1
|
Mokoba M, Gessesse A. Bioconversion of Feather and Production of Alkaline Protease for Detergent and Dehairing Applications. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05280-7. [PMID: 40423745 DOI: 10.1007/s12010-025-05280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/28/2025]
Abstract
Annually, the poultry industry releases millions of tons of feather waste into the environment. With a protein content of 91%, feather offers huge potential to serve as an animal feed supplement. However, keratin, the main protein component of feather, is highly resistant to hydrolysis by animal and plant proteases. The use of physicochemical methods to hydrolyze feather, in addition to being expensive, causes decomposition of some amino acids. Thus, microbial bioconversion of feather offers an attractive option for the production of useful products. In this study, an alkaliphilic feather-degrading strain, Bacillus pseudofirmus BCC026, was isolated from the Makgadikgadi salt pan in Botswana. When grown in liquid culture containing feather as the sole source of nitrogen, it resulted in complete solubilization within 48 to 72 h. The organism also produced an alkaline protease, soluble proteins, and peptides/amino acids into the culture medium. The enzyme showed optimum activity in the pH range of 7.5-10.5 and at 70 °C. It was also active and stable in commercial detergents and resulted in complete removal of stain from cotton fabrics. The enzyme was also effective in removing hair from goatskin, indicating its potential for dehairing application. Microbial growth substrates are known to account for a significant proportion of the production cost of industrial enzymes. Since protease BCC026 was produced using feather, a cheap and readily available resource, enzyme production cost could be significantly reduced. Moreover, after enzyme recovery, the soluble proteins and peptides/amino acids in the filtrate could be used for different applications.
Collapse
Affiliation(s)
- Matthews Mokoba
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Amare Gessesse
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Palapye, Botswana.
| |
Collapse
|
2
|
Bhuimbar MV, Jalkute CB, Bhagwat PK, Dandge PB. Purification, characterization and application of collagenolytic protease from Bacillus subtilis strain MPK. J Biosci Bioeng 2024; 138:21-28. [PMID: 38637241 DOI: 10.1016/j.jbiosc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/10/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
A new extracellular protease from Bacillus subtilis strain MPK with collagenolytic activity was isolated and purified. Fish skin which otherwise would be treated as waste is used as substrate for the production of protease. Using various techniques such as ammonium sulphate precipitation and ion exchange chromatography, protease was purified and characterized subsequently. Protease of approximately 61 kDa molecular weight was purified by 135.7-fold with 18.42% enzyme recovery. The protease showed effective properties like pH and temperature stability over a broad range with optimum pH 7.5 and temperature 60 °C. Km and Vmax were found to be 1.92 mg ml-1 and 1.02 × 10-4 mol L-1 min-1, respectively. The protease exhibited stability in various ions, surfactants, inhibitors and organic solvents. Subsequently, the protease was successfully utilized for collagen hydrolysis to generate collagen peptides; thus, the produced protease would be a potential candidate for multifaceted applications in food and pharmaceutical industries due to its significant characteristics and collagenolytic properties.
Collapse
Affiliation(s)
- Madhuri Vijay Bhuimbar
- PG Department of Microbiology & Research Center, Shri Shivaji Mahavidyalaya, Barshi 413411, MS, India
| | - Chidambar Balbhim Jalkute
- PG Department of Microbiology & Research Center, Shri Shivaji Mahavidyalaya, Barshi 413411, MS, India
| | | | | |
Collapse
|
3
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Feigl V, Medgyes-Horváth A, Kari A, Török Á, Bombolya N, Berkl Z, Farkas É, Fekete-Kertész I. The potential of Hungarian bauxite residue isolates for biotechnological applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00825. [PMID: 38225962 PMCID: PMC10788403 DOI: 10.1016/j.btre.2023.e00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Bauxite residue (red mud) is considered an extremely alkaline and salty environment for the biota. We present the first attempt to isolate, identify and characterise microbes from Hungarian bauxite residues. Four identified bacterial strains belonged to the Bacilli class, one each to the Actinomycetia, Gammaproteobacteria, and Betaproteobacteria classes, and two to the Alphaproteobacteria class. All three identified fungi strains belonged to the Ascomycota division. Most strains tolerated pH 8-10 and salt content at 5-7% NaCl concentration. Alkalihalobacillus pseudofirmus BRHUB7 and Robertmurraya beringensis BRHUB9 can be considered halophilic and alkalitolerant. Priestia aryabhattai BRHUB2, Penicillium chrysogenum BRHUF1 and Aspergillus sp. BRHUF2 are halo- and alkalitolerant strains. Most strains produced siderophores and extracellular polymeric substances, could mobilise phosphorous, and were cellulose degraders. These strains and their enzymes are possible candidates for biotechnological applications in processes requiring extreme conditions, e.g. bioleaching of critical raw materials and rehabilitation of alkaline waste deposits.
Collapse
Affiliation(s)
- Viktória Feigl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Anna Medgyes-Horváth
- ELTE Eötvös Loránd University, Department of Physics of Complex Systems, Pázmány P. s. 1A, Budapest 1117, Hungary
| | - András Kari
- ELTE Eötvös Loránd University, Department of Microbiology, Pázmány P. s. 1A, Budapest 1117, Hungary
| | - Ádám Török
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Nelli Bombolya
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Zsófia Berkl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| | - Éva Farkas
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Department of Biogeochemistry and Soil Quality, Høgskoleveien 7, 1432 Ås, Norway
| | - Ildikó Fekete-Kertész
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp 3., Budapest 1111, Hungary
| |
Collapse
|
5
|
Zhang RX, Wu ZW, Cui HY, Chai YN, Hua CW, Wang P, Li L, Yang TY. Production of surfactant-stable keratinase from Bacillus cereus YQ15 and its application as detergent additive. BMC Biotechnol 2022; 22:26. [PMID: 36076195 PMCID: PMC9454225 DOI: 10.1186/s12896-022-00757-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background With the growing concern for the environment, there are trends that bio-utilization of keratinous waste by keratinases could ease the heavy burden of keratinous waste from the poultry processing and leather industry. Especially surfactant-stable keratinases are beneficial for the detergent industry. Therefore, the production of keratinase by Bacillus cereus YQ15 was improved; the characterization and use of keratinase in detergent were also studied. Results A novel alkaline keratinase-producing bacterium YQ15 was isolated from feather keratin-rich soil and was identified as Bacillus cereus. Based on the improvement of medium components and culture conditions, the maximum keratinase activity (925 U/mL) was obtained after 36 h of cultivation under conditions of 35 °C and 160 rpm. Moreover, it was observed that the optimal reacting temperature and pH of the keratinase are 60 °C and 10.0, respectively; the activity was severely inhibited by PMSF and EDTA. On the contrary, the keratinase showed remarkable stability in the existence of the various surfactants, including SDS, Tween 20, Tween 60, Tween 80, and Triton X-100. Especially, 5% of Tween 20 and Tween 60 increased the activity by 100% and 60%, respectively. Furtherly, the keratinase revealed high efficiency in removing blood stains. Conclusion The excellent compatibility with commercial detergents and the high washing efficiency of removing blood stains suggested its suitability for potential application as a bio-detergent additive. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00757-3.
Collapse
Affiliation(s)
- Rong-Xian Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.
| | - Zhong-Wei Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Hai-Yang Cui
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Ying-Nan Chai
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Cheng-Wei Hua
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Peng Wang
- Blood Transfusion Department, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Lan Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Tian-You Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| |
Collapse
|
6
|
Immobilization and Biochemical Characterization of Keratinase 2S1 onto Magnetic Cross-Linked Enzyme Aggregates and its Application on the Hydrolysis of Keratin Waste. Catal Letters 2021. [DOI: 10.1007/s10562-021-03833-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 2021; 193:4113-4150. [PMID: 34648116 DOI: 10.1007/s12010-021-03701-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Shivani M Yagnik
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
8
|
Chicken Feather Waste Hydrolysate as a Superior Biofertilizer in Agroindustry. Curr Microbiol 2021; 78:2212-2230. [PMID: 33903939 DOI: 10.1007/s00284-021-02491-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/13/2021] [Indexed: 10/24/2022]
Abstract
Billions of tons of keratinous waste in the form of feathers, antlers, bristles, claws, hair, hoofs, horns, and wool are generated by different industries and their demolition causes environmental deterioration. Chicken feathers have 92% keratin that can be a good source of peptides, amino acids, and minerals. Traditional methods of feather hydrolysis require large energy inputs, and also reduce the content of amino acids and net protein utilization values. Biological treatment of feathers with keratinolytic microbes is a feasible and environmental favorable preference for the formulation of hydrolysate that can be used as bioactive peptides, protein supplement, livestock feed, biofertilizer, etc. The presence of amino acids, soluble proteins, and peptides in hydrolysate facilitates the growth of microbes in rhizosphere that promotes the uptake and utilization of nutrients from soil. Application of hydrolysate enhances water holding capacity, C/N ratio, and mineral content of soil. The plant growth promoting activities of hydrolysate potentiates its possible use in organic farming, and improves soil ecosystem and microbiota. This paper reviews the current scenario on the methods available for management of keratinous waste, nutritional quality of hydrolysate generated using keratinolytic microbes, and its possible application as plant growth promoter in agroindustry.
Collapse
|
9
|
Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU. Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications. Front Microbiol 2020; 11:580164. [PMID: 33391200 PMCID: PMC7775373 DOI: 10.3389/fmicb.2020.580164] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The search for novel renewable products over synthetics hallmarked this decade and those of the recent past. Most economies that are prospecting on biodiversity for improved bio-economy favor renewable resources over synthetics for the potential opportunity they hold. However, this field is still nascent as the bulk of the available resources are non-renewable based. Microbial metabolites, emphasis on secondary metabolites, are viable alternatives; nonetheless, vast microbial resources remain under-exploited; thus, the need for a continuum in the search for new products or bio-modifying existing products for novel functions through an efficient approach. Environmental distress syndrome has been identified as a factor that influences the emergence of genetic diversity in prokaryotes. Still, the process of how the change comes about is poorly understood. The emergence of new traits may present a high prospect for the industrially viable organism. Microbial enzymes have prominence in the bio-economic space, and proteases account for about sixty percent of all enzyme market. Microbial keratinases are versatile proteases which are continuously gaining momentum in biotechnology owing to their effective bio-conversion of recalcitrant keratin-rich wastes and sustainable implementation of cleaner production. Keratinase-assisted biodegradation of keratinous materials has revitalized the prospects for the utilization of cost-effective agro-industrial wastes, as readily available substrates, for the production of high-value products including amino acids and bioactive peptides. This review presented an overview of keratin structural complexity, the potential mechanism of keratin biodegradation, and the environmental impact of keratinous wastes. Equally, it discussed microbial keratinase; vis-à-vis sources, production, and functional properties with considerable emphasis on the ecological implication of microbial producers and catalytic tendency improvement strategies. Keratinase applications and prospective high-end use, including animal hide processing, detergent formulation, cosmetics, livestock feed, and organic fertilizer production, were also articulated.
Collapse
Affiliation(s)
- Nonso E. Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U. Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
10
|
Protease—A Versatile and Ecofriendly Biocatalyst with Multi-Industrial Applications: An Updated Review. Catal Letters 2020. [DOI: 10.1007/s10562-020-03316-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Biochemical characterization of an alkaline surfactant-stable keratinase from a new keratinase producer, Bacillus zhangzhouensis. Extremophiles 2020; 24:693-704. [PMID: 32617734 DOI: 10.1007/s00792-020-01187-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 01/20/2023]
Abstract
A new keratinase producer, Bacillus sp. BK111, isolated from a poultry feather was identified as Bacillus zhangzhouensis, which is the first report for its keratinolytic activity. The keratinase production was optimized, followed by the enzyme purification and characterization using biochemical assays. A 2.34-fold increase was observed in the enzyme production under optimized conditions. The enzyme was characterized as a serine protease with 42 kDa molecular weight, stable in a wide range of temperature and pH with maximum keratinolytic activity at 60 °C and pH 9.5. The enzyme had a wide range of different substrates with the best performance on the feather meal substrate. Metal ions of Ca2+, K+, Na+ and Mn2+ enhanced the enzyme activity. The enzyme showed a great deal of stability in the presence of ethanol, methanol, acetone, 2-propanol, dimethyl sulfoxide, Tween-80 and Triton X-100. Dithiothreitol (DTT), as a reducing agent, caused a twofold increase in keratinolytic activity. The half-life of the enzyme at optimum temperature was calculated to be 125 min and the ratio of keratinolytic:caseinolytic for the enzyme was 0.8. Our results showed the remarkable features of the enzyme that make it suitable for biotechnological usages.
Collapse
|
12
|
Hassan MA, Abol-Fotouh D, Omer AM, Tamer TM, Abbas E. Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. Int J Biol Macromol 2020; 154:567-583. [PMID: 32194110 DOI: 10.1016/j.ijbiomac.2020.03.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/25/2022]
Abstract
Enormous masses of keratinous wastes are annually accumulated in the environment as byproducts of poultry processing and agricultural wastes. Keratin is a recalcitrant fibrous protein, which represents the major constituent of various keratin-rich wastes, which released into the environment in the form of feathers, hair, wool, bristle, and hooves. Chemical treatment methods of these wastes resulted in developing many hazardous gases and toxins to the public health, in addition to the destruction of several amino acids. Accordingly, microbial keratinases have been drawing much interest as an eco-friendly approach to convert keratinous wastes into valuable products. Numerous keratinolytic microorganisms have been identified, which revealed the competence to hydrolyze keratins into peptides and amino acids. Several types of keratinolytic proteases have been produced that possess diverse biochemical characteristics, conferring them the versatility for implementing in multifarious applications such as detergents, leather and textile industries, animal feeding, and production of bio-fertilizers, in addition to medical and pharmaceutical treatments. This review article emphasizes the significance of keratinases and keratinase based-products via comprehensive insights into the keratin structure, diversity of keratinolytic microorganisms, and mechanisms of keratin hydrolysis. Furthermore, we discuss the biochemical properties of the produced keratinases and their feasible applications in diverse disciplines.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt.
| | - Deyaa Abol-Fotouh
- Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Chen J, Yang S, Liang S, Lu F, Long K, Zhang X. In vitro synergistic effects of three enzymes from Bacillus subtilis CH-1 on keratin decomposition. 3 Biotech 2020; 10:159. [PMID: 32206493 DOI: 10.1007/s13205-020-2143-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/16/2020] [Indexed: 10/24/2022] Open
Abstract
Extracellular protease Vpr (Vpr), gamma-glutamyltranspeptidase (GGT; EC 2.3.2.2) and glyoxal/methylglyoxal reductase (YvgN; EC 1.1.1.21) are extracellular enzymes involved in feather degradation, which were identified by secretome analyses from an efficient feather-degrading strain Bacillus subtilis CH-1. The encoding sequences corresponding to the three secretory enzymes were cloned into vector pET22b for recombinant expression in Escherichia coli strain BL21 (DE3). Afterward, the proteins containing the C-terminal His-tag were purified using a Ni-IDA column. The optimal temperatures and pH values for protease activity of recombinant Vpr, GGT, and YvgN were identified as 45 °C/pH 7.0, 40 °C/pH 8.0, and 50 °C/pH 6.0 respectively when casein is the substrate. Furthermore, the synergistic effects of the three enzymes were studied using feather powder as substrate. Vpr was the core enzyme to hydrolyze keratin, while GGT and YvgN were coenzymes providing reducing activities for keratin decomposition. The keratinolytic activity was enhanced to about 1.4-folds when YvgN and Vpr applied together in comparison to Vpr alone. And the keratinolytic activity almost reached to 1.5-folds when all the three enzymes were combined to use. The study provides a novel perspective of the mechanism of keratin degradation by microorganisms, and thereby may also be of relevance for the design of an industrial process for enzymatic keratin degradation; however, additional experiments must be done to substantiate this conclusion.
Collapse
|
14
|
Li Q. Progress in Microbial Degradation of Feather Waste. Front Microbiol 2019; 10:2717. [PMID: 31866957 PMCID: PMC6906142 DOI: 10.3389/fmicb.2019.02717] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
Feathers are a major by-product of the poultry industry. They are mainly composed of keratins which have wide applications in different fields. Due to the increasing production of feathers from poultry industries, the untreated feathers could become pollutants because of their resistance to protease degradation. Feathers are rich in amino acids, which makes them a valuable source for fertilizer and animal feeds. Numerous bacteria and fungi exhibited capabilities to degrade chicken feathers by secreting enzymes such as keratinases, and accumulated evidence shows that feather-containing wastes can be converted into value-added products. This review summarizes recent progress in microbial degradation of feathers, structures of keratinases, feather application, and microorganisms that are able to secrete keratinase. In addition, the enzymes critical for keratin degradation and their mechanism of action are discussed. We also proposed the strategy that can be utilized for feather degradation. Based on the accumulated studies, microbial degradation of feathers has great potential to convert them into various products such as biofertilizer and animal feeds.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
15
|
Bhari R, Kaur M, Singh RS. Thermostable and halotolerant keratinase fromBacillus aeriusNSMk2 with remarkable dehairing and laundary applications. J Basic Microbiol 2019; 59:555-568. [DOI: 10.1002/jobm.201900001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Ranjeeta Bhari
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology; Punjabi University; Patiala Punjab India
| | - Manpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology; Punjabi University; Patiala Punjab India
| | - Ram S. Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology; Punjabi University; Patiala Punjab India
| |
Collapse
|
16
|
Suharti, Tyas DR, Nilamsari NR. Isolation and characterization of a newly keratinase producing Bacillus sp N1 from tofu liquid waste. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/230/1/012088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Deniz I, Zihnioglu F, Öncel SS, Hames EE, Vardar-Sukan F. Production, purification and characterization of a proteolytic enzyme from Streptomyces sp. 2M21. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1568415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Irem Deniz
- Bioengineering Department, Engineering Faculty, Manisa Celal Bayar University, Muradiye-Manisa, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir, Turkey
| | - Suphi S. Öncel
- Bioengineering Department, Engineering Faculty, Ege University, Bornova-Izmir, Turkey
| | - E. Esin Hames
- Bioengineering Department, Engineering Faculty, Ege University, Bornova-Izmir, Turkey
| | - Fazilet Vardar-Sukan
- Bioengineering Department, Engineering Faculty, Ege University, Bornova-Izmir, Turkey
| |
Collapse
|
18
|
Hamiche S, Mechri S, Khelouia L, Annane R, El Hattab M, Badis A, Jaouadi B. Purification and biochemical characterization of two keratinases from Bacillus amyloliquefaciens S13 isolated from marine brown alga Zonaria tournefortii with potential keratin-biodegradation and hide-unhairing activities. Int J Biol Macromol 2019; 122:758-769. [DOI: 10.1016/j.ijbiomac.2018.10.174] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
|
19
|
Tamreihao K, Mukherjee S, Khunjamayum R, Devi LJ, Asem RS, Ningthoujam DS. Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production. J Basic Microbiol 2018; 59:4-13. [DOI: 10.1002/jobm.201800434] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 11/09/2022]
Affiliation(s)
- K. Tamreihao
- Advanced Level State Biotech Hub; Microbial Biotechnology Research Laboratory; Department of Biochemistry; Manipur University; Canchipur India
| | - Saikat Mukherjee
- Advanced Level State Biotech Hub; Microbial Biotechnology Research Laboratory; Department of Biochemistry; Manipur University; Canchipur India
| | - Rakhi Khunjamayum
- Advanced Level State Biotech Hub; Microbial Biotechnology Research Laboratory; Department of Biochemistry; Manipur University; Canchipur India
| | - Laishram Jaya Devi
- Advanced Level State Biotech Hub; Microbial Biotechnology Research Laboratory; Department of Biochemistry; Manipur University; Canchipur India
| | - Roshan Singh Asem
- Advanced Level State Biotech Hub; Microbial Biotechnology Research Laboratory; Department of Biochemistry; Manipur University; Canchipur India
| | - Debananda S. Ningthoujam
- Advanced Level State Biotech Hub; Microbial Biotechnology Research Laboratory; Department of Biochemistry; Manipur University; Canchipur India
| |
Collapse
|
20
|
Kowalczyk P, Mahdi-Oraibi S, Misiewicz A, Gabzdyl N, Miskiewicz A, Szparecki G. Feather-Degrading Bacteria: Their Biochemical and Genetic Characteristics. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-017-2700-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Partial Characterization of Keratinolytic Activity of Local Novel Bacteria Isolated from Feather Waste. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Verma A, Singh H, Anwar S, Chattopadhyay A, Tiwari KK, Kaur S, Dhilon GS. Microbial keratinases: industrial enzymes with waste management potential. Crit Rev Biotechnol 2016; 37:476-491. [PMID: 27291252 DOI: 10.1080/07388551.2016.1185388] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze "hard to degrade" keratinous wastes. This new class of proteases is known as "keratinases". Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.
Collapse
Affiliation(s)
- Amit Verma
- a CBSH, SD Agricultural University , Gujarat , India
| | - Hukum Singh
- b Climate Change and Forest Influences Division , Forest Research Institute, ICFRE , Dehradun , India
| | - Shahbaz Anwar
- c Department of Microbiology , GBPUAT , Pantnagar , India
| | | | | | - Surinder Kaur
- e Department of Biological Sciences , University of Lethbridge , Lethbridge , AB , Canada.,f Lethbridge Research Centre, Agriculture and Agrifood Canada , Lethbridge , AB , Canada
| | - Gurpreet Singh Dhilon
- g Department of Food, Agricultural, and Nutritional Sciences , University of Alberta , Edmonton , AB , Canada
| |
Collapse
|
23
|
Bouacem K, Bouanane-Darenfed A, Zaraî Jaouadi N, Joseph M, Hacene H, Ollivier B, Fardeau ML, Bejar S, Jaouadi B. Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities. Int J Biol Macromol 2016; 86:321-8. [DOI: 10.1016/j.ijbiomac.2016.01.074] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/26/2022]
|
24
|
Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis. Front Bioeng Biotechnol 2015; 3:75. [PMID: 26090360 PMCID: PMC4453477 DOI: 10.3389/fbioe.2015.00075] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/10/2015] [Indexed: 12/28/2022] Open
Abstract
Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - David B Hicks
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Shino Suzuki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology , Nankoku , Japan ; Microbial and Environmental Genomics, J. Craig Venter Institutes , La Jolla, CA , USA
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - Terry Ann Krulwich
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
25
|
Bidzhieva SK, Derbikova KS, Kublanov IV, Bonch-Osmolovskaya EA. Capacity of hyperthermophilic Crenarchaeota for decomposition of refractory proteins (α- and β-keratins). Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714060034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Gegeckas A, Gudiukaitė R, Citavicius D. Keratinolytic proteinase from Bacillus thuringiensis AD-12. Int J Biol Macromol 2014; 69:46-51. [DOI: 10.1016/j.ijbiomac.2014.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 11/15/2022]
|
27
|
Chaturvedi V, Bhange K, Bhatt R, Verma P. Production of kertinases using chicken feathers as substrate by a novel multifunctional strain of Pseudomonas stutzeri and its dehairing application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Laba W, Rodziewicz A. Biodegradation of hard keratins by two bacillus strains. Jundishapur J Microbiol 2014; 7:e8896. [PMID: 25147672 PMCID: PMC4138685 DOI: 10.5812/jjm.8896] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/23/2013] [Accepted: 02/18/2013] [Indexed: 01/21/2023] Open
Abstract
Background: Extensive quantities of keratinic by-products are disposed annually by animal-processing industry, causing a mounting ecological problem due to extreme resilience of these materials to enzymatic breakdown. There is a growing trend to apply cheap and environment-friendly methods to recycle keratinic wastes. Soil bacteria of profound keratinolytic potential, especially spore-forming rods from the genus Bacillus, play a significant role in keratinase-mediated biodegradation of keratins, therefore could be effective in hastening their biodegradation. Keratin hydrolysis in microbial cultures is one of the most promising techniques not only to utilize this protein but also to obtain valuable by products. Objectives: The study was undertaken to investigate the biodegradation process of various keratinic materials by two Bacillus strains. Materials and Methods: Two keratinolytic strains, Bacillus cereus and B. polymyxa, were subject to cultures in the presence of several keratinic appendages, like chicken feathers, barbs and rachea of ostrich feathers, pig bristle, lamb wool, human hair and stratum corneum of epidermis, as main nutrient sources. Bacterial ability to decompose these waste materials was evaluated, at the background of keratinase and protease biosynthesis, in brief four-day cultures. Keratinolytic activity was measured on soluble keratin preparation and proteases were assayed on casein. Additionally, amounts of liberated proteins, amino acids and thiols were evaluated. Residual keratin weight was tested afterwards. Results: Both tested strains proved to be more adapted for fast biodegradation of feather β-keratins than hair-type α-keratins. B. cereus revealed its significant proteolytic potential, especially on whole chicken feathers (230 PU) and stratum corneum (180 PU), but also on separated barbs and rachea, which appeared to be moderate protease inducers. Keratinolytic activity of B. cereus was comparable on most substrates and maximum level obtained was 11 KU. B. polymyxa was found to be a better producer of keratinases, up to 32 KU on chicken feathers and 14 KU on both fractions of ostrich feathers. Its proteolytic activity was mostly revealed on stratum corneum and human hair. Stratum corneum was extensively degraded by both bacterial strains up to 99% - 87%, chicken feathers 47-56%, ostrich barbs and rachea, 28% and 35% at maximum, respectively. Keratin fibres of structures like human hair, lamb wool and pig bristle remained highly resilient to this short microbiological treatment, however certain extent of keratinase induction was also observed. Conclusions: The obtained results prove that keratinolytic potential of both tested bacterial strains could be applied mainly in biodegradation of feathers, however, B. cereus and B. polymyxa differed in terms of keratinase and protease production on each of the substrates. Biodegradation of highly resilient structures like hair or pig bristle requires further analysis of process conditions.
Collapse
Affiliation(s)
- Wojciech Laba
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- Corresponding author: Wojciech Laba, Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, J. Chelmonskiego 37/41, 51-630, Wroclaw, Poland. Tel: +48-713207723, Fax: +48-713207794, E-mail:
| | - Anna Rodziewicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
29
|
Hassan MA, Haroun BM, Amara AA, Serour EA. Production and characterization of keratinolytic protease from new wool-degrading Bacillus species isolated from Egyptian ecosystem. BIOMED RESEARCH INTERNATIONAL 2013; 2013:175012. [PMID: 23936776 PMCID: PMC3725791 DOI: 10.1155/2013/175012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 11/17/2022]
Abstract
Novel keratin-degrading bacteria were isolated from sand soil samples collected from Minia Governorate, Egypt. In this study, the isolates were identified as Bacillus amyloliquefaciens MA20 and Bacillus subtilis MA21 based on morphological and biochemical characteristics as well as 16S rRNA gene sequencing. B. amyloliquefaciens MA20 and B. subtilis MA21 produced alkaline keratinolytic serine protease when cultivated in mineral medium containing 1% of wool straight off sheep as sole carbon and nitrogen source. The two strains were observed to degrade wool completely to powder at pH 7 and 37°C within 5 days. Under these conditions the maximum activity of proteases produced by B. amyloliquefaciens MA20 and B. subtilis MA21 was 922 and 814 U/ml, respectively. The proteases exhibited optimum temperature and pH at 60°C and 9, respectively. However, the keratinolytic proteases were stable in broad range of temperature and pH values towards casein Hammerstein. Furthermore the protease inhibitor studies indicated that the produced proteases belong to serine protease because of their sensitivity to PMSF while they were inhibited partially in presence of EDTA. The two proteases are stable in most of the used organic solvents and enhanced by metals suggesting their potential use in biotechnological applications such as wool industry.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | | | | | | |
Collapse
|
30
|
Sumathi C, Mohanapriya D, Mandal AB, Sekaran G. Production of different proteases from fish gut microflora utilizing tannery fleshing. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Chellappan Sumathi
- Environmental Technology Division, Central Leather Research Institute (CLRI); Council of Scientific and Industrial Research (CSIR); Chennai; Tamil Nadu; India
| | - Dhanasekaran Mohanapriya
- Environmental Technology Division, Central Leather Research Institute (CLRI); Council of Scientific and Industrial Research (CSIR); Chennai; Tamil Nadu; India
| | - Asit Baran Mandal
- Environmental Technology Division, Central Leather Research Institute (CLRI); Council of Scientific and Industrial Research (CSIR); Chennai; Tamil Nadu; India
| | - Ganesan Sekaran
- Environmental Technology Division, Central Leather Research Institute (CLRI); Council of Scientific and Industrial Research (CSIR); Chennai; Tamil Nadu; India
| |
Collapse
|
31
|
Mazotto AM, Coelho RRR, Cedrola SML, de Lima MF, Couri S, Paraguai de Souza E, Vermelho AB. Keratinase Production by Three Bacillus spp. Using Feather Meal and Whole Feather as Substrate in a Submerged Fermentation. Enzyme Res 2011; 2011:523780. [PMID: 21822479 PMCID: PMC3148598 DOI: 10.4061/2011/523780] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/27/2011] [Indexed: 11/20/2022] Open
Abstract
Three Bacillus species (B. subtilis LFB-FIOCRUZ 1270, B. subtilis LFB-FIOCRUZ 1273, and B. licheniformis LFB-FIOCRUZ 1274), isolated from the poultry industry, were evaluated for keratinase production using feathers or feather meal as the sole carbon and nitrogen sources in a submerged fermentation. The three Bacillus spp. produced extracellular keratinases and peptidases after 7 days. Feather meal was the best substrate for keratinase and peptidase production in B. subtilis 1273, with 412 U/mL and 463 U/ml. The three strains were able to degrade feather meal (62–75%) and feather (40–95%) producing 3.9–4.4 mg/ml of soluble protein in feather meal medium and 1.9–3.3 mg/ml when feather medium was used. The three strains produced serine peptidases with keratinase and gelatinase activity. B. subtilis 1273 was the strain which exhibited the highest enzymatic activity.
Collapse
Affiliation(s)
- Ana Maria Mazotto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPPG), Bloco I, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Pillai P, Mandge S, Archana G. Statistical optimization of production and tannery applications of a keratinolytic serine protease from Bacillus subtilis P13. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.01.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Separation and purification of a keratinase as pesticide against root-knot nematodes. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0680-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Daroit DJ, Corrêa APF, Segalin J, Brandelli A. Characterization of a keratinolytic protease produced by the feather-degrading Amazonian bacteriumBacillussp. P45. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.3109/10242422.2010.532549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Mazotto AM, de Melo ACN, Macrae A, Rosado AS, Peixoto R, Cedrola SML, Couri S, Zingali RB, Villa ALV, Rabinovitch L, Chaves JQ, Vermelho AB. Biodegradation of feather waste by extracellular keratinases and gelatinases from Bacillus spp. World J Microbiol Biotechnol 2010; 27:1355-65. [DOI: 10.1007/s11274-010-0586-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/20/2010] [Indexed: 11/27/2022]
|
36
|
Production of alkaline protease from Elizabethkingia meningoseptica KB042 using chicken feathers. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0101-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Tiwary E, Gupta R. Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: biochemical characterization and application in feather degradation and dehairing of hides. BIORESOURCE TECHNOLOGY 2010; 101:6103-6110. [PMID: 20347294 DOI: 10.1016/j.biortech.2010.02.090] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 05/29/2023]
Abstract
A novel dimeric 58 kDa keratinase is reported from Bacillus licheniformis ER-15. The bacterium produced 244 U/ml keratinase in 48 h which was increased by eight fold (1962 U/ml) after medium optimization by one-variable-at-a-time and response surface methodology. Enzyme was concentrated by ultrafiltration followed by acetone precipitation and purified by gel filtration chromatography. It had subunit of 30 and 28 kDa and pI of 8.4. Enzyme was maximally active at pH 11 and 70 degrees C. It hydrolyzed various complex proteins viz. haemoglobin, feather, hooves, fibrin and meat protein. It was a thiol activated serine protease and 6.25-fold enhancement in activity was observed in presence of 5mM mercaptoethanol. Nearly 1200 U keratinase degraded 1.5 g feather in 12h at pH 8, 50 degrees C in redox free environment. This enzyme also dehaired buffalo hide within 16 h in presence of 3% Ca (OH)(2).
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Microbiology, University of Delhi, South Campus, New Delhi 110021, India
| | | |
Collapse
|
38
|
Fujinami S, Fujisawa M. Industrial applications of alkaliphiles and their enzymes--past, present and future. ENVIRONMENTAL TECHNOLOGY 2010; 31:845-856. [PMID: 20662376 DOI: 10.1080/09593331003762807] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Alkaliphiles are microorganisms that can grow in alkaline environments, i.e. pH >9.0. Their enzymes, especially extracellular enzymes, are able to function in their catalytic activities under high alkaline pH values because of their stability under these conditions. Proteases, protein degrading enzymes, are one of the most produced enzymes in industry. Among proteases, alkaline proteases, which are added to some detergents, are the most produced. Other alkaline enzymes, e.g. alkaline cellulases, alkaline amylases, and alkaline lipases, are also adjuncts to detergents for improving cleaning efficiency. Alkaline enzymes often show activities in a broad pH range, thermostability, and tolerance to oxidants compared to neutral enzymes. Alkaliphilic Bacillus species are the most characterized organisms among alkaliphiles. They produce so many extracellular alkaline-adapted enzymes that they are often good sources for industrial enzymes. As a patent strain, the whole genome sequence of alkaliphilic Bacillus halodurans C-125 has been sequenced for the first time. In addition, an increasing number of whole genomic sequences and structural analyses of proteins in alkaliphiles, development of genetic engineering techniques and physiological analyses will reveal the alkaline adaptation mechanisms of alkaliphilic Bacillus species and the structural basis of their enzymatic functions. This information opens up the possibility of new applications. In this paper we describe, first, the physiologies of environmental adaptations, and then the applications of enzymes and microorganisms themselves in alkaliphilic Bacillus species.
Collapse
Affiliation(s)
- Shun Fujinami
- NITE Bioresource Information Center, Department of Biotechnology, National Institute of Technology and Evaluation, 2-10-49 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan
| | | |
Collapse
|
39
|
Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 2009; 85:1735-50. [DOI: 10.1007/s00253-009-2398-5] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 11/25/2022]
|
40
|
Medium optimization for the feather-degradation by Streptomyces fradiae Var S-221 using the response surface methodology. Biodegradation 2009; 21:117-22. [PMID: 19629721 DOI: 10.1007/s10532-009-9286-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
In order to accelerate biodegradation of feather into more amino acids, the fermentation medium of feather-biodegrading Streptomyces fradiae Var S-221 was optimized in this paper. In the first optimization step, the effects of feather powder, beet molasses, (NH(4))(2)SO(4) and KH(2)PO(4) on amino acids formation were evaluated by using full factorial design. The results showed that feather powder and (NH(4))(2)SO(4) had significant and positive effects on feather-biodegradation into amino acids. Then, the method of the steepest ascent was used to access the optimal region of the two significant factors. In the third step, the concentration of feather powder and (NH(4))(2)SO(4) were further optimized with central composite design and response surface analysis. As a result, the composition of the optimal medium for S. fradiae Var S-221 fermentation were as follows (g/100 ml): feather powder, 19.504; beet molasses, 4.0; (NH(4))(2)SO(4), 1.467; KH(2)PO(4), 0.3; MgSO(4), 0.15; FeSO(4), 0.001; ZnSO(4), 0.0001; and MnSO(4), 0.0001. Using this optimal fermentation medium, the amino acids concentration was increased from 4.61 to 6.13 g/100 ml.
Collapse
|
41
|
Adigüzel AC, Bitlisli BO, Yaşa I, Eriksen NT. Sequential secretion of collagenolytic, elastolytic, and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. J Appl Microbiol 2009; 107:226-34. [PMID: 19302303 DOI: 10.1111/j.1365-2672.2009.04200.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To characterize the secretion of proteolytic activities against keratin, collagen and elastin in liquid cultures of Bacillus cereus IZ-06b and IZ-06r isolated from wool. METHODS AND RESULTS Growth of B. cereus IZ-06b and IZ-06r were characterized in batch culture. Both strains needed an organic nitrogen source, were able to grow on wool or peptone as sole carbon and nitrogen sources, and metabolized glucose, maltose and other simple sugars. Proteolytic activities were investigated in batch cultures grown in peptide-restricted, carbon-sufficient medium. Secretion of proteases was induced by peptide limitation while different proteolytic activities appeared sequentially in the growth medium. When the most available components of the peptone were depleted, collagenolytic and elastolytic proteases were produced. These were later replaced by the production of keratinolytic protease. CONCLUSIONS B. cereus can adjust its proteolytic affinity profile in response to the supply of organic nitrogen and sequentially secrete proteases with activities targeted against increasingly inaccessible proteinous substrates as the nutritional availability in the environment deteriorates. SIGNIFICANCE AND IMPACT OF THE STUDY Peptide-limited, carbon-sufficient growth media containing no proteinous substrates are well suited for protease production in B. cereus while growth conditions can be adjusted to optimize the proteolytic affinity profiles.
Collapse
Affiliation(s)
- A C Adigüzel
- Department of Leather Engineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | | | | | | |
Collapse
|
42
|
Zhang B, Jiang D, Zhou W, Hao H, Niu T. Isolation and characterization of a new Bacillus sp. 50-3 with highly alkaline keratinase activity from Calotes versicolor faeces. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9926-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Radha S, Gunasekaran P. Purification and characterization of keratinase from recombinant Pichia and Bacillus strains. Protein Expr Purif 2008; 64:24-31. [PMID: 18996485 DOI: 10.1016/j.pep.2008.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 11/18/2022]
Abstract
The keratinase gene from Bacillus licheniformis MKU3 was cloned and successfully expressed in Bacillus megaterium MS941 as well as in Pichia pastoris X33. Compared with parent strain, the recombinant B. megaterium produced 3-fold increased level of keratinase while the recombinant P. pastoris strain had produced 2.9-fold increased level of keratinase. The keratinases from recombinant P. pastoris (pPZK3) and B. megaterium MS941 (pWAK3) were purified to 67.7- and 85.1-folds, respectively, through affinity chromatography. The purified keratinases had the specific activity of 365.7 and 1277.7 U/mg, respectively. Recombinant keratinase from B. megaterium was a monomeric protein with an apparent molecular mass of 30 kDa which was appropriately glycosylated in P. pastoris to have a molecular mass of 39 kDa. The keratinases from both recombinant strains had similar properties such as temperature and pH optimum for activity, and sensitivity to various metal ions, additives and inhibitors. There was considerable enzyme stability due to its glycosylation in yeast system. At pH 11 the glycosylated keratinase retained 95% of activity and 75% of its activity at 80 degrees C. The purified keratinase hydrolyzed a broad range of substrates and displayed effective degradation of keratin substrates. The K(m) and V(max) of the keratinase for the substrate N-succinyl-Ala-Ala-Pro-Phe-pNA was found to be 0.201 mM and 61.09 U/s, respectively. Stability in the presence of detergents, surfactants, metal ions and solvents make this keratinase suitable for industrial processes.
Collapse
Affiliation(s)
- Selvaraj Radha
- Department of Genetics, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
| | | |
Collapse
|
44
|
Kim JD. Purification and Characterization of a Keratinase from a Feather-Degrading Fungus, Aspergillus flavus Strain K-03. MYCOBIOLOGY 2007; 35:219-225. [PMID: 24015101 PMCID: PMC3763176 DOI: 10.4489/myco.2007.35.4.219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Indexed: 05/31/2023]
Abstract
A keratinolytic enzyme secreted by Aspergillus flavus K-03 cultured in feather meal basal medium (FMBM) containing 2% (w/v) chicken feather was purified and characterized. Keratinolytic enzyme secretion was the maximal at day 16 of the incubation period at pH 8 and 28℃. No relationship was detected between enzyme yield and increase of fungal biomass. The fraction obtained at 80% ammonium sulfate saturation showed 2.39-fold purification and was further purified by gel filtration in Sephadex G-100 followed by ion exchange chromatography on DEAE-Sephadex A-50, yielding an active protein peak showing 11.53-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymograms indicated that the purified keratinase is a monomeric enzyme with 31 kDa molecular weight. The extracellular keratinase of A. flavus was active in a board range of pH (7~10) and temperature (30℃~70℃) profiles with the optimal for keratinase activity at pH 8 and 45℃. The keratinase activity was totally inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF), iodoacetic acid, and ethylenediaminetetraacetate (EDTA) while no reduction of activity by the addition of dithiothreitol (DTT) was observed. N-terminal amino acid sequences were up to 80% homologous with the fungal subtilisins produced by Fusarium culmorum. Therefore, on the basis of these characteristics, the keratinase of A. flavus K-03 is determined to be subtilisins-like.
Collapse
Affiliation(s)
- Jeong-Dong Kim
- Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| |
Collapse
|
45
|
Kumar AG, Swarnalatha S, Gayathri S, Nagesh N, Sekaran G. Characterization of an alkaline active-thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. J Appl Microbiol 2007; 104:411-9. [PMID: 17922821 DOI: 10.1111/j.1365-2672.2007.03564.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS The aim of the study was to optimize microbial degradation of keratinous waste and to characterize the alkaline active keratinase showing its biotechnological importance. METHOD AND RESULTS An extracellular keratinase enzyme was purified from the culture medium of a bacterial isolate and the conditions were optimized. The molecular weight of DEAE-Sepharose-purified keratinase was determined by SDS-PAGE. Instrumental analyses were investigated to study the mechanism of bovine hair hydrolysis. Isolate was identified as Bacillus pumilus based on phenotypic characteristics and 16S rDNA sequence. The optimized condition for its growth was pH 8 and 35 degrees C. The molecular weight of the keratinase was estimated as 65 kDa. Activity inhibition by phenyl methyl sulphonyl fluoride confirmed keratinase as serine protease type. Instrumental analysis revealed the sulphitolysis and proteolysis involved mechanism in bovine hair hydrolysis. CONCLUSION This study indicates that the isolated keratinase is an alkaline active serine protease with a high degree of activity towards bovine hair. SIGNIFICANCE AND IMPACT OF THE STUDY This study examines a serine protease with high keratinolytic activity and degradation mechanism for bovine hair. The keratinolytic activity of the isolated strain and its reaction mechanism on bovine hair could show biotechnological potential in the leather industry.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Department of Environmental Technology, Central Leather Research Institute, Chennai, India
| | | | | | | | | |
Collapse
|
46
|
Bacterial Keratinases: Useful Enzymes for Bioprocessing Agroindustrial Wastes and Beyond. FOOD BIOPROCESS TECH 2007. [DOI: 10.1007/s11947-007-0025-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Ferrer M, Golyshina O, Beloqui A, Golyshin PN. Mining enzymes from extreme environments. Curr Opin Microbiol 2007; 10:207-14. [PMID: 17548239 DOI: 10.1016/j.mib.2007.05.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/09/2007] [Accepted: 05/17/2007] [Indexed: 11/21/2022]
Abstract
Current advances in metagenomics have revolutionized the research in fields of microbial ecology and biotechnology, enabling not only a glimpse into the uncultured microbial population and mechanistic understanding of possible biogeochemical cycles and lifestyles of extreme organisms but also the high-throughput discovery of new enzymes for industrial bioconversions. Nowadays, the genetic and enzymatic differences across the gradients from 'neutral and pristine' to 'extreme and polluted' environments are well documented. Yet, extremophilic organisms are possibly the least well understood because our ability to study and understand their metabolic potential has been hampered by our inability to isolate pure cultures. There are at least two obstacles for reaping the fruit of the microbial diversity of extremophiles: first, in spite of the recent progress in development of new culturing techniques most extremophiles cannot be cultured using traditional culturing technologies; and second, the problem of the very low biomass densities often occurs under the conditions hostile for life, which often do not yield enough DNA and reduces the effectiveness of cloning.
Collapse
Affiliation(s)
- Manuel Ferrer
- Division of Applied Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
48
|
Shahnoor H M, . AKA, . SAS, . GM, . MMH. Production and Partial Characterization of Feather-degrading Keratinolytic Serine Protease from Bacillus licheniformis MZK-3. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jbs.2007.599.606] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|