1
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
2
|
Sha E, Nakamura M, Ankai K, Yamamoto YY, Oka T, Yohda M. Functional and structural characterization of HspB1/Hsp27 from Chinese hamster ovary cells. FEBS Open Bio 2019; 9:1826-1834. [PMID: 31441240 PMCID: PMC6768103 DOI: 10.1002/2211-5463.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022] Open
Abstract
Small heat shock proteins (sHsps) endow cells with stress tolerance. Of the various sHsps in mammals, HspB1, also known as Hsp27, is the most ubiquitous. To examine the structure and function of HspB1, we expressed, purified, and characterized HspB1 from Chinese hamster (Cricetulus griseus) ovary cells (CgHspB1). CgHspB1 forms a large oligomeric structure. We observed a monodisperse 16‐mer with an elongated sphere, but this is affected by changes in various conditions, including temperature. Under dilute conditions, CgHspB1 dissociates into small oligomers at elevated temperatures. The dissociated conformers interacted with the gel filtration column through hydrophobic interactions. In contrast, dissociation of the oligomer was not observed by small‐angle X‐ray scattering at 55 °C. The result partially coincides with the results of size exclusion chromatography, showing that dissociation did not occur at high protein concentrations. However, a significant structural change in the oligomeric conformations appears to occur between room and higher temperatures. Reflecting their status as homeotherms, mammalian sHsps are regulated by phosphorylation. A phosphorylation mimic mutant of CgHspB1 with the replacement of Ser15 to Asp exhibited relatively lower oligomer stability and greater protective ability against thermal aggregation than the wild‐type protein. The result clearly shows a correlation between oligomer dissociation and chaperone activity.
Collapse
Affiliation(s)
- Eiryo Sha
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Manami Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Kazuya Ankai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Yohei Y Yamamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Toshihiko Oka
- Department of Physics, Faculty of Science, Shizuoka University, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| |
Collapse
|
3
|
Mas G, Guan JY, Crublet E, Debled EC, Moriscot C, Gans P, Schoehn G, Macek P, Schanda P, Boisbouvier J. Structural investigation of a chaperonin in action reveals how nucleotide binding regulates the functional cycle. SCIENCE ADVANCES 2018; 4:eaau4196. [PMID: 30255156 PMCID: PMC6154984 DOI: 10.1126/sciadv.aau4196] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/01/2018] [Indexed: 05/03/2023]
Abstract
Chaperonins are ubiquitous protein assemblies present in bacteria, eukaryota, and archaea, facilitating the folding of proteins, preventing protein aggregation, and thus participating in maintaining protein homeostasis in the cell. During their functional cycle, they bind unfolded client proteins inside their double ring structure and promote protein folding by closing the ring chamber in an adenosine 5'-triphosphate (ATP)-dependent manner. Although the static structures of fully open and closed forms of chaperonins were solved by x-ray crystallography or electron microscopy, elucidating the mechanisms of such ATP-driven molecular events requires studying the proteins at the structural level under working conditions. We introduce an approach that combines site-specific nuclear magnetic resonance observation of very large proteins, enabled by advanced isotope labeling methods, with an in situ ATP regeneration system. Using this method, we provide functional insight into the 1-MDa large hsp60 chaperonin while processing client proteins and reveal how nucleotide binding, hydrolysis, and release control switching between closed and open states. While the open conformation stabilizes the unfolded state of client proteins, the internalization of the client protein inside the chaperonin cavity speeds up its functional cycle. This approach opens new perspectives to study structures and mechanisms of various ATP-driven biological machineries in the heat of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pavel Macek
- Corresponding author. (P.M.); (P.S.); (J.B.)
| | | | | |
Collapse
|
4
|
Zako T, Sahlan M, Fujii S, Yamamoto YY, Tai PT, Sakai K, Maeda M, Yohda M. Contribution of the C-Terminal Region of a Group II Chaperonin to its Interaction with Prefoldin and Substrate Transfer. J Mol Biol 2016; 428:2405-2417. [DOI: 10.1016/j.jmb.2016.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 11/28/2022]
|
5
|
Hongo K, Itai H, Mizobata T, Kawata Y. Varied effects of Pyrococcus furiosus prefoldin and P. furiosus chaperonin on the refolding reactions of substrate proteins. J Biochem 2011; 151:383-90. [PMID: 22210902 DOI: 10.1093/jb/mvr141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Prefoldin is a molecular chaperone found in the archaeal and eukaryotic cytosol. Prefoldin can stabilize tentatively nascent polypeptide chains or non-native forms of mainly cytoskeletal proteins, which are subsequently delivered to group II chaperonin to accomplish their precise folding. However, the detailed mechanism is not well known, especially with regard to endogenous substrate proteins. Here, we report the effects of Pyrococcus furiosus prefoldin (PfuPFD) on the refolding reactions of Pyrococcus furiosus citrate synthase (PfuCS) and Aequorea enhanced green fluorescence protein (GFPuv) in the presence or absence of Pyrococcus furiosus chaperonin (PfuCPN). We confirmed that both PfuPFD and PfuCPN interacted with PfuCS and GFPuv refolding intermediates. However, the interactions between chaperone and substrate were different for each case, as was the final effect on the refolding reaction. Effects on the refolding reaction varied from passive effects such as ATP-dependent binding and release (PfuCPN towards GFPuv) and binding which leads to folding arrest (PfuPFD towards GFPuv), to active effects such as net increase in thermal stability (PfuCPN towards PfuCS) to an active improvement in refolding yield (PfuPFD towards PfuCS). We postulate that differences in molecular interactions between substrate and chaperone lead to these differences in chaperoning effects.
Collapse
Affiliation(s)
- Kunihiro Hongo
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan
| | | | | | | |
Collapse
|
6
|
Luo H, Zhang P, Robb FT. Oligomerization of an archaeal group II chaperonin is mediated by N-terminal salt bridges. Biochem Biophys Res Commun 2011; 413:389-94. [DOI: 10.1016/j.bbrc.2011.08.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/23/2011] [Indexed: 11/30/2022]
|
7
|
Mares RE, Meléndez-López SG, Ramos MA. Acid-denatured Green Fluorescent Protein (GFP) as model substrate to study the chaperone activity of protein disulfide isomerase. Int J Mol Sci 2011; 12:4625-36. [PMID: 21845100 PMCID: PMC3155373 DOI: 10.3390/ijms12074625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/17/2011] [Accepted: 07/04/2011] [Indexed: 01/25/2023] Open
Abstract
Green fluorescent protein (GFP) has been widely used in several molecular and cellular biology applications, since it is remarkably stable in vitro and in vivo. Interestingly, native GFP is resistant to the most common chemical denaturants; however, a low fluorescence signal has been observed after acid-induced denaturation. Furthermore, this acid-denatured GFP has been used as substrate in studies of the folding activity of some bacterial chaperones and other chaperone-like molecules. Protein disulfide isomerase enzymes, a family of eukaryotic oxidoreductases that catalyze the oxidation and isomerization of disulfide bonds in nascent polypeptides, play a key role in protein folding and it could display chaperone activity. However, contrasting results have been reported using different proteins as model substrates. Here, we report the further application of GFP as a model substrate to study the chaperone activity of protein disulfide isomerase (PDI) enzymes. Since refolding of acid-denatured GFP can be easily and directly monitored, a simple micro-assay was used to study the effect of the molecular participants in protein refolding assisted by PDI. Additionally, the effect of a well-known inhibitor of PDI chaperone activity was also analyzed. Because of the diversity their functional activities, PDI enzymes are potentially interesting drug targets. Since PDI may be implicated in the protection of cells against ER stress, including cancer cells, inhibitors of PDI might be able to enhance the efficacy of cancer chemotherapy; furthermore, it has been demonstrated that blocking the reductive cleavage of disulfide bonds of proteins associated with the cell surface markedly reduces the infectivity of the human immunodeficiency virus. Although several high-throughput screening (HTS) assays to test PDI reductase activity have been described, we report here a novel and simple micro-assay to test the chaperone activity of PDI enzymes, which is amenable for HTS of PDI inhibitors.
Collapse
Affiliation(s)
- Rosa E Mares
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana, Baja California 22390, México; E-Mails: (R.E.M.); (S.G.M.-L.)
| | | | | |
Collapse
|
8
|
A modulator domain controlling thermal stability in the Group II chaperonins of Archaea. Arch Biochem Biophys 2011; 512:111-8. [PMID: 21600187 DOI: 10.1016/j.abb.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/22/2011] [Accepted: 04/24/2011] [Indexed: 11/22/2022]
Abstract
Archaeal Group II chaperonins (Cpns) are strongly conserved, considering that their growth temperatures range from 23 to 122°C. The C-terminal 15-25 residues are hypervariable, and highly charged in thermophilic species. Our hypothesis is that the C-terminal is a key determinant of stabilization of the Cpn complex. The C-terminus of the Cpn from the hyperthermophile Pyrococcus furiosus was mutated to test this hypothesis. C-terminal deletions and replacement of charged residues resulted in destabilization. The stability of ATPase activity declined in proportion to the reduction in charged residues with Ala or Gly. An EK-rich motif ((528)EKEKEKEGEK5(37)) proved to be a key domain for stabilization at or near 100°C. Mutations "tuned" the Cpn for optimal protein folding at lower optimal temperatures, and Glu substitution was more potent than Lys replacement. Pf Cpn stability was enhanced by Ca(2+), especially in the mutant Cpn lacking C-terminal Lys residues. This suggests that Glu-Glu interactions between C termini might be mediated by Ca(2+). The C-terminal of a Cpn from the psychrophilic archaeon Methanococcoides burtonii was replaced by a domain from the hyperthermophile, resulting in increased thermostability and thermoactivity. We conclude that localized evolutionary variation in the C-terminus modulates the temperature range of archaeal Cpns.
Collapse
|
9
|
Pilak O, Harrop SJ, Siddiqui KS, Chong K, De Francisci D, Burg D, Williams TJ, Cavicchioli R, Curmi PMG. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer. Environ Microbiol 2011; 13:2232-49. [PMID: 21477108 DOI: 10.1111/j.1462-2920.2011.02477.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Archaea are abundant in permanently cold environments. The Antarctic methanogen, Methanococcoides burtonii, has proven an excellent model for studying molecular mechanisms of cold adaptation. Methanococcoides burtonii contains three group II chaperonins that diverged prior to its closest orthologues from mesophilic Methanosarcina spp. The relative abundance of the three chaperonins shows little dependence on organism growth temperature, except at the highest temperatures, where the most thermally stable chaperonin increases in abundance. In vitro and in vivo, the M. burtonii chaperonins are predominantly monomeric, with only 23-33% oligomeric, thereby differing from other archaea where an oligomeric ring form is dominant. The crystal structure of an N-terminally truncated chaperonin reveals a monomeric protein with a fully open nucleotide binding site. When compared with closed state group II chaperonin structures, a large-scale ≈ 30° rotation between the equatorial and intermediate domains is observed resulting in an open nucleotide binding site. This is analogous to the transition observed between open and closed states of group I chaperonins but contrasts with recent archaeal group II chaperonin open state ring structures. The predominance of monomeric form and the ability to adopt a fully open nucleotide site appear to be unique features of the M. burtonii group II chaperonins.
Collapse
Affiliation(s)
- Oliver Pilak
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Prevention of in Vitro thermal aggregation and inactivation of foreign proteins by the hyperthermophilic group II chaperonin α-subunit from Aeropyrum pernix K1. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Overexpression, purification, and functional characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-009-0008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Chen HY, Tan XL, Lu J, Zhang CX, Zhang Y, Yang SL. Characterization of ATPase activity of class II chaperonin from the hyperthermophilic archaeon Pyrococcus furiosus. Biotechnol Lett 2009; 31:1753-8. [PMID: 19590830 DOI: 10.1007/s10529-009-0070-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022]
Abstract
To understand how molecular damage under harsh environmental conditions can be controlled, we investigated the properties of ATPase activity of the chaperonin molecular machinery from the hyperthermophilic archaeon Pyrococcus furiosus (PfCPN). PfCPN ATPase activity depended on K(+) and Mg(2+) and its optimal pH was 7.5. PfCPN had almost no ADPase activity. ADP strongly competitively inhibited PfCPN ATPase activity. Inhibition of PfCPN ATPase decreased its chaperonin activity in protecting lysozyme from heat-induced inactivation.
Collapse
Affiliation(s)
- Hua-you Chen
- Institute for Biological Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | | | | | | | | | | |
Collapse
|
13
|
An exceptionally stable Group II chaperonin from the hyperthermophile Pyrococcus furiosus. Arch Biochem Biophys 2009; 486:12-8. [PMID: 19298788 DOI: 10.1016/j.abb.2009.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/21/2022]
Abstract
The hyperthermophilic archaeon Pyrococcus furiosus (Pf) grows optimally at 100 degrees C and encodes single genes for the Group II chaperonin (Cpn), Pf Cpn and alpha-crystallin homolog, the small Heat shock protein (sHsp). Recombinant Pf Cpn is exceptionally thermostable and remained active in high ionic strength, and up to 3M guanidine hydrochloride (Gdn-HCl). Pf Cpn bound specifically to denatured lysozyme and ATP addition resulted in protection of lysozyme from aggregation and inactivation at 100 degrees C. While complexed to heat inactivated lysozyme, Pf Cpn showed enhanced thermostability and ATPase activity, and increased the optimal temperature for ATPase activity from 90 to 100 degrees C. Protein substrate binding also stabilized the 16-mer oligomer of Pf Cpn in 3M Gdn-HCl and activated ATPase hydrolysis in 3-5M Gdn-HCl. In addition, Pf Cpn recognized and refolded the non-native lysozyme released from Pf sHsp, consistent with the inferred functions of these chaperones as the primary protein folding pathway during cellular heat shock.
Collapse
|
14
|
Abstract
A survey of archaeal genomes for the presence of homologues of bacterial and eukaryotic chaperones reveals several interesting features. All archaea contain chaperonins, also known as Hsp60s (where Hsp is heat-shock protein). These are more similar to the type II chaperonins found in the eukaryotic cytosol than to the type I chaperonins found in bacteria, mitochondria and chloroplasts, although some archaea also contain type I chaperonin homologues, presumably acquired by horizontal gene transfer. Most archaea contain several genes for these proteins. Our studies on the type II chaperonins of the genetically tractable archaeon Haloferax volcanii have shown that only one of the three genes has to be present for the organisms to grow, but that there is some evidence for functional specialization between the different chaperonin proteins. All archaea also possess genes for prefoldin proteins and for small heat-shock proteins, but they generally lack genes for Hsp90 and Hsp100 homologues. Genes for Hsp70 (DnaK) and Hsp40 (DnaJ) homologues are only found in a subset of archaea. Thus chaperone-assisted protein folding in archaea is likely to display some unique features when compared with that in eukaryotes and bacteria, and there may be important differences in the process between euryarchaea and crenarchaea.
Collapse
|
15
|
Expression Profiles and Physiological Roles of Two Types of Prefoldins from the Hyperthermophilic Archaeon Thermococcus kodakaraensis. J Mol Biol 2008; 382:298-311. [DOI: 10.1016/j.jmb.2008.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 11/21/2022]
|
16
|
Okochi M, Kanie K, Kurimoto M, Yohda M, Honda H. Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance. Appl Microbiol Biotechnol 2008; 79:443-9. [PMID: 18443786 DOI: 10.1007/s00253-008-1450-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 03/06/2008] [Accepted: 03/08/2008] [Indexed: 11/26/2022]
Abstract
Prefoldin is a jellyfish-shaped hexameric chaperone that captures a protein-folding intermediate and transfers it to the group II chaperonin for correct folding. In this work, we characterized the organic solvent tolerance of Escherichia coli cells that overexpress prefoldin and group II chaperonin from a hyperthermophilic archeaum, Pyrococcus horikoshii OT3. The colony-forming efficiency of E. coli cells overexpressing prefoldin increased by 1,000-fold and decreased the accumulation of intracellular organic solvent. The effect was impaired by deletions of the region responsible for the chaperone function of prefoldin. Therefore, we concluded that prefoldin endows E. coli cells by preventing accumulation of intracellular organic solvent through its molecular chaperone activity.
Collapse
Affiliation(s)
- Mina Okochi
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
17
|
Nucleotide and Manganese Ion is Required for Chaperonin Function of the Hyperthermostable Group II Chaperonin α from Aeropyrum pernix K1. B KOREAN CHEM SOC 2007. [DOI: 10.5012/bkcs.2007.28.12.2261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Chen HY, Chu ZM, Ma YH, Zhang Y, Yang SL. Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeonPyrococcus furiosus. J Basic Microbiol 2007; 47:132-7. [PMID: 17440915 DOI: 10.1002/jobm.200610215] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chaperonin molecular machine from hyperthermophilic archaeon Pyrococcus furiosus was studied in this paper. The Pyrococcus furiosus chaperonin gene (PfCPN) was amplified by PCR from the Pyrococcus furiosus genomic DNA, and expressed in Escherichia coli BL21-Codonplus(DE)(3)-RIL. The recombinant PfCPN was purified to homogeneity by using ion-exchange and size-exclusion chromatography. It was found that the ATPase activity of the PfCPN was highest at 88 degrees C, and there existed a nested cooperativity of the ATPase activity of the PfCPN. This result suggested that nested allosteric behavior may be common to chaperonin molecular machines from archaea. The half-life (t(1/2)) of the ATPase activity of the PfCPN at 100 degrees C was about 60 min. The PfCPN displayed chaperone activity in preventing lysozyme from thermal inactivation. This chaperone activity was in an ATP-dependent manner.
Collapse
Affiliation(s)
- Hua-You Chen
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
19
|
Martín-Benito J, Gómez-Reino J, Stirling PC, Lundin VF, Gómez-Puertas P, Boskovic J, Chacón P, Fernández JJ, Berenguer J, Leroux MR, Valpuesta JM. Divergent substrate-binding mechanisms reveal an evolutionary specialization of eukaryotic prefoldin compared to its archaeal counterpart. Structure 2007; 15:101-10. [PMID: 17223536 DOI: 10.1016/j.str.2006.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/28/2006] [Accepted: 11/28/2006] [Indexed: 11/24/2022]
Abstract
Prefoldin (PFD) is a molecular chaperone that stabilizes and then delivers unfolded proteins to a chaperonin for facilitated folding. The PFD hexamer has undergone an evolutionary change in subunit composition, from two PFDalpha and four PFDbeta subunits in archaea to six different subunits (two alpha-like and four beta-like subunits) in eukaryotes. Here, we show by electron microscopy that PFD from the archaeum Pyrococcus horikoshii (PhPFD) selectively uses an increasing number of subunits to interact with nonnative protein substrates of larger sizes. PhPFD stabilizes unfolded proteins by interacting with the distal regions of the chaperone tentacles, a mechanism different from that of eukaryotic PFD, which encapsulates its substrate inside the cavity. This suggests that although the fundamental functions of archaeal and eukaryal PFD are conserved, their mechanism of substrate interaction have diverged, potentially reflecting a narrower range of substrates stabilized by the eukaryotic PFD.
Collapse
Affiliation(s)
- Jaime Martín-Benito
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de la Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Son HJ, Shin EJ, Nam SW, Kim DE, Jeon SJ. Properties of the α subunit of a Chaperonin from the hyperthermophilic CrenarchaeonAeropyrum pernixK1. FEMS Microbiol Lett 2007; 266:103-9. [PMID: 17092293 DOI: 10.1111/j.1574-6968.2006.00513.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The gene encoding for a putative thermosome from the hyperthermophilic crenarchaeon Aeropyrum pernix K1 (ApcpnA) was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (accession no. APE0907) from A. pernix K1 showed some homology with other group II chaperonins from archaea. The recombinant ApcpnA protein has a molecular mass of 60 kDa, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and exhibited ATPase activity with an optimum temperature and pH of 90 degrees C and 5.0, respectively. The ATPase activity was found to be dependent on manganese and potassium ions, but not magnesium ion. The K(m) for ATP at pH 5.0 and 90 degrees C was 10.04 (+/- 1.31) microM, and k(cat) was determined to be 2.21 (+/- 0.11) min(-1) for the ApcpnA monomer. The recombinant ApcpnA prevents thermal aggregation of bovine rhodanese and enhances the thermal stability of alcohol dehydrogenase in vitro, indicating that the protein is suitable as a molecular chaperonin in the high-temperature environment.
Collapse
Affiliation(s)
- Hae-Jin Son
- Department of Biotechnology and Bioengineering, Dong-Eui University, Busan, Korea
| | | | | | | | | |
Collapse
|
21
|
Zako T, Murase Y, Iizuka R, Yoshida T, Kanzaki T, Ide N, Maeda M, Funatsu T, Yohda M. Localization of Prefoldin Interaction Sites in the Hyperthermophilic Group II Chaperonin and Correlations between Binding Rate and Protein Transfer Rate. J Mol Biol 2006; 364:110-20. [PMID: 17010374 DOI: 10.1016/j.jmb.2006.08.088] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/20/2006] [Accepted: 08/29/2006] [Indexed: 11/17/2022]
Abstract
Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. The manner by which prefoldin interacts with a group II chaperonin is poorly understood. Here, we have examined the prefoldin interaction site in the archaeal group II chaperonin, comparing the interaction of two Thermococcus chaperonins and their mutants with Pyrococcus prefoldin by surface plasmon resonance. We show that the mutations of Lys250 and Lys256 of Thermococcus alpha chaperonin residues to Glu residues increase the affinity to Pyrococcus prefoldin to the level of Thermococcus beta chaperonin and Pyrococcus chaperonin, indicating that their Glu250 and Glu256 residues of the helical protrusion region are responsible for relatively stronger binding to Pyrococcus prefoldin than Thermococcus alpha chaperonin. Since the putative chaperonin binding sites in the distal ends of Pyrococcus prefoldin are rich in basic residues, electrostatic interaction seems to be important for their interaction. The substrate protein transfer rate from prefoldin correlates well with its affinity for chaperonin.
Collapse
Affiliation(s)
- Tamotsu Zako
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-Shi, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Laksanalamai P, Pavlov AR, Slesarev AI, Robb FT. Stabilization ofTaq DNA Polymerase at High Temperature by Protein Folding Pathways From a Hyperthermophilic Archaeon,Pyrococcus furiosus. Biotechnol Bioeng 2005; 93:1-5. [PMID: 16299772 DOI: 10.1002/bit.20781] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pyrococcus furiosus, a hyperthermophilic archaeon growing optimally at 100 degrees C, encodes three protein chaperones, a small heat shock protein (sHsp), a prefoldin (Pfd), and a chaperonin (Cpn). In this study, we report that the passive chaperones sHsp and Pfd from P. furiosus can boost the protein refolding activity of the ATP-dependent Cpn from the same hyperthermophile. The thermo-stability of Taq polymerase was significantly improved by combinations of P. furiosus chaperones, showing ongoing protein folding activity at elevated temperatures and during thermal cycling. Based on these results, we propose that the protein folding apparatus in the hyperthermophilic archaeon, P. furiosus can be utilized to enhance the durability and cost effectiveness of high temperature biocatalysts.
Collapse
Affiliation(s)
- Pongpan Laksanalamai
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Baltimore, MD 21202, USA.
| | | | | | | |
Collapse
|