extract on the arachidonic acid pathway, activated by interleukin (IL)-1β, in cultured human dental pulp cells. METHODOLOGY Dental pulp cells, isolated from three freshly extracted third molars, were first characterized for their mesenchymal origin and treated with 10 ng/ml of IL-1β in the presence or absence of non-toxic concentrations of the extract from 0.08 to 1.25 mg/ml, as determined by the PrestoBlue cytotoxic assay. Total RNA was harvested and analyzed for mRNA expressions of 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2). Western blot hybridization was performed to investigate COX-2 protein expression. Culture supernatants were assayed for released prostaglandin E2 levels. Immunofluorescence was conducted to determine involvement of nuclear factor-kappaB (NF-kB) in the inhibitory effect of the extract. RESULTS Stimulation of the pulp cells with IL-1β resulted in the activation of arachidonic acid metabolism via COX-2, but not 5-LOX. Incubation with various non-toxic concentrations of the propolis extract significantly inhibited upregulated COX-2 mRNA and protein expressions upon treatment with IL-1β (p<0.05), resulting in a significant decrease in elevated PGE2 levels (p<0.05). Nuclear translocation of the p50 and the p65 subunits of NF-kB upon treatment with IL-1β was also blocked by incubation with the extract. CONCLUSIONS Upregulated COX-2 expression and enhanced PGE2 synthesis upon treatment with IL-1β in human dental pulp cells were suppressed by incubation with non-toxic doses of Thai propolis extract via involvement of the NF-kB activation. This extract could be therapeutically used as a pulp capping material due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Nutthapong Kantrong
- Khon Kaen University, Faculty of Dentistry, Department of Restorative Dentistry, Khon Kaen, Thailand
| | - Jittranut Kumtawee
- Khon Kaen University, Faculty of Dentistry, Department of Restorative Dentistry, Khon Kaen, Thailand
| | - Teerasak Damrongrungruang
- Khon Kaen University, Faculty of Dentistry, Department of Oral and Biomedical Sciences, Khon Kaen, Thailand
| | - Subin Puasiri
- Khon Kaen University, Faculty of Dentistry, Department of Preventive Dentistry, Khon Kaen, Thailand
| | - Anupong Makeudom
- Mae Fah Luang University, School of Dentistry, Chiang Rai, Thailand
| | - Suttichai Krisanaprakornkit
- Chiang Mai University, Faculty of Dentistry, Department of Oral Biology and Diagnostic Sciences, Center of Excellence in Oral and Maxillofacial Biology, Chiang Mai, Thailand
| | - Pattama Chailertvanitkul
- Khon Kaen University, Faculty of Dentistry, Department of Restorative Dentistry, Khon Kaen, Thailand
| |
Collapse
|
6
|
Tsai YL, Wang CY, Chuang FH, Pan YH, Lin YR, Dhingra K, Liao PS, Huang FS, Chang MC, Jeng JH. Stimulation phosphatidylinositol 3-kinase/protein kinase B signaling by Porphyromonas gingivalis lipopolysacch aride mediates interleukin-6 and interleukin-8 mRNA/protein expression in pulpal inflammation. J Formos Med Assoc 2023; 122:47-57. [PMID: 36031486 DOI: 10.1016/j.jfma.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/PURPOSE The signaling mechanisms for Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammation in human dental pulp cells are not fully clarified. This in vitro study aimed to evaluate the involvement of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in PgLPS-induced pulpal inflammation. METHODS Human dental pulp cells (HDPCs) were challenged with PgLPS with or without pretreatment and coincubation with a PI3K/Akt inhibitor (LY294002). The gene or protein levels of PI3K, Akt, interleukin (IL)-6, IL-8, alkaline phosphatase (ALP), osteocalcin and osteonectin were analyzed by reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and immunofluorescent staining. In addition, an enzyme-linked immunosorbent assay was used to analyze IL-6 and IL-8 levels in culture medium. RESULTS In response to 5 μg/ml PgLPS, IL-6, IL-8, and PI3K, but not Akt mRNA expression of HDPCs, was upregulated. IL-6, IL-8, PI3K, and p-Akt protein levels were stimulated by 10-50 μg/ml of PgLPS in HDPCs. PgLPS also induced IL-6 and IL-8 secretion at concentrations higher than 5 μg/ml. Pretreatment and co-incubation by LY294002 attenuated PgLPS-induced IL-6 and IL-8 mRNA expression in HDPCs. The mRNA expression of ALP, but not osteocalcin and osteonectin, was inhibited by higher concentrations of PgLPS in HDPCs. CONCLUSION P. gingivalis contributes to pulpal inflammation in HDPCs by dysregulating PI3K/Akt signaling pathway to stimulate IL-6 and IL-8 mRNA/protein expression and secretion. These results are useful for understanding the pulpal inflammation and possible biomarkers of inflamed pulp diagnosis and treatment.
Collapse
Affiliation(s)
- Yi-Ling Tsai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ying Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Hsiung Chuang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yan-Ru Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kunaal Dhingra
- Periodontics Division, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Pai-Shien Liao
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Fong-Shung Huang
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Chi Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan; Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Lan C, Chen S, Jiang S, Lei H, Cai Z, Huang X. Different expression patterns of inflammatory cytokines induced by lipopolysaccharides from Escherichia coli or Porphyromonas gingivalis in human dental pulp stem cells. BMC Oral Health 2022; 22:121. [PMID: 35413908 PMCID: PMC9004173 DOI: 10.1186/s12903-022-02161-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Lipopolysaccharide (LPS) is one of the leading causes of pulpitis. The differences in establishing an in vitro pulpitis model by using different lipopolysaccharides (LPSs) are unknown. This study aimed to determine the discrepancy in the ability to induce the expression of inflammatory cytokines and the underlying mechanism between Escherichia coli (E. coli) and Porphyromonas gingivalis (P. gingivalis) LPSs in human dental pulp stem cells (hDPSCs).
Material and methods Quantitative real-time polymerase chain reaction (QRT-PCR) was used to evaluate the mRNA levels of inflammatory cytokines including IL-6, IL-8, COX-2, IL-1β, and TNF-α expressed by hDPSCs at each time point. ELISA was used to assess the interleukin-6 (IL-6) protein level. The role of toll-like receptors (TLR)2 and TLR4 in the inflammatory response in hDPSCs initiated by LPSs was assessed by QRT-PCR and flow cytometry. Results The E. coli LPS significantly enhanced the mRNA expression of inflammatory cytokines and the production of the IL-6 protein (p < 0.05) in hDPSCs. The peaks of all observed inflammation mediators’ expression in hDPSCs were reached 3–12 h after stimulation by 1 μg/mL E. coli LPS. E. coli LPS enhanced the TLR4 expression (p < 0.05) but not TLR2 in hDPSCs, whereas P. gingivalis LPS did not affect TLR2 or TLR4 expression in hDPSCs. The TLR4 inhibitor pretreatment significantly inhibited the gene expression of inflammatory cytokines upregulated by E. coli LPS (p < 0.05). Conclusion Under the condition of this study, E. coli LPS but not P. gingivalis LPS is effective in promoting the expression of inflammatory cytokines by hDPSCs. E. coli LPS increases the TLR4 expression in hDPSCs. P. gingivalis LPS has no effect on TLR2 or TLR4 expression in hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02161-x.
Collapse
Affiliation(s)
- Chunhua Lan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Jiang
- Southern Medical University, Shenzhen Stomatology Hospital (Pingshan), Shenzhen, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China. .,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Chang MC, Wang TM, Chien HH, Pan YH, Tsai YL, Jeng PY, Lin LD, Jeng JH. Effect of butyrate, a bacterial by-product, on the viability and ICAM-1 expression/production of human vascular endothelial cells: Role in infectious pulpal/periapical diseases. Int Endod J 2021; 55:38-53. [PMID: 34420220 DOI: 10.1111/iej.13614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
AIM To investigate the effects of butyric acid (BA), a metabolic product generated by pulp and root canal pathogens, on the viability and intercellular adhesion molecule-1 (ICAM-1) production of endothelial cells, which are crucial to angiogenesis and pulpal/periapical wound healing. METHODOLOGY Endothelial cells were exposed to butyrate with/without inhibitors. Cell viability, apoptosis and reactive oxygen species (ROS) were evaluated using an MTT assay, PI/annexin V and DCF fluorescence flow cytometry respectively. RNA and protein expression was determined using a polymerase chain reaction assay and Western blotting or immunofluorescent staining. Soluble ICAM-1 (sICAM-1) was measured using an enzyme-linked immunosorbent assay. The quantitative results were expressed as mean ± standard error (SE) of the mean. The data were analysed using a paired Student's t-test where necessary. A p-value ≤0.05 was considered to indicate a statistically significant difference between groups. RESULTS Butyrate (>4 mM) inhibited cell viability and induced cellular apoptosis and necrosis. It inhibited cyclin B1 but stimulated p21 and p27 expression. Butyrate stimulated ROS production and hemeoxygenase-1 (HO-1) expression as well as activated the Ac-H3, p-ATM, p-ATR, p-Chk1, p-Chk2, p-p38 and p-Akt expression of endothelial cells. Butyrate stimulated ICAM-1 mRNA/protein expression and significant sICAM-1 production (p < .05). Superoxide dismutase, 5z-7oxozeaenol, SB203580 and compound C (p < .05), but not ZnPP, CGK733, AZD7762 or LY294002, attenuated butyrate cytotoxicity to endothelial cells. Notably, little effect on butyrate-stimulated sICAM-1 secretion was found. Valproic acid, phenylbutyrate and trichostatin (three histone deacetylase inhibitors) significantly induced sICAM-1 production (p < .05). CONCLUSION Butyric acid inhibited proliferation, induced apoptosis, stimulated ROS and HO-1 production and increased ICAM-1 mRNA expression and protein synthesis in endothelial cells. Cell viability affected by BA was diminished by some inhibitors; however, the increased sICAM-1 secretion by BA was not affected by any of the tested inhibitors. These results facilitate understanding of the pathogenesis, prevention and treatment of pulpal/periapical diseases.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tong-Mei Wang
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Hua-Hong Chien
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Deh Lin
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry & Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
9
|
Khorasani MMY, Hassanshahi G, Brodzikowska A, Khorramdelazad H. Role(s) of cytokines in pulpitis: Latest evidence and therapeutic approaches. Cytokine 2019; 126:154896. [PMID: 31670007 DOI: 10.1016/j.cyto.2019.154896] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Pulpitis is known as a typical inflammation of dental pulp tissue, and microorganisms of the oral microbiome are involved in this opportunistic infection. Studies indicated that several factors related to host response have a crucial role in pulpitis. Among these factors, inflammatory mediators of the immune system such as cytokines and chemokines contribute to pulpal defense mechanisms. A wide range of cytokines have been observed in dental pulp and these small molecules are able to trigger inflammation and participate in immune cell trafficking, cell proliferation, inflammation, and tissue damage in pulp space. Therefore, the aim of this review was to describe the role of cytokines in the pathogenesis of pulpitis.
Collapse
Affiliation(s)
- Mohammad M Y Khorasani
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aniela Brodzikowska
- Department of Conservative Dentistry, Medical University of Warsaw, Miodowa 18, 00-246 Warsaw, Poland
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Chang MC, Lin SI, Pan YH, Lin LD, Wang YL, Yeung SY, Chang HH, Jeng JH. IL-1β-induced ICAM-1 and IL-8 expression/secretion of dental pulp cells is differentially regulated by IRAK and p38. J Formos Med Assoc 2019; 118:1247-1254. [PMID: 30558829 DOI: 10.1016/j.jfma.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/PURPOSE Interleukin 1 beta (IL-1β) is a pro-inflammatory cytokine involved in the acute and chronic inflammatory processes of dental pulp. Intercellular adhesion molecule-1 (ICAM-1) and IL-8 are two major inflammatory mediators. However, the role of interleukin-1 receptor-associated kinases (IRAKs) signaling pathways in responsible for the inflammatory effects of IL-1β on dental pulp cells is not clear. METHODS Cultured human dental pulp cells were exposed to IL-1β with/without pretreatment and co-incubation with IRAK1/4 inhibitor or SB203580 (p38 inhibitor). IRAK-1 phosphorylation was evaluated by immunno fluorescent staining. The protein expression of ICAM-1 and IL-8 were tested by western blotting. The secretion of soluble ICAM-1 (sICAM-1) and IL-8 was measured by enzyme-linked immunosorbant assay (ELISA). RESULTS IL-1β stimulated IRAK-1 phosphorylation of pulp cells within 120 min of exposure. IRAK1/4 inhibitor attenuated the IL-1β-induced ICAM-1, but not IL-8 protein expression. IRAK1/4 inhibitor also prevented the IL-1β-induced sICAM-1, but not IL-8 secretion. SB203580 showed little effect on IL-1β-induced sICAM-1 secretion, but effectively inhibited its induction of IL-8 secretion in pulp cells. CONCLUSION The Results reveal the important role of IL-1β in pulpal inflammatory responses via stimulation of IL-8 and ICAM-1 expression and secretion. Moreover, IL-1β-induced effects on IL-8 and ICAM-1 are differentially regulated by IRAK1/4 and p38 signaling in dental pulp cells. Blocking of IRAKs and p38 signaling may have potential to control inflammation of dental pulp in the future.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan; Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Szu-I Lin
- Department of Dentistry, Tao-Yuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan; Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Li-Deh Lin
- Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan
| | - Yin-Lin Wang
- Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan.
| | - Jiiang-Huei Jeng
- Department of Dentistry and School of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taiwan.
| |
Collapse
|
11
|
Contraction dynamics of dental pulp cell rod microtissues. Clin Oral Investig 2019; 24:631-638. [PMID: 31115693 DOI: 10.1007/s00784-019-02917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The factors that contribute to the morphological changes of dental pulp cell-derived microtissues are unknown. Here, we investigated the contraction dynamics of rod-shaped microtissues derived from dental pulp cells and examined the underlying cell signaling pathways. METHODS Human dental pulp cells were seeded into agarose molds to assemble into rod-shaped microtissues. Resazurin- and tetrazolium-based cytotoxicity assays, Live/Dead staining, and hematoxylin and eosin staining for histological evaluation of rods were performed. Rod contraction was evaluated and measured for a period of 10 days. The role of TGF-β, phosphoinositide 3-kinase (PI3K)/AKT, and mitogen-activated protein kinase (MAPK) signaling pathway was analyzed. RESULTS Dental pulp cells readily assembled into rods, maintaining the geometric shape for 48 h. Following this period, they condensed to form stable spheroidal structures that remained vital for 10 days from seeding. Inhibition of phosphoinositide 3-kinase signaling pathway by LY294002 significantly prolonged the diminution in the length of rods formed by dental pulp cells. TGF-β and pharmacological inhibition of TGF-β signaling did not show pronounced effects. CONCLUSION Overall, dental pulp cells readily formed rod-shaped patterns of microtissues which, over a period of time, condensed into more stable spheroidal structures. Hence, technologies like bioprinting, using direct fabrication of microtissues need to consider the contraction dynamics. CLINICAL RELEVANCE The field of regenerative endodontology will benefit from our findings as it can be applied as a novel platform to test the impact of pharmacological agents, biomaterials, and regenerative approaches including bioprinting.
Collapse
|
12
|
Cheng SC, Wu YH, Huang WC, Pang JHS, Huang TH, Cheng CY. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 in TNF-α-activated retinal pigment epithelial cells. Cytokine 2019; 116:48-60. [PMID: 30685603 DOI: 10.1016/j.cyto.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
Abstract
Quercetin is a flavonoid polyphenolic compound present in fruits and vegetables that has proven anti-inflammatory activity. The goal of the present investigation was to investigate the effects of quercetin on tumor necrosis factor-α (TNF-α)-induced inflammatory responses via the expression of ICAM-1 and MMP-9 in human retinal pigment epithelial cells (ARPE-19 cells). Real-time PCR, gelatin zymography, and Western blot analysis showed that TNF-α induced the expression of ICAM-1 and MMP-9 protein and mRNA in a time-dependent manner. These effects were attenuated by pretreatment of ARPE-19 cells with quercetin. Quercetin inhibited the TNF-α-induced phosphorylation of PKCδ, JNK1/2, ERK1/2. Quercetin, rottlerin, SP600125 and U0126 attenuated TNF-α-stimulated c-Jun phosphorylation and AP-1-Luc activity. Pretreatment with quercetin, rottlerin, SP600125, or Bay 11-7082 attenuated TNF-α-induced NF-κB (p65) phosphorylation, translocation and RelA/p65-Luc activity. TNF-α significantly increased MMP-9 promoter activity and THP-1 cell adherence, and these effects were attenuated by pretreatment with quercetin, rottlerin, SP600125, U0126, tanshinone IIA or Bay 11-7082. These results suggest that quercetin attenuates TNF-α-induced ICAM-1 and MMP-9 expression in ARPE-19 cells via the MEK1/2-ERK1/2 and PKCδ-JNK1/2-c-Jun or NF-κB pathways.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tse-Hung Huang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
13
|
Lin SI, Lin LD, Chang HH, Chang MC, Wang YL, Pan YH, Huang GF, Lin HJ, Jeng JH. IL-1β induced IL-8 and uPA expression/production of dental pulp cells: Role of TAK1 and MEK/ERK signaling. J Formos Med Assoc 2018; 117:697-704. [PMID: 29709340 DOI: 10.1016/j.jfma.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/PURPOSE Interleukin 1 beta (IL-1β) is a pro-inflammatory cytokine involved in the inflammatory processes of dental pulp. IL-8 and urokinase plasminogen activator (uPA) are two inflammatory mediators. However, the role of transforming growth factor beta-activated kinase-1 (TAK1) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways in responsible for the effects of IL-1β on IL-8 and uPA expression/secretion of dental pulp cells are not clear. METHODS Human dental pulp cells were exposed to IL-1β with/without pretreatment with 5z-7-oxozeaneaeol (a TAK1 inhibitor) or U0126 (a MEK/ERK inhibitor). TAK1 activation was determined by immunofluorescent staining. The protein expression of IL-8 was tested by western blot. The expression of IL-8 and uPA mRNA was studied by reverse transcriptase-polymerase chain reaction (RT-PCR). The secretion of IL-8 and uPA was measured by enzyme-linked immunosorbent assay. RESULTS Exposure of dental pulp cells to IL-1β (0.1-10 ng/ml) stimulated IL-8 and uPA expression. IL-1β also induced IL-8 and uPA secretion of dental pulp cells. IL-1β stimulated p-TAK1 activation of pulp cells. Pretreatment and co-incubation of pulp cells by 5z-7oxozeaenol (1 and 2.5 μM) and U0126 (10 and 20 μM) prevented the IL-1β-induced IL-8 and uPA expression. 5z-7oxozeaenol and U0126 also attenuated the IL-1β-induced IL-8 and uPA secretion. CONCLUSION IL-1β is important in the pathogenesis of pulpal inflammatory diseases and repair via stimulation of IL-8 and uPA expression and secretion. These events are associated with TAK1 and MEK/ERK signaling. Blocking of TAK1 and MEK/ERK signaling has potential to control inflammation of dental pulp.
Collapse
Affiliation(s)
- Szu-I Lin
- Department of Dentistry, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Li-Deh Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Chi Chang
- Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan; Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Yin-Lin Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Guay-Feng Huang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hseuh-Jen Lin
- Dental Department, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Jiiang-Huei Jeng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Chang MC, Chang HH, Lin PS, Huang YA, Chan CP, Tsai YL, Lee SY, Jeng PY, Kuo HY, Yeung SY, Jeng JH. Effects of TGF-β1 on plasminogen activation in human dental pulp cells: Role of ALK5/Smad2, TAK1 and MEK/ERK signalling. J Tissue Eng Regen Med 2018; 12:854-863. [PMID: 27723266 DOI: 10.1002/term.2339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/30/2016] [Accepted: 09/26/2016] [Indexed: 11/07/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) plays an important role in the pulpal repair and dentinogenesis. Plasminogen activation (PA) system regulates extracellular matrix turnover. In this study, we investigated the effects of TGF-β1 on PA system of dental pulp cells and its signalling pathways. Dental pulp cells were treated with different concentrations of TGF-β1. MTT assay, reverse transcription-polymerase chain reaction, Western blotting and enzyme-linked immunosorbant assay (ELISA) were used to detect the effect of TGF-β1 on cell viability, mRNA and protein expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) as well as their secretion. The phosphorylation of Smad2 and TAK1 was analysed by Pathscan ELISA or Western blotting. Cells were pretreated with SB431542 (ALK5/Smad2/3 inhibitor), 5z-7-oxozeaenol (TAK1 inhibitor) and U0126 (MEK/ERK inhibitor) for examining the related signalling. TGF-β1 slightly inhibited cell growth that was reversed by SB431542. TGF-β1 upregulated both RNA and protein expression of PAI-1 and uPAR, whereas it downregulated uPA expression. Accordingly, TGF-β1 stimulated PAI-1 and soluble uPAR (suPAR) secretion of pulp cells, whereas uPA secretion was inhibited. TGF-β1 induced the phosphorylation of Smad2 and TAK1. In addition, SB431542, 5z-7-oxozeaenol and U0126 attenuated the TGF-β1-induced secretion of PAI-1 and suPAR. These results indicate that TGF-β1 is possibly involved in the repair/regeneration and inflammatory processes of dental pulp via regulation of PAI-1, uPA and uPAR. These effects of TGF-β1 are related to activation of ALK5/Smad2, TAK1 and MEK/ERK signalling pathways. Clarifying the signal transduction for the effects of TGF-β1 is helpful for pulpo-dentin regeneration and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Po-Shuan Lin
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Yu-An Huang
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry and School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Tsai
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Shen-Yang Lee
- Department of Dentistry and School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry, University CEU, Cardenal Herrera, Valencia, Spain
| | - Han-Yueh Kuo
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| |
Collapse
|
15
|
Wang L, Ying R, Jiang H, Jin Q, Kuang J, Zhang Z, Shi Y, Cai D, Yang R. Aspirin modulates the inflammatory response in a thrombus‑stimulated LMVEC model. Int J Mol Med 2018; 41:3253-3266. [PMID: 29568915 PMCID: PMC5881641 DOI: 10.3892/ijmm.2018.3561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/09/2018] [Indexed: 11/05/2022] Open
Abstract
The purpose of the present study was to examine whether aspirin interferes with the inflammatory response in a thrombus‑stimulated lung microvascular endothelial cell (LMVEC) model. The LMVECs were randomly divided into eight groups: Normal group (group N), model group (group M), model + ASP group (group M+A), model+CX3CL1‑short hairpin (sh)RNA group (group M+SH), model + CX3CL1‑overexpression vector group (group M+CX3), model + ASP + shRNA group (group M+A+SH), model + ASP + CX3CL1‑overexpression vector group (group M+A+CX3), and normal + virus control group (group N+V). The endothelial cells were cultured, and a thrombus was added to the cells. Briefly, 12 h following the precipitation of the thrombus, data from ELISA, reverse transcription‑quantitative polymerase chain reaction analysis and confocal microscopy revealed that the levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑6, CX3C chemokine ligand 1 (CX3CL1), CX3C chemokine receptor 1 (CX3CR1) and nuclear factor‑κB (NF‑κB) in group M were increased, compared with those in group N (P<0.01). These levels, with the exception of TNF‑α, were significantly lower in group M+SH, compared with those in group M (P<0.01). Furthermore, the levels of IL‑6 in groups M+A, M+CX3 and M+A+CX3 were decreased, compared with those in group M (P<0.01); the level of TNF‑α in group M+A+SH was decreased, compared with that in group M (P<0.01); the level of CX3CR1 waslower in groups M+A and M+A+SH, compared with that in group M (P<0.01), and the level of NF‑κB in group M+SH was decreased, compared with the level in group M and group M+A (P<0.05). In conclusion, the thrombus‑stimulated LMVEC model exhibited induced production of TNF‑α, IL‑6, CX3CL, CX3CR1, NF‑κB and intercellular adhesion molecule‑1. Furthermore, it was confirmed that the signaling pathways involving CX3CL1‑NF‑κB, IL‑6 and TNF‑α were partly inhibited by aspirin.
Collapse
Affiliation(s)
- Lingcong Wang
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongbiao Ying
- Department of Surgical Oncology, Tumor Hospital of Taizhou, Wenling, Zhejiang 317502, P.R. China
| | - Huifang Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Qun Jin
- Department of Pneumology, Zhejiang University International Hospital, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Jing Kuang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhirong Zhang
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying Shi
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Danli Cai
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ruhui Yang
- Lishui University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
16
|
Guo J, Zhang H, Xia J, Hou J, Wang Y, Yang T, Wang S, Zhang X, Chen X, Wu X. Interleukin-1β induces intercellular adhesion molecule-1 expression, thus enhancing the adhesion between mesenchymal stem cells and endothelial progenitor cells via the p38 MAPK signaling pathway. Int J Mol Med 2018; 41:1976-1982. [PMID: 29393395 PMCID: PMC5810197 DOI: 10.3892/ijmm.2018.3424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 12/18/2017] [Indexed: 02/07/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are an important component of stem-cell niches, which are able to promote the self-renewal and pluripotency of mesenchymal stem cells (MSCs). The biological functions of these two cell types is dependent on adhesion, and the adhesion between MSCs and EPCs is important due to their critical role in neovascularization and bone regeneration in tissue engineering. Intercellular adhesion molecule-1 (ICAM-1, also known as cluster of differentiation 54), is a member of the immunoglobulin supergene family, which functions in cell-cell and cell-matrix adhesive interactions. Compared with other adhesion molecules, ICAM-1 is expressed in hematopoietic and nonhematopoietic cells, and can mediate adhesive interactions. The present study aimed to investigate the importance of ICAM-1 in the adhesion of MSCs and EPCs, and demonstrated that adhesion between these cells could be regulated by interleukin (IL)-1β via the p38 mitogen-activated protein kinase pathway. In addition, the results confirmed that ICAM-1 served a critical role in regulation of adhesion between MSCs and EPCs. ELISA, cell immunofluorescence, western blot analysis and adhesion assay were used to confirm our theory from phenomenon to essence. The present study provided evidence to support and explain the adhesion between MSCs and EPCs. Furthermore, the present findings provide a theoretical basis for further stem-cell niche transplantation to increase understanding of the function of MSCs and the crosstalk between MSCs and EPCs in the stem-cell niche.
Collapse
Affiliation(s)
- Jun Guo
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Hongwei Zhang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jie Xia
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jixue Hou
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Yixiao Wang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Tao Yang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Sibo Wang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xuyong Zhang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xuelin Chen
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xiangwei Wu
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
17
|
Anitua E, Muruzabal F, de la Fuente M, Riestra A, Merayo-Lloves J, Orive G. PRGF exerts more potent proliferative and anti-inflammatory effects than autologous serum on a cell culture inflammatory model. Exp Eye Res 2016; 151:115-21. [DOI: 10.1016/j.exer.2016.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/26/2016] [Accepted: 08/23/2016] [Indexed: 01/15/2023]
|
18
|
Chang MC, Lin SI, Lin LD, Chan CP, Lee MS, Wang TM, Jeng PY, Yeung SY, Jeng JH. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells. J Endod 2016; 42:584-588. [PMID: 26906242 DOI: 10.1016/j.joen.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/29/2015] [Accepted: 12/11/2015] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. METHODS Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. RESULTS PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. CONCLUSIONS These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team and Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang-Gung University of Science and Technology and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Szu-I Lin
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Deh Lin
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ming-Shu Lee
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Tong-Mei Wang
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry, University of Cardenal Herrera, CEU, Valencia, Spain
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
Wang Y, Kong H, Zeng X, Liu W, Wang Z, Yan X, Wang H, Xie W. Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 lung cancer cells. Oncol Rep 2016; 35:2053-64. [PMID: 26782741 DOI: 10.3892/or.2016.4569] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is the leading cause of cancer death, and it is widely accepted that chronic inflammation is an important risk for the development of lung cancer. Now, it is recognized that the nucleotide-binding and oligomerization domain (NOD) like receptors (NLRs)-containing inflammasomes are involved in cancer-related inflammation. This study was designed to investigate the effects of NLR family pyrin domain containing protein 3 (NLRP3) inflammasome on the proliferation and migration of lung adenocarcinoma cell line A549. Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, scratch assay, and Transwell migration assay, we showed that activation of the NLRP3 inflammasome by LPS+ATP enhanced the proliferation and migration of A549 cells. Western blot analysis showed that activation of phosphorylation of Akt, ERK1/2, CREB and the expression of Snail increased, while the expression of E-cadherin decreased after the activation of NLRP3 inflammasome. Moreover, these effects were inhibited by the following treatments: i) downregulating the expression of NLRP3 by short hairpin RNA (shRNA) interference, ii) inhibiting the activation of NLRP3 inflammasome with a caspase-1 inhibitor, iii) blocking the interleukin-1β (IL-1β) and IL-18 signal transduction with IL-1 receptor antagonist (IL-1Ra) and IL-18 binding protein (IL-18BP). Collectively, these results indicate that NLRP3 inflammasome plays a vital role in regulating the proliferation and migration of A549 cells and it might be a potential target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Kong
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoning Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenrui Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zailiang Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaopei Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Chang MC, Tsai YL, Chang HH, Lee SY, Lee MS, Chang CW, Chan CP, Yeh CY, Cheng RH, Jeng JH. IL-1β-induced MCP-1 expression and secretion of human dental pulp cells is related to TAK1, MEK/ERK, and PI3K/Akt signaling pathways. Arch Oral Biol 2016; 61:16-22. [DOI: 10.1016/j.archoralbio.2015.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|