1
|
Gloria-Garza MA, Reyna-Martínez GR, Jiménez-Salas Z, Campos-Góngora E, Kačániová M, Aguirre-Cavazos DE, Bautista-Villarreal M, Leos-Rivas C, Elizondo-Luevano JH. Medicinal Plants Against Dental Caries: Research and Application of Their Antibacterial Properties. PLANTS (BASEL, SWITZERLAND) 2025; 14:1390. [PMID: 40364419 PMCID: PMC12073129 DOI: 10.3390/plants14091390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Dental caries remains one of the most widespread global health concerns, significantly affecting both oral and overall health. Conventional treatments typically rely on chemical-based products which, although effective, are often associated with undesirable side effects such as tooth staining, altered taste, and the development of antimicrobial resistance. As a response, plant-based natural alternatives have gained attention as promising strategies for the prevention and management of dental caries. This review highlights the antibacterial properties of medicinal plants and their potential applications in dentistry, with a particular focus on their activity against a broad range of bacteria and microorganisms involved in oral diseases. Numerous plant extracts and bioactive compounds-including polyphenols, flavonoids, and essential oils-have demonstrated antimicrobial, anti-inflammatory, and antioxidant properties that contribute to maintaining oral health. Although in vitro and in vivo studies support their therapeutic potential, clinical trials assessing long-term efficacy and safety remain scarce. Future research should prioritize the standardization of extraction methods, dosage, and formulations to facilitate the integration of these natural alternatives into conventional dental care practices.
Collapse
Affiliation(s)
- Marcela Alejandra Gloria-Garza
- Facultad de Odontología, Universidad Autónoma de Nuevo León, Dr. Eduardo Aguirre Pequeño S/N, Monterrey 64460, NL, Mexico;
| | - Gustavo Raúl Reyna-Martínez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, NL, Mexico;
| | - Zacarías Jiménez-Salas
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Dr. Eduardo Aguirre Pequeño S/N, Monterrey 64460, NL, Mexico; (Z.J.-S.); (E.C.-G.)
| | - Eduardo Campos-Góngora
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Dr. Eduardo Aguirre Pequeño S/N, Monterrey 64460, NL, Mexico; (Z.J.-S.); (E.C.-G.)
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Diana Elena Aguirre-Cavazos
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (D.E.A.-C.); (M.B.-V.); (C.L.-R.)
| | - Minerva Bautista-Villarreal
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (D.E.A.-C.); (M.B.-V.); (C.L.-R.)
| | - Catalina Leos-Rivas
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (D.E.A.-C.); (M.B.-V.); (C.L.-R.)
| | - Joel Horacio Elizondo-Luevano
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (D.E.A.-C.); (M.B.-V.); (C.L.-R.)
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, Ex Hacienda el Canada, General Escobedo 66050, NL, Mexico
- Instituto de Investigación Biomédica de Salamanca, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno S/N, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Arzani V, Soleimani M, Fritsch T, Jacob UM, Calabrese V, Arzani A. Plant polyphenols, terpenes, and terpenoids in oral health. Open Med (Wars) 2025; 20:20251183. [PMID: 40292252 PMCID: PMC12032991 DOI: 10.1515/med-2025-1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/02/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Herbal products are increasingly being used for their potential to promote oral health. Phytochemicals can act as scavengers of reactive or toxic chemicals, selective growth factors for beneficial oral bacteria, fermentation substrates for beneficial oral bacteria, and selective inhibitors of harmful oral microflora. Plant-derived secondary metabolites encompass a variety of natural products, including alkaloids, polyphenols (including flavonoids and tannins), terpenes, terpenoids, steroids, saponins, quinones, coumarins, glycosides, and carotenoids. Objectives This review explores medicinal plant-based products for preventing and treating oral diseases, offering updated insights into the scientific basis for using herbs as active ingredients in oral health care. Hence, we focused on: (1) phenolic compounds, the most abundant and common phytochemicals and (2) terpenes and terpenoids, the most diverse and widely distributed group in the plant kingdom. Methods Several databases were queried to acquire peer-reviewed studies focusing on the major phytochemical compositions - phenolic compounds, terpenes, and terpenoids - and their oral health benefits. Results The review lists numerous medicinal herbs in various forms and applications for treating dental caries, gingivitis, and periodontitis. Conclusion This review explores the evidence supporting the oral health-promoting effects of specific constituents in herbs with the potential for incorporation into pharmaceutical formulations.
Collapse
Affiliation(s)
- Vida Arzani
- School of Dentistry, Iran University of Medical Sciences,
Tehran, Iran
| | - Mohsen Soleimani
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences,
Tehran, Iran
| | | | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania,
95124, Catania, Italy
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology,
Isfahan, 8415683111, Iran
| |
Collapse
|
3
|
Khashei S, Fazeli H, Rahimi F, Karbasizadeh V. Antibiotic-potentiating efficacy of Rosmarinus officinalis L. to combat planktonic cells, biofilms, and efflux pump activities of extensively drug-resistant Acinetobacter baumannii clinical strains. Front Pharmacol 2025; 16:1558611. [PMID: 40264672 PMCID: PMC12012619 DOI: 10.3389/fphar.2025.1558611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction This research aimed to examine the action of commercial antibiotics against extensively drug-resistant (XDR) A. baumannii clinical strains when combined with Rosmarinus officinalis extracts. Methods Agar well diffusion and broth microdilution were used to screen the antibacterial activity of crude ethanol extract and its fractions (hexane, intermediate, ethyl acetate, and water). The interactions between the extracts and antibiotics (gentamicin, tetracycline, cefepime, and ciprofloxacin) were evaluated by checkerboard assay. The anti-biofilm and efflux pump inhibition activities were determined by the microtiter plate method and dye accumulation assay using flow cytometry, respectively. The potential phytochemicals that contribute to the antibacterial effects of R. officinalis were identified using the liquid chromatography-mass spectrometry (LC-MS). Results R. officinalis crude extract (CE) demonstrated the best antibacterial activity with MIC values ranging from 300 to 600 μg/mL. The combination of CE and tetracycline exhibited the highest overall synergistic effect. This combination hindered biofilm formation ranging from 21.4% to 57.31% and caused a significant increase (up to 14%) in the fluorescence intensity in 75% of the studied strains. The LC-MS analysis of CE exhibited eleven compounds in which rosmarinic acid (55.53%) was the most abundant phenolic compound followed by cirsimaritin (11.46%), and p-coumaroyl hexoside acid (10.5%). Discussion Overall, this is the first direct report that demonstrated the efficacy of R. officinalis when applied with conventional antibiotics on biofilm formation and efflux pump activity in XDR A. baumannii clinical strains.
Collapse
Affiliation(s)
- Sanaz Khashei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fateh Rahimi
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Vajihe Karbasizadeh
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Bartels N, Argyropoulou A, Al-Ahmad A, Hellwig E, Skaltsounis AL, Wittmer A, Vach K, Karygianni L. Antibiofilm potential of plant extracts: inhibiting oral microorganisms and Streptococcus mutans. FRONTIERS IN DENTAL MEDICINE 2025; 6:1535753. [PMID: 40255688 PMCID: PMC12006170 DOI: 10.3389/fdmed.2025.1535753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/24/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction A range of disinfectant mouthwashes are available for oral hygiene. The gold standard is Chlorhexidine digluconate (CHX), which, like other available products, cannot be used without side effects in the long term. However, in recent years, therapy with herbal products, often considered antiquated, has regained considerable interest. Therefore, the search for plant compounds as an alternative to existing oral disinfectants is meaningful. Methods In this study, eleven Mediterranean plant extracts were tested for their antimicrobial effect in vitro. Methanol extracts of the following plants were produced by the pharmaceutical faculty of the University of Athens: Mentha aquatica, Mentha longifolia, Sideritis euboea, Sideritis syriaca, Stachys spinosa, Satureja parnassica, Satureja thymbra, Lavandula stoechas, Achillea taygetea, Phlomis cretica, and Vaccinium myrtillus. The extracts were dissolved for microdilution experiments at concentrations ranging from 10 to 0.019 mg/ml. The oral pathogens tested were Streptococcus mutans, Streptococcus oralis, Streptococcus sobrinus, Prevotella intermedia, Fusobacterium nucleatum, Parvimonas micra, Porphyromonas gingivalis, and Candida albicans. Enterococcus faecalis, Staphylococcus aureus, and Escherichia coli were used as references. Results All extracts, except the methanol extract of V. myrtillus, showed an antibacterial effect at concentrations ranging from 10 to 0.15 mg/ml. None of the extracts exhibited a significant antifungal effect. In general, the anaerobic pathogens could be inhibited and killed at lower concentrations compared to the aerobic pathogens. S. oralis also showed good susceptibility to the extracts. Additionally, the extracts' ability to inhibit biofilm formation by S. mutans was tested. L. stoechas at a concentration of 0.3 mg/ml showed a moderate inhibitory effect. The extracts of L. stoechas, S. thymbra, S. parnassica, and the methanol extract of V. myrtillus were effective at concentrations up to 1.25 mg/ml. P. cretica was able to inhibit and kill S. mutans at a concentration of 0.6 mg/ml, but its effectiveness in biofilm inhibition significantly decreased at 2.5 mg/ml. Discussion The study's hypothesis that all extracts would exhibit an antimicrobial effect was thus confirmed.
Collapse
Affiliation(s)
- Nomi Bartels
- Department of Prosthodontics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Annette Wittmer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kirstin Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Vulović S, Todorović A, Toljić B, Nikolić-Jakoba N, Tovilović TV, Milić-Lemić A. Evaluation of early bacterial adhesion on CAD/CAM dental materials: an in situ study. Odontology 2025; 113:101-110. [PMID: 38705962 DOI: 10.1007/s10266-024-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
The aim of this research was to determine if there are differences in early bacterial adhesion among CAD/CAM dental materials after 24 h exposure in the oral environment. One hundred twenty specimens were prepared according to the manufacturer's recommendations and divided into six groups: RBC (resin-based composite), PMMA (polymethyl methacrylate), PEEK (polyether ether ketone), ZP (zirconia polished), ZG (zirconia glazed), and cobalt-chromium alloy (CoCr alloy). Twenty healthy participants were instructed to carry an intraoral device with six specimens, one per group, for 24 h. Thereafter, real-time polymerase chain reaction (qPCR) and scanning electron microscopy (SEM) analyses enabled quantification and 2D view of biofilm formed on the specimens' surfaces. Kruskal-Wallis test and Dunn's post hoc analysis were used for inter-group comparison and data were presented as median (minimum-maximum). RBC specimens accumulated less bacteria, in comparison with ZG (p = 0.017) and PEEK specimens (p = 0.030), that dominated with the highest amount of adhered bacterial biofilm. PMMA, CoCr, and ZP specimens adhered more bacteria than RBC (p > 0.05), and less than ZG (p > 0.05) and PEEK (p > 0.05). The bacterial number varied considerably among participants. The obtained results enable a closer view into the susceptibility of CAD/CAM materials to microorganisms during the presence in the oral environment, which can be beneficial for a proper selection of these materials for a variety of dental restorations.
Collapse
Affiliation(s)
- Stefan Vulović
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia.
| | - Aleksandar Todorović
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Boško Toljić
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Nikolić-Jakoba
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Vlajić Tovilović
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Milić-Lemić
- Department of Prosthodontics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Refaey MS, Abosalem EF, Yasser El-Basyouni R, Elsheriri SE, Elbehary SH, Fayed MAA. Exploring the therapeutic potential of medicinal plants and their active principles in dental care: A comprehensive review. Heliyon 2024; 10:e37641. [PMID: 39318809 PMCID: PMC11420497 DOI: 10.1016/j.heliyon.2024.e37641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Since the human population realized how important it was to maintain overall health and the weight of disease, they have been looking for therapeutic qualities in natural environments. The use of plants having medicinal qualities for the treatment and prevention of illnesses that may have an impact on general health is known as herbal medicine. There has been a noticeable increase in interest lately in the combination of synthetic contemporary medications and traditional herbal remedies. About 80 % of people rely on it for healthcare, particularly in developing nations. One important aspect of overall health is said to be oral healthcare. The World Health Organization views oral health as a crucial component of overall health and well-being. Because they are more readily available, less expensive, and have fewer adverse effects than pharmaceutical treatments, using natural medicines to treat pathologic oro-dental disorders can make sense. The current evaluation of the literature sought to investigate the range and scope of the use of herbal products and their secondary metabolites in maintaining oral health, encompassing several oral healthcare domains such as halitosis, gingivitis, periodontitis, and other oral disorders. Therefore, there are many herbs discussed in this work and their mechanism in the treatment and improvement of many oral ailments. Besides, compounds that are useful in oral treatment with their natural sources and the cases where they can be used. To prevent any possible side effects or drug interactions, a doctor's consultation is necessary before using dental medicine. Although herbal therapy is safe and with minimum side effects, it is also strongly advised to do a more thorough preclinical and clinical evaluation before using herbal medicines officially.
Collapse
Affiliation(s)
- Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Esraa Fawzy Abosalem
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Rana Yasser El-Basyouni
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Shymaa E Elsheriri
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Sara Hassan Elbehary
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
7
|
Tzimas K, Antoniadou M, Varzakas T, Voidarou C(C. Plant-Derived Compounds: A Promising Tool for Dental Caries Prevention. Curr Issues Mol Biol 2024; 46:5257-5290. [PMID: 38920987 PMCID: PMC11201632 DOI: 10.3390/cimb46060315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
There is a growing shift from the use of conventional pharmaceutical oral care products to the use of herbal extracts and traditional remedies in dental caries prevention. This is attributed to the potential environmental and health implications of contemporary oral products. This comprehensive review aims at the analysis of plant-derived compounds as preventive modalities in dental caries research. It focuses on data collected from 2019 until recently, trying to emphasize current trends in this topic. The research findings suggest that several plant-derived compounds, either aqueous or ethanolic, exhibit notable antibacterial effects against Streptococcus mutans and other bacteria related to dental caries, with some extracts demonstrating an efficacy comparable to that of chlorhexidine. Furthermore, in vivo studies using plant-derived compounds incorporated in food derivatives, such as lollipops, have shown promising results by significantly reducing Streptococcus mutans in high-risk caries children. In vitro studies on plant-derived compounds have revealed bactericidal and bacteriostatic activity against S. mutans, suggesting their potential use as dental caries preventive agents. Medicinal plants, plant-derived phytochemicals, essential oils, and other food compounds have exhibited promising antimicrobial activity against oral pathogens, either by their anti-adhesion activity, the inhibition of extracellular microbial enzymes, or their direct action on microbial species and acid production. However, further research is needed to assess their antimicrobial activity and to evaluate the cytotoxicity and safety profiles of these plant-derived compounds before their widespread clinical use can be recommended.
Collapse
Affiliation(s)
- Konstantinos Tzimas
- Department of Operative Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Maria Antoniadou
- Department of Operative Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | | |
Collapse
|
8
|
Karlíčková J, Klížová A. Rosemary - its biologically active compounds and their pharmacological effects. CESKA A SLOVENSKA FARMACIE : CASOPIS CESKE FARMACEUTICKE SPOLECNOSTI A SLOVENSKE FARMACEUTICKE SPOLECNOSTI 2024; 73:42-46. [PMID: 39932026 DOI: 10.36290/csf.2024.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Rosemary - its biologically active compounds and their pharmacological effects Rosemary (Rosmarinus officinalis L.) has been used since ancient times for medicinal, cultic, and magic purposes. With the stress and diseases, it is increasingly popular today for many uses in both pharmacy and aromatherapy, as a spice in the kitchen and as a preservative. This plant has many interesting compounds (e.g. rosmarinic and carnosic acid, carnosol), which show a considerable amount of positive pharmacological effects.
Collapse
|
9
|
Rux C, Wittmer A, Stork A, Vach K, Hellwig E, Cieplik F, Al-Ahmad A. Optimizing the use of low-frequency ultrasound for bacterial detachment of in vivo biofilms in dental research-a methodological study. Clin Oral Investig 2023; 28:19. [PMID: 38141103 DOI: 10.1007/s00784-023-05397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES Low-frequency, low-intensity ultrasound is commonly utilized in various dental research fields to remove biofilms from surfaces, but no clear recommendation exists in dental studies so far. Therefore, this study aims to optimize the sonication procedure for the dental field to efficiently detach bacteria while preserving viability. MATERIALS AND METHODS Initial biofilm was formed in vivo on bovine enamel slabs (n = 6) which were worn by four healthy participants for 4 h and 24 h. The enamel slabs covered with biofilm were then ultrasonicated ex vivo for various time periods (0, 1, 2, 4, 6 min). Colony-forming units were determined for quantification, and bacteria were identified using MALDI-TOF. Scanning electron microscopic images were taken to also examine the efficiency of ultrasonications for different time periods. RESULTS Ultrasonication for 1 min resulted in the highest bacterial counts, with at least 4.5-fold number compared to the non-sonicated control (p < 0.05). Most bacteria were detached within the first 2 min of sonication, but there were still bacteria detached afterwards, although significantly fewer (p < 0.0001). The highest bacterial diversity was observed after 1 and 2 min of sonication (p < 0.03). Longer sonication periods negatively affected bacterial counts of anaerobes, Gram-negative bacteria, and bacilli. Scanning electron microscopic images demonstrated the ability of ultrasound to desorb microorganisms, as well as revealing cell damage and remaining bacteria. CONCLUSIONS With the use of low-frequency, low-intensity ultrasound, significantly higher bacterial counts and diversity can be reached. A shorter sonication time of 1 min shows the best results overall. CLINICAL RELEVANCE This standardization is recommended to study initial oral biofilms aged up to 24 h to maximize the outcome of experiments and lead to better comparability of studies.
Collapse
Affiliation(s)
- Cassandra Rux
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Annette Wittmer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Hermann-Herder- Str. 11, 79104, Freiburg, Germany
| | - Anja Stork
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Kirstin Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 26, 79104, Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
10
|
Zhai S, Tian Y, Shi X, Liu Y, You J, Yang Z, Wu Y, Chu S. Overview of strategies to improve the antibacterial property of dental implants. Front Bioeng Biotechnol 2023; 11:1267128. [PMID: 37829564 PMCID: PMC10565119 DOI: 10.3389/fbioe.2023.1267128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The increasing number of peri-implant diseases and the unsatisfactory results of conventional treatment are causing great concern to patients and medical staff. The effective removal of plaque which is one of the key causes of peri-implant disease from the surface of implants has become one of the main problems to be solved urgently in the field of peri-implant disease prevention and treatment. In recent years, with the advancement of materials science and pharmacology, a lot of research has been conducted to enhance the implant antimicrobial properties, including the addition of antimicrobial coatings on the implant surface, the adjustment of implant surface topography, and the development of new implant materials, and significant progress has been made in various aspects. Antimicrobial materials have shown promising applications in the prevention of peri-implant diseases, but meanwhile, there are some shortcomings, which leads to the lack of clinical widespread use of antimicrobial materials. This paper summarizes the research on antimicrobial materials applied to implants in recent years and presents an outlook on the future development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shunli Chu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
11
|
Huđek Turković A, Durgo K, Čučković F, Ledenko I, Krizmanić T, Martinić A, Vojvodić Cebin A, Komes D, Milić M. Reduction of oral pathogens and oxidative damage in the CAL 27 cell line by Rosmarinus officinalis L. and Taraxacum officinale Web. Extracts. JOURNAL OF ETHNOPHARMACOLOGY 2023:116761. [PMID: 37301304 DOI: 10.1016/j.jep.2023.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dandelion (Taraxacum officinale Web.) and rosemary (Rosmarinus officinalis L.) are treasured botanicals with a long usage history in traditional herbal practices worldwide. Dandelion was used to treat kidney, spleen, and liver disease, as well as cardiovascular disease, diabetes, and bacterial infections, whereas rosemary was used to treat pain, spasms, and to improve blood circulation. AIM OF THE STUDY The aim of this study was to determine the influence of rosemary and dandelion leaves aqueous extracts on the human tongue epithelial carcinoma cell line (CAL 27) at the level of interaction between oral microbiota and tongue epithelial cells, genomic damage, and H2O2 - induced oxidative damage protection. MATERIALS AND METHODS The polyphenolic composition of the extracts was determined by spectrophotometric and HPLC analyses. After extract treatment, cytotoxic impact and ROS generation in CAL 27 cells were measured using the MTT assay and the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay, respectively. Microdilutions were applied to investigate the antimicrobial and adhesive properties against representatives of the oral microbiota. The single-cell gel electrophoresis (comet assay) and cytokinesis-blocked micronucleus cytome assay (CBMN cyt) were used to detect induced genomic damages. RESULTS Both extracts increased the adhesion of the lactic acid bacteria L. plantarum but decreased the adhesion of the bacterial pathogens S. enterica serovar Typhimurium LT21 and E. coli K-12 MG1655 adhesion onto CAL 27 cells. 1 h treatment with 5x concentrated dandelion extract and 1x, 2.5x, and 5x of rosemary extract caused an increase in comet tail intensity. CBMN cyt results demonstrated a significant increase in micronucleus formation even at concentrations several times lower than the usual bioactive compound concentrations found in a cup of beverage, with higher concentrations also inducing cell apoptosis and necrosis. Rosemary extract showed a protective effect against H2O2 - induced oxidative damage by decreasing the apoptotic cell number, probably preventing mutations leading to tumor aggressiveness, invasion, and metastasis. CONCLUSIONS Both tested extracts demonstrated their usefulness in maintaining good oral bacteria balance and their protective capability as powerful antitumor agents by causing a protective apoptotic effect in tumor cell line already at the dosage of an average daily cup.
Collapse
Affiliation(s)
- Ana Huđek Turković
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Ksenija Durgo
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Florentina Čučković
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Ivana Ledenko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Tena Krizmanić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Arijana Martinić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Aleksandra Vojvodić Cebin
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Draženka Komes
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
12
|
Anderson AC, von Ohle C, Frese C, Boutin S, Bridson C, Schoilew K, Peikert SA, Hellwig E, Pelz K, Wittmer A, Wolff D, Al-Ahmad A. The oral microbiota is a reservoir for antimicrobial resistance: resistome and phenotypic resistance characteristics of oral biofilm in health, caries, and periodontitis. Ann Clin Microbiol Antimicrob 2023; 22:37. [PMID: 37179329 PMCID: PMC10183135 DOI: 10.1186/s12941-023-00585-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is an ever-growing threat to modern medicine and, according to the latest reports, it causes nearly twice as many deaths globally as AIDS or malaria. Elucidating reservoirs and dissemination routes of antimicrobial resistance genes (ARGs) are essential in fighting AMR. Human commensals represent an important reservoir, which is underexplored for the oral microbiota. Here, we set out to investigate the resistome and phenotypic resistance of oral biofilm microbiota from 179 orally healthy (H), caries active (C), and periodontally diseased (P) individuals (TRN: DRKS00013119, Registration date: 22.10.2022). The samples were analysed using shotgun metagenomic sequencing combined, for the first time, with culture technique. A selection of 997 isolates was tested for resistance to relevant antibiotics. RESULTS The shotgun metagenomics sequencing resulted in 2,069,295,923 reads classified into 4856 species-level OTUs. PERMANOVA analysis of beta-diversity revealed significant differences between the groups regarding their microbiota composition and their ARG profile. The samples were clustered into three ecotypes based on their microbial composition. The bacterial composition of H and C samples greatly overlapped and was based on ecotypes 1 and 2 whereas ecotype 3 was only detected in periodontitis. We found 64 ARGs conveying resistance to 36 antibiotics, particularly to tetracycline, macrolide-lincosamide-streptogramin, and beta-lactam antibiotics, and a correspondingly high prevalence of phenotypic resistance. Based on the microbiota composition, these ARGs cluster in different resistotypes, and a higher prevalence is found in healthy and caries active than in periodontally diseased individuals. There was a significant association between the resistotypes and the ecotypes. Although numerous associations were found between specific antibiotic resistance and bacterial taxa, only a few taxa showed matching associations with both genotypic and phenotypic analyses. CONCLUSIONS Our findings show the importance of the oral microbiota from different niches within the oral cavity as a reservoir for antibiotic resistance. Additionally, the present study showed the need for using more than one method to reveal antibiotic resistance within the total oral biofilm, as a clear mismatch between the shotgun metagenomics method and the phenotypic resistance characterization was shown.
Collapse
Affiliation(s)
- A C Anderson
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - C von Ohle
- Department of Conservative Dentistry, Periodontology and Endodontology, University Centre of Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - C Frese
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - S Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - C Bridson
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - K Schoilew
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - S A Peikert
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - E Hellwig
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - K Pelz
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A Wittmer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - D Wolff
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - A Al-Ahmad
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| |
Collapse
|