1
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Weber AAT, Hugall AF, O’Hara TD. Convergent Evolution and Structural Adaptation to the Deep Ocean in the Protein-Folding Chaperonin CCTα. Genome Biol Evol 2020; 12:1929-1942. [PMID: 32780796 PMCID: PMC7643608 DOI: 10.1093/gbe/evaa167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
The deep ocean is the largest biome on Earth and yet it is among the least studied environments of our planet. Life at great depths requires several specific adaptations; however, their molecular mechanisms remain understudied. We examined patterns of positive selection in 416 genes from four brittle star (Ophiuroidea) families displaying replicated events of deep-sea colonization (288 individuals from 216 species). We found consistent signatures of molecular convergence in functions related to protein biogenesis, including protein folding and translation. Five genes were recurrently positively selected, including chaperonin-containing TCP-1 subunit α (CCTα), which is essential for protein folding. Molecular convergence was detected at the functional and gene levels but not at the amino-acid level. Pressure-adapted proteins are expected to display higher stability to counteract the effects of denaturation. We thus examined in silico local protein stability of CCTα across the ophiuroid tree of life (967 individuals from 725 species) in a phylogenetically corrected context and found that deep-sea-adapted proteins display higher stability within and next to the substrate-binding region, which was confirmed by in silico global protein stability analyses. This suggests that CCTα displays not only structural but also functional adaptations to deep-water conditions. The CCT complex is involved in the folding of ∼10% of newly synthesized proteins and has previously been categorized as a "cold-shock" protein in numerous eukaryotes. We thus propose that adaptation mechanisms to cold and deep-sea environments may be linked and highlight that efficient protein biogenesis, including protein folding and translation, is a key metabolic deep-sea adaptation.
Collapse
Affiliation(s)
- Alexandra A -T Weber
- Sciences, Museums Victoria, Melbourne, Victoria, Australia
- Centre de Bretagne, REM/EEP, Ifremer, Laboratoire Environnement Profond, Plouzané, France
- Zoological Institute, University of Basel, Switzerland
| | | | | |
Collapse
|
3
|
Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM. Structural and functional insights into TRiC chaperonin from a psychrophilic yeast, Glaciozyma antarctica. Cell Stress Chaperones 2019; 24:351-368. [PMID: 30649671 PMCID: PMC6439030 DOI: 10.1007/s12192-019-00969-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.
Collapse
Affiliation(s)
- Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Shazilah Kamaruddin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Jalan Bangi, 43000, Kajang, Selangor Darul Ehsan, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Berthelot C, Clarke J, Desvignes T, William Detrich H, Flicek P, Peck LS, Peters M, Postlethwait JH, Clark MS. Adaptation of Proteins to the Cold in Antarctic Fish: A Role for Methionine? Genome Biol Evol 2019; 11:220-231. [PMID: 30496401 PMCID: PMC6336007 DOI: 10.1093/gbe/evy262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
The evolution of antifreeze glycoproteins has enabled notothenioid fish to flourish in the freezing waters of the Southern Ocean. Whereas successful at the biodiversity level to life in the cold, paradoxically at the cellular level these stenothermal animals have problems producing, folding, and degrading proteins at their ambient temperatures of -1.86 °C. In this first multi-species transcriptome comparison of the amino acid composition of notothenioid proteins with temperate teleost proteins, we show that, unlike psychrophilic bacteria, Antarctic fish provide little evidence for the mass alteration of protein amino acid composition to enhance protein folding and reduce protein denaturation in the cold. The exception was the significant overrepresentation of positions where leucine in temperate fish proteins was replaced by methionine in the notothenioid orthologues. We hypothesize that these extra methionines have been preferentially assimilated into the genome to act as redox sensors in the highly oxygenated waters of the Southern Ocean. This redox hypothesis is supported by analyses of notothenioids showing enrichment of genes associated with responses to environmental stress, particularly reactive oxygen species. So overall, although notothenioid fish show cold-associated problems with protein homeostasis, they may have modified only a selected number of biochemical pathways to work efficiently below 0 °C. Even a slight warming of the Southern Ocean might disrupt the critical functions of this handful of key pathways with considerable impacts for the functioning of this ecosystem in the future.
Collapse
Affiliation(s)
- Camille Berthelot
- Laboratoire Dynamique et Organisation des Génomes (Dyogen), Institut de Biologie de l'Ecole Normale Supérieure – UMR 8197, INSERM U1024, Paris Cedex 05, France
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, United Kingdom
| | | | - H William Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Michael Peters
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University
| | | | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| |
Collapse
|
5
|
Beers JM, Jayasundara N. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures? ACTA ACUST UNITED AC 2016; 218:1834-45. [PMID: 26085661 DOI: 10.1242/jeb.116129] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antarctic notothenioids dominate the fish fauna of the Southern Ocean. Evolution for millions of years at cold and stable temperatures has led to the acquisition of numerous biochemical traits that allow these fishes to thrive in sub-zero waters. The gain of antifreeze glycoproteins has afforded notothenioids the ability to avert freezing and survive at temperatures often hovering near the freezing point of seawater. Additionally, possession of cold-adapted proteins and membranes permits them to sustain appropriate metabolic rates at exceptionally low body temperatures. The notothenioid genome is also distinguished by the disappearance of traits in some species, losses that might prove costly in a warmer environment. Perhaps the best-illustrated example is the lack of expression of hemoglobin in white-blooded icefishes from the family Channichthyidae. Loss of key elements of the cellular stress response, notably the heat shock response, has also been observed. Along with their attainment of cold tolerance, notothenioids have developed an extreme stenothermy and many species perish at temperatures only a few degrees above their habitat temperatures. Thus, in light of today's rapidly changing climate, it is critical to evaluate how these extreme stenotherms will respond to rising ocean temperatures. It is conceivable that the remarkable cold specialization of notothenioids may ultimately leave them vulnerable to future thermal increases and threaten their fitness and survival. Within this context, our review provides a current summary of the biochemical losses and gains that are known for notothenioids and examines these cold-adapted traits with a focus on processes underlying thermal tolerance and acclimation capacity.
Collapse
Affiliation(s)
- Jody M Beers
- Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, 450 Research Drive, Durham, NC 27708, USA
| |
Collapse
|
6
|
Cuellar J, Yébenes H, Parker SK, Carranza G, Serna M, Valpuesta JM, Zabala JC, Detrich HW. Assisted protein folding at low temperature: evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins. Biol Open 2014; 3:261-70. [PMID: 24659247 PMCID: PMC3988795 DOI: 10.1242/bio.20147427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic ectotherms of the Southern Ocean face energetic challenges to protein folding assisted by the cytosolic chaperonin CCT. We hypothesize that CCT and its client proteins (CPs) have co-evolved molecular adaptations that facilitate CCT–CP interaction and the ATP-driven folding cycle at low temperature. To test this hypothesis, we compared the functional and structural properties of CCT–CP systems from testis tissues of an Antarctic fish, Gobionotothen gibberifrons (Lönnberg) (habitat/body T = −1.9 to +2°C), and of the cow (body T = 37°C). We examined the temperature dependence of the binding of denatured CPs (β-actin, β-tubulin) by fish and bovine CCTs, both in homologous and heterologous combinations and at temperatures between −4°C and 20°C, in a buffer conducive to binding of the denatured CP to the open conformation of CCT. In homologous combination, the percentage of G. gibberifrons CCT bound to CP declined linearly with increasing temperature, whereas the converse was true for bovine CCT. Binding of CCT to heterologous CPs was low, irrespective of temperature. When reactions were supplemented with ATP, G. gibberifrons CCT catalyzed the folding and release of actin at 2°C. The ATPase activity of apo-CCT from G. gibberifrons at 4°C was ∼2.5-fold greater than that of apo-bovine CCT, whereas equivalent activities were observed at 20°C. Based on these results, we conclude that the catalytic folding cycle of CCT from Antarctic fishes is partially compensated at their habitat temperature, probably by means of enhanced CP-binding affinity and increased flexibility of the CCT subunits.
Collapse
Affiliation(s)
- Jorge Cuellar
- Centro Nacional de Biotechnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Krogenæs AK, Ropstad E, Gutleb AC, Hårdnes N, Berg V, Dahl E, Fowler PA. In utero exposure to environmentally relevant concentrations of PCB 153 and PCB 118 disrupts fetal testis development in sheep. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:628-649. [PMID: 24754397 DOI: 10.1080/15287394.2014.887426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyls (PCB) are environmental pollutants linked to adverse health effects including endocrine disruption and disturbance of reproductive development. This study aimed to determine whether exposure of pregnant sheep to three different mixtures of PCB 153 and PCB 118 affected fetal testis development. Ewes were treated by oral gavage from mating until euthanasia (d 134), producing three groups of fetuses with distinct adipose tissue PCB levels: high PCB 153/low PCB 118 (n = 13), high PCB 118/low PCB 153 (n = 14), and low PCB 153/low PCB 118 (n = 14). Fetal testes and blood samples were collected for investigation of testosterone, testis morphology, and testis proteome. The body weight of the offspring was lower in the high PCB compared to the low PCB group, but there were no significant differences in testis weight between groups when corrected for body weight. PCB exposure did not markedly affect circulating testosterone. There were no significant differences between groups in number of seminiferous tubules, Sertoli cell only tubules, and ratio between relative areas of seminiferous tubules and interstitium. Two-dimensional (2D) gel-based proteomics was used to screen for proteomic alterations in the high exposed groups relative to low PCB 153/low PCB 118 group. Twenty-six significantly altered spots were identified by liquid chromatography (LC)-mass spectroscopy (MS)/MS. Changes in protein regulation affected cellular processes as stress response, protein synthesis, and cytoskeleton regulation. The study demonstrates that in utero exposure to different environmental relevant PCB mixtures exerted subtle effects on developing fetal testis proteome but did not significantly disturb testis morphology and testosterone production.
Collapse
Affiliation(s)
- Anette K Krogenæs
- a Department of Production Animal Sciences , Norwegian School Veterinary Science , Oslo , Norway
| | | | | | | | | | | | | |
Collapse
|
8
|
Tubulin folding: the special case of a beta-tubulin isotype from the Antarctic psychrophilic ciliate Euplotes focardii. Polar Biol 2013. [DOI: 10.1007/s00300-013-1390-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Huth TJ, Place SP. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii. BMC Genomics 2013; 14:805. [PMID: 24252228 PMCID: PMC3840625 DOI: 10.1186/1471-2164-14-805] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/15/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14-25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. RESULTS Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (-1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. CONCLUSIONS Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a pivotal species in polar research spanning several decades. The comparison of these findings to previous studies demonstrates the efficacy of transcriptomics and digital gene expression analysis as tools in future studies of polar organisms and has greatly increased the available genomic resources for the suborder Notothenioidei, particularly in the Trematominae subfamily.
Collapse
Affiliation(s)
- Troy J Huth
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Sean P Place
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Environment and Sustainability Program, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
10
|
Yang G, De Santi C, de Pascale D, Pucciarelli S, Pucciarelli S, Miceli C. Characterization of the first eukaryotic cold-adapted patatin-like phospholipase from the psychrophilic Euplotes focardii: Identification of putative determinants of thermal-adaptation by comparison with the homologous protein from the mesophilic Euplotes crassus. Biochimie 2013; 95:1795-806. [PMID: 23796575 DOI: 10.1016/j.biochi.2013.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
Abstract
The ciliated protozoon Euplotes focardii, originally isolated from the coastal seawaters of Terra Nova Bay in Antarctica, shows a strictly psychrophilic phenotype, including optimal survival and multiplication rates at 4-5 °C. This characteristic makes E. focardii an ideal model species for identifying the molecular bases of cold adaptation in psychrophilic organisms, as well as a suitable source of novel cold-active enzymes for industrial applications. In the current study, we characterized the patatin-like phospholipase from E. focardii (EfPLP), and its enzymatic activity was compared to that of the homologous protein from the mesophilic congeneric species Euplotes crassus (EcPLP). Both EfPLP and EcPLP have consensus motifs conserved in other patatin-like phospholipases. By analyzing both esterase and phospholipase A2 activity, we determined the thermostability and the optimal pH, temperature dependence and substrates of these enzymes. We demonstrated that EfPLP shows the characteristics of a psychrophilic phospholipase. Furthermore, we analyzed the enzymatic activity of three engineered versions of the EfPLP, in which unique residues of EfPLP, Gly80, Ala201 and Val204, were substituted through site-directed mutagenesis with residues found in the E. crassus homolog (Glu, Pro and Ile, respectively). Additionally, three corresponding mutants of EcPLP were also generated and characterized. These analyses showed that the substitution of amino acids with rigid and bulky charged/hydrophobic side chain in the psychrophilic EfPLP confers enzymatic properties similar to those of the mesophilic patatin-like phospholipase, and vice versa. This is the first report on the isolation and characterization of a cold-adapted patatin-like phospholipase from eukaryotes. The results reported in this paper support the idea that enzyme thermal-adaptation is based mainly on some amino acid residues that influence the structural flexibility of polypeptides and that EfPLP is an attractive biocatalyst for industrial processes at low temperatures.
Collapse
Affiliation(s)
- Guang Yang
- School of Biosciences and Biotechnology, University of Camerino, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Luan B, Shan B, Baiz C, Tokmakoff A, Raleigh DP. Cooperative Cold Denaturation: The Case of the C-Terminal Domain of Ribosomal Protein L9. Biochemistry 2013; 52:2402-9. [DOI: 10.1021/bi3016789] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bowu Luan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400,
United States
| | - Bing Shan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400,
United States
| | - Carlos Baiz
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400,
United States
- Graduate
Program in Biochemistry
and Structural Biology and Graduate Program in Biophysics, Stony Brook University, Stony Brook, New York 11794-3400,
United States
| |
Collapse
|
12
|
Enzor LA, Zippay ML, Place SP. High latitude fish in a high CO2 world: Synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:154-61. [PMID: 22884997 DOI: 10.1016/j.cbpa.2012.07.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022]
Abstract
Although the physiological response of teleost fishes to increased temperature has been well documented, there is only a small body of literature that examines the effects of ocean acidification on fish under ecologically relevant scenarios. Furthermore, little data exists which examines the possible synergistic effects of increased sea surface temperatures and pCO(2) levels, although it is well established that both will co-committedly change in the coming centuries. In this study we examined the effects of increased temperature, increased pCO(2), and a combination of these treatments on the resting metabolic rate (RMR) of four species of notothenioid fish, Trematomus bernacchii, T. hansoni, T. newnesi, and Pagothenia borchgrevinki, acclimated to treatment conditions for 7, 14 or 28days. While most species appear capable of rapidly acclimating to increased pCO(2), temperature continues to impact RMRs for up to 28days. One species in particular, T. newnesi, displayed no acclimatory response to any of the treatments regardless of acclimation time and may have a reduced capacity to respond to environmental change. Furthermore, we present evidence that temperature and pCO(2) act synergistically to further elevate the RMR and slow acclimation when compared to temperature or pCO(2) increases alone.
Collapse
Affiliation(s)
- Laura A Enzor
- University of South Carolina, Department of Biological Sciences, Columbia, SC 29208, USA
| | | | | |
Collapse
|
13
|
Fan X, Wang J, Soman KV, Ansari GAS, Khan MF. Aniline-induced nitrosative stress in rat spleen: proteomic identification of nitrated proteins. Toxicol Appl Pharmacol 2011; 255:103-12. [PMID: 21708182 PMCID: PMC3212039 DOI: 10.1016/j.taap.2011.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 01/08/2023]
Abstract
Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity.
Collapse
Affiliation(s)
- Xiuzhen Fan
- Department of Pathology, University of Texas Medical Branch, Galveston. TX 77555
| | - Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston. TX 77555
| | - Kizhake V. Soman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston. TX 77555
| | - G. A. S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston. TX 77555
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston. TX 77555
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston. TX 77555
| |
Collapse
|
14
|
Parry BR, Shain DH. Manipulations of AMP metabolic genes increase growth rate and cold tolerance in Escherichia coli: implications for psychrophilic evolution. Mol Biol Evol 2011; 28:2139-45. [PMID: 21300985 DOI: 10.1093/molbev/msr038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diverse organisms have adapted to thrive at low temperatures (i.e., <20 °C, termed psychrophiles), colonizing the majority of earth's biosphere. In contrast with mesophiles (20-40 °C thermal range), all observed psychrophiles increase intracellular adenosine 5'-triphosphate concentrations as temperatures decline; this phenomenon has been described as an important compensatory mechanism to deal with decreases in thermal energy and molecular motion. We considered purine metabolic pathways in class gammaproteobacteria (n = 115) to investigate metabolic and evolutionary bases of this process. A survey of the KEGG database indicated that psychrophilic purine metabolic pathways tend to be enriched with de novo adenosine 5'-monophosphate (AMP) synthetic enzymes, whereas mesophiles tend to be enriched with AMP degradative enzymes. Function of the observed psychrophilic pathway structure was tested by engineering the mesophilic gammaproteobacterium Escherichia coli to reflect psychrophilic purine metabolism, specifically by expressing adenylosuccinate synthetase (purA) from the psychrophilic gammaproteobacterium, Psychrobacter cryohalolentis, in an AMP nucleosidase (amn)-deficient background. Modified E. coli was capable of growing up to ∼70% faster at low temperatures and became up to ∼10-fold more cold tolerant relative to wild type. These findings highlight potentially important transitional steps in psychrophilic evolution.
Collapse
Affiliation(s)
- Bradley R Parry
- Biology Department, Rutgers The State University of New Jersey, USA
| | | |
Collapse
|
15
|
Marziale F, Pucciarelli S, Ballarini P, Melki R, Uzun A, Ilyin VA, Detrich HW, Miceli C. Different roles of two gamma-tubulin isotypes in the cytoskeleton of the Antarctic ciliate Euplotes focardii: remodelling of interaction surfaces may enhance microtubule nucleation at low temperature. FEBS J 2008; 275:5367-82. [PMID: 18959762 DOI: 10.1111/j.1742-4658.2008.06666.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gamma-tubulin belongs to the tubulin superfamily and plays an essential role in the nucleation of cellular microtubules. In the present study, we report the characterization of gamma-tubulin from the psychrophilic Antarctic ciliate Euplotes focardii. In this organism, gamma-tubulin is encoded by two genes, gamma-T1 and gamma-T2, that produce distinct isotypes. Comparison of the gamma-T1 and gamma-T2 primary sequences to a Euplotesgamma-tubulin consensus, derived from mesophilic (i.e. temperate) congeneric species, revealed the presence of numerous unique amino acid substitutions, particularly in gamma-T2. Structural models of gamma-T1 and gamma-T2, obtained using the 3D structure of human gamma-tubulin as a template, suggest that these substitutions are responsible for conformational and/or polarity differences located: (a) in the regions involved in longitudinal 'plus end' contacts; (b) in the T3 loop that participates in binding GTP; and (c) in the M loop that forms lateral interactions. Relative to gamma-T1, the gamma-T2 gene is amplified by approximately 18-fold in the macronuclear genome and is very strongly transcribed. Using confocal immunofluorescence microscopy, we found that the gamma-tubulins of E. focardii associate throughout the cell cycle with basal bodies of the non-motile dorsal cilia and of all of the cirri of the ventral surface (i.e. adoral membranelles, paraoral membrane, and frontoventral transverse, caudal and marginal cirri). By contrast, only gamma-T2 interacts with the centrosomes of the spindle during micronuclear mitosis. We also established that the gamma-T1 isotype associates only with basal bodies. Our results suggest that gamma-T1 and gamma-T2 perform different functions in the organization of the microtubule cytoskeleton of this protist and are consistent with the hypothesis that gamma-T1 and gamma-T2 have evolved sequence-based structural alterations that facilitate template nucleation of microtubules by the gamma-tubulin ring complex at cold temperatures.
Collapse
Affiliation(s)
- Francesca Marziale
- Dipartimento di Biologia Molecolare, Cellulare e Animale, University of Camerino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yu JH, Seo JY, Kim KH, Kim H. Differentially expressed proteins in cerulein-stimulated pancreatic acinar cells: implication for acute pancreatitis. Int J Biochem Cell Biol 2007; 40:503-16. [PMID: 18024178 DOI: 10.1016/j.biocel.2007.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/17/2007] [Accepted: 09/03/2007] [Indexed: 12/17/2022]
Abstract
The proteins expressed in pancreatic acinar cells during the initiation of acute pancreatitis may determine the severity of the disease. Cerulein pancreatitis is one of the best characterized models for acute pancreatitis. Present study aims to determine the differentially expressed proteins in cerulein-stimulated pancreatic acinar cells as an in vitro model for acute pancreatitis. Rat pancreatic acinar AR42J cells were treated with 10(-8)M cerulein for 12h. The protein patterns separated by two-dimensional electrophoresis using pH gradients of 5-8 were compared between the cells treated without cerulein and those with cerulein. The changed proteins were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. As a result, 10 proteins (Orp150 protein, protein disulfide isomerase related protein, dnaK-type molecular chaperone hsp72-ps1, mitochondrial glutamate dehydrogenase, similar to chaperonin containing TCP-1 beta subunit, RuvB-like protein 1, heterogeneous nuclear ribonucleoprotein H1, aldehyde reductase 1, triosephosphate isomerase 1, peroxiredoxin 2) were up-regulated while four proteins (vasolin-containing protein, 78 kDa glucose-regulated protein precursor, heat shock protein 8, adenosylhomocysteinase) were down-regulated by cerulein in pancreatic acinar AR42J cells. These proteins are related to chaperone, cell defense mechanism against oxidative stress or DNA damage, anti-apoptosis and energy generation. The differentially expressed proteins by ceruein share their functional roles in pancreatic acinar cells, suggesting the possible involvement of oxidative stress, DNA damage, and anti-apoptosis in pathogenesis of acute pancreatitis. Proteins involved in cellular defense mechanism and energy production may protect pancreatic acinar cells during the development of pancreatitis.
Collapse
Affiliation(s)
- Ji Hoon Yu
- Department of Pharmacology, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|