1
|
Sun J, Zhou H, Cheng H, Chen Z, Yang J, Wang Y, Jing C. Depth-Dependent Distribution of Prokaryotes in Sediments of the Manganese Crust on Nazimov Guyots of the Magellan Seamounts. MICROBIAL ECOLOGY 2023; 86:3027-3042. [PMID: 37792089 DOI: 10.1007/s00248-023-02305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Abstract
Deep ocean polymetallic nodules, rich in cobalt, nickel, and titanium which are commonly used in high-technology and biotechnology applications, are being eyed for green energy transition through deep-sea mining operations. Prokaryotic communities underneath polymetallic nodules could participate in deep-sea biogeochemical cycling, however, are not fully described. To address this gap, we collected sediment cores from Nazimov guyots, where polymetallic nodules exist, to explore the diversity and vertical distribution of prokaryotic communities. Our 16S rRNA amplicon sequencing data, quantitative PCR results, and phylogenetic beta diversity indices showed that prokaryotic diversity in the surficial layers (0-8 cm) was > 4-fold higher compared to deeper horizons (8-26 cm), while heterotrophs dominated in all sediment horizons. Proteobacteria was the most abundant taxon (32-82%) across all sediment depths, followed by Thaumarchaeota (4-37%), Firmicutes (2-18%), and Planctomycetes (1-6%). Depth was the key factor controlling prokaryotic distribution, while heavy metals (e.g., iron, copper, nickel, cobalt, zinc) can also influence significantly the downcore distribution of prokaryotic communities. Analyses of phylogenetic diversity showed that deterministic processes governing prokaryotic assembly in surficial layers, contrasting with stochastic influences in deep layers. This was further supported from the detection of a more complex prokaryotic co-occurrence network in the surficial layer which suggested more diverse prokaryotic communities existed in the surface vs. deeper sediments. This study expands current knowledge on the vertical distribution of benthic prokaryotic diversity in deep sea settings underneath polymetallic nodules, and the results reported might set a baseline for future mining decisions.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Jichao Yang
- College of Marine Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, People's Republic of China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China.
| | - Chunlei Jing
- National Deepsea Center, Ministry of Natural Resources, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Liu S, Yu S, Lu X, Yang H, Li Y, Xu X, Lu H, Fang Y. Microbial communities associated with thermogenic gas hydrate-bearing marine sediments in Qiongdongnan Basin, South China Sea. Front Microbiol 2022; 13:1032851. [PMID: 36386663 PMCID: PMC9640435 DOI: 10.3389/fmicb.2022.1032851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Biogenic and thermogenic gas are two major contributors to gas hydrate formation. Methane hydrates from both origins may have critical impacts on the ecological properties of marine sediments. However, research on microbial diversity in thermogenic hydrate-containing sediments is limited. This study examined the prokaryotic diversity and distributions along a sediment core with a vertical distribution of thermogenic gas hydrates with different occurrences obtained from the Qiongdongnan Basin by Illumina sequencing of 16S rRNA genes as well as molecular and geochemical techniques. Here, we show that gas hydrate occurrence has substantial impacts on both microbial diversity and community composition. Compared to the hydrate-free zone, distinct microbiomes with significantly higher abundance and lower diversity were observed within the gas hydrate-containing layers. Gammaproteobacteria and Actinobacterota dominated the bacterial taxa in all collected samples, while archaeal communities shifted sharply along the vertical profile of sediment layers. A notable stratified distribution of anaerobic methanotrophs shaped by both geophysical and geochemical parameters was also determined. In addition, the hydrate-free zone hosted a large number of rare taxa that might perform a fermentative breakdown of proteins in the deep biosphere and probably respond to the hydrate formation.
Collapse
Affiliation(s)
- Siwei Liu
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Shan Yu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
- *Correspondence: Shan Yu,
| | - Xindi Lu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Hailin Yang
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yuanyuan Li
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Xuemin Xu
- School of Earth and Space Sciences, Peking University, Beijing, China
- National Research Center for Geoanalysis, Beijing, China
| | - Hailong Lu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yunxin Fang
- Guangzhou Marine Geological Survey, Guangzhou, China
- Yunxin Fang,
| |
Collapse
|
3
|
Lai D, Hedlund BP, Xie W, Liu J, Phelps TJ, Zhang C, Wang P. Impact of Terrestrial Input on Deep-Sea Benthic Archaeal Community Structure in South China Sea Sediments. Front Microbiol 2020; 11:572017. [PMID: 33224115 PMCID: PMC7674655 DOI: 10.3389/fmicb.2020.572017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Archaea are widespread in marine sediments and play important roles in the cycling of sedimentary organic carbon. However, factors controlling the distribution of archaea in marine sediments are not well understood. Here we investigated benthic archaeal communities over glacial-interglacial cycles in the northern South China Sea and evaluated their responses to sediment organic matter sources and inter-species interactions. Archaea in sediments deposited during the interglacial period Marine Isotope Stage (MIS) 1 (Holocene) were significantly different from those in sediments deposited in MIS 2 and MIS 3 of the Last Glacial Period when terrestrial input to the South China Sea was enhanced based on analysis of the long-chain n-alkane C31. The absolute archaeal 16S rRNA gene abundance in subsurface sediments was highest in MIS 2, coincident with high sedimentation rates and high concentrations of total organic carbon. Soil Crenarchaeotic Group (SCG; Nitrososphaerales) species, the most abundant ammonia-oxidizing archaea in soils, increased dramatically during MIS 2, likely reflecting transport of terrestrial archaea during glacial periods with high sedimentation rates. Co-occurrence network analyses indicated significant association of SCG archaea with benthic deep-sea microbes such as Bathyarchaeota and Thermoprofundales in MIS 2 and MIS 3, suggesting potential interactions among these archaeal groups. Meanwhile, Thermoprofundales abundance was positively correlated with total organic carbon (TOC), along with n-alkane C31 and sedimentation rate, indicating that Thermoprofundales may be particularly important in processing of organic carbon in deep-sea sediments. Collectively, these results demonstrate that the composition of heterotrophic benthic archaea in the South China Sea may be influenced by terrestrial organic input in tune with glacial-interglacial cycles, suggesting a plausible link between global climate change and microbial population dynamics in deep-sea marine sediments.
Collapse
Affiliation(s)
- Dengxun Lai
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China.,School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jingjing Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Tommy J Phelps
- Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Peng Wang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Bacterial diversity of Drass, cold desert in Western Himalaya, and its comparison with Antarctic and Arctic. Arch Microbiol 2015; 197:851-60. [PMID: 26055487 DOI: 10.1007/s00203-015-1121-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
Drass is the coldest inhabited place in India and the second coldest, inhabited place in the world, after Siberia. Using the 16SrDNA amplicon pyrosequencing, bacterial diversity patterns were cataloged across the Drass cold desert. In order to identify the ecotype abundance across cold desert environment, bacterial diversity patterns of Drass were further compared with the bacterial diversity of two other cold deserts, i.e., Antarctic and Arctic. Acidobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Gemmatimonadetes were among the highly abundant taxonomic groups present across all the three cold deserts and were designated as the core phyla. However, Firmicutes, Nitrospirae, Armatimonadetes (former candidate division OP10), Planctomycetes, TM7, Chloroflexi, Deinococcus-Thermus, Tenericutes and candidate phyla WS3 were identified as rare phyla in Drass, Antarctic and Arctic samples. Differential abundance patterns were also computed across all the three samples, i.e., Acidobacteria (32.1 %) were dominant in Drass and Firmicutes (52.9 ± 17.6 %) and Proteobacteria (42 ± 1.3 %) were dominant in Antarctic and Arctic reference samples, respectively. Alpha diversity values Shannon's (H) and Simpson's (1-D) diversity indices were highest for Antarctic samples, whereas richness estimators (ACE and Chao1) were maximum for Drass soil suggesting greater species richness in bacterial communities in Drass than the Antarctic and Arctic samples.
Collapse
|
5
|
Effect of copper exposure on bacterial community structure and function in the sediments of Jiaozhou Bay, China. World J Microbiol Biotechnol 2014; 30:2033-43. [DOI: 10.1007/s11274-014-1628-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/24/2014] [Indexed: 11/26/2022]
|
6
|
Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China. World J Microbiol Biotechnol 2013; 30:1291-300. [PMID: 24214680 DOI: 10.1007/s11274-013-1553-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.
Collapse
|
7
|
Guan X, Liu F, Xie Y, Zhu L, Han B. Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2013; 35:535-549. [PMID: 23420483 DOI: 10.1007/s10653-013-9513-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/10/2013] [Indexed: 06/01/2023]
Abstract
Pollution of groundwater with chlorinated aliphatic hydrocarbons (CAHs) is a serious environmental problem which is threatening human health. Microorganisms are the major participants in degrading these contaminants. Here, groundwater contaminated for a decade with CAHs was investigated. Numerical simulation and field measurements were used to track and forecast the migration and transformation of the pollutants. The diversity, abundance, and possible activity of groundwater microbial communities at CAH-polluted sites were characterized by molecular approaches. The number of microorganisms was between 5.65E+05 and 1.49E+08 16S rRNA gene clone numbers per liter according to quantitative real-time PCR analysis. In 16S rRNA gene clone libraries constructed from samples along the groundwater flow, eight phyla were detected, and Proteobacteria were dominant (72.8 %). The microbial communities varied with the composition and concentration of pollutants. Meanwhile, toluene monooxygenases and methane monooxygenases capable of degradation of PCE and TCE were detected, demonstrating the major mechanism for PCE and TCE degradation and possibility for in situ remediation by addition of oxygen in this study.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- China
- Environmental Monitoring
- Gas Chromatography-Mass Spectrometry
- Groundwater/chemistry
- Groundwater/microbiology
- Hydrocarbons, Chlorinated/analysis
- Hydrocarbons, Chlorinated/metabolism
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sequence Analysis, RNA
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/metabolism
Collapse
Affiliation(s)
- Xiangyu Guan
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences, No.29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Durbin AM, Teske A. Archaea in organic-lean and organic-rich marine subsurface sediments: an environmental gradient reflected in distinct phylogenetic lineages. Front Microbiol 2012; 3:168. [PMID: 22666218 PMCID: PMC3364523 DOI: 10.3389/fmicb.2012.00168] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/16/2012] [Indexed: 02/01/2023] Open
Abstract
Examining the patterns of archaeal diversity in little-explored organic-lean marine subsurface sediments presents an opportunity to study the association of phylogenetic affiliation and habitat preference in uncultured marine Archaea. Here we have compiled and re-analyzed published archaeal 16S rRNA clone library datasets across a spectrum of sediment trophic states characterized by a wide range of terminal electron-accepting processes. Our results show that organic-lean marine sediments in deep marine basins and oligotrophic open ocean locations are inhabited by distinct lineages of archaea that are not found in the more frequently studied, organic-rich continental margin sediments. We hypothesize that different combinations of electron donor and acceptor concentrations along the organic-rich/organic-lean spectrum result in distinct archaeal communities, and propose an integrated classification of habitat characteristics and archaeal community structure.
Collapse
Affiliation(s)
- Alan M Durbin
- Department of Ecology and Evolutionary Biology, University of California Irvine Irvine, CA, USA
| | | |
Collapse
|
9
|
Liao L, Xu XW, Jiang XW, Wang CS, Zhang DS, Ni JY, Wu M. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 2011; 78:565-85. [DOI: 10.1111/j.1574-6941.2011.01186.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/04/2011] [Accepted: 08/14/2011] [Indexed: 11/26/2022] Open
Affiliation(s)
- Li Liao
- College of Life Sciences; Zhejiang University; Hangzhou; China
| | | | - Xia-Wei Jiang
- College of Life Sciences; Zhejiang University; Hangzhou; China
| | | | | | | | - Min Wu
- College of Life Sciences; Zhejiang University; Hangzhou; China
| |
Collapse
|
10
|
Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 2011; 15:673-90. [PMID: 21918795 DOI: 10.1007/s00792-011-0398-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Two 16S rRNA gene clone libraries (KF and KS) were constructed using two soil samples (K7s and K8s) collected near Kafni Glacier, Himalayas. The two libraries yielded a total of 648 clones. Phyla Actinobacteria, Bacteroidetes, Chloroflexi Firmicutes, Proteobacteria, Spirochaetae, Tenericutes and Verrucomicrobia were common to the two libraries. Phyla Acidobacteria, Chlamydiae and Nitrospirae were present only in KF library, whereas Lentisphaerae and TM7 were detected only in KS. In the two libraries, clones belonging to phyla Bacteroidetes and Proteobacteria were the most predominant. Principal component analysis (PCA) revealed that KF and KS were different and arsenic content influenced the differences in the percentage of OTUs. PCA indicated that high water content in the K8s sample results in high total bacterial count. PCA also indicated that bacterial diversity of KF and KS was similar to soils from the Pindari Glacier, Himalayas; Samoylov Island, Siberia; Schrimacher Oasis, Antarctica and Siberian tundra. The eleven bacterial strains isolated from the above two soil samples were phylogenetically related to six different genera. All the isolates were psychro-, halo- and alkalitolerant. Amylase, lipase and urease activities were detected in the majority of the strains. Long chain, saturated, unsaturated and branched fatty acids were predominant in the psychrotolerant bacteria.
Collapse
|
11
|
Durbin AM, Teske A. Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ Microbiol 2011; 13:3219-34. [PMID: 21895908 DOI: 10.1111/j.1462-2920.2011.02544.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alan M Durbin
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
12
|
Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 2011; 15:1-22. [PMID: 21061031 DOI: 10.1007/s00792-010-0333-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
Three 16S rRNA gene clone libraries (P1L, P4L and P8L) were constructed using three soil samples (P1S, P4S and P8S) collected near Pindari glacier, Himalayas. The three libraries yielded a total of 703 clones. Actinobacteria, Firmicutes and Proteobacteria were common to the three libraries. In addition to the above P1L and P8L shared the phyla Acidobacteria, Bacteroidetes, Gemmatimonadetes and Planctomycetes. Phyla Chlamydiae, Chlorobi, Chloroflexi, Dictyoglomi, Fibrobacteres, Nitrospirae, Verrucomicrobia, candidate division SPAM and candidate TM7s TM7a phylum were present only in P1L. Rarefaction analysis indicated that the bacterial diversity in P4S and P8S soil samples was representative of the sample. Principal component analysis (PCA) revealed that P1S and P8S were different from P4S soil sample. PCA also indicated that arsenic content, pH, Cr and altitude influence the observed differences in the percentage of specific OTUs in the three 16S rRNA gene clone libraries. The observed bacterial diversity was similar to that observed for other Himalayan and non-polar cold habitats. A total of 40 strains of bacteria were isolated from the above three soil samples and based on the morphology 20 bacterial strains were selected for further characterization. The 20 bacteria belonged to 12 different genera. All the isolates were psychro-, halo- and alkalitolerant. Amylase and urease activities were detected in majority of the strains but lipase and protease activities were not detected. Long chain, saturated, unsaturated and branched fatty acids were predominant in the psychrotolerant bacteria.
Collapse
|
13
|
Wang P, Li T, Hu A, Wei Y, Guo W, Jiao N, Zhang C. Community structure of archaea from deep-sea sediments of the South China Sea. MICROBIAL ECOLOGY 2010; 60:796-806. [PMID: 20886337 DOI: 10.1007/s00248-010-9746-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 09/04/2010] [Indexed: 05/29/2023]
Abstract
Using the archaeal 16S rRNA gene, we determined the community structures of archaea of subseafloor sediments (∼9-11 m below seafloor) from two geographically distant cores (MD05-2896, south, water depth 1,657 m; MD05-2902, north, water depth 3,697 m) in the South China Sea. Euryarchaeota accounted for 61.4% of total archaeal clone libraries at MD05-2896 and 56.2% at MD05-2902. At both locations, the Euryarchaeota-related sequences were dominated by Marine Benthic Group D, Terrestrial Miscellaneous Eryarchaeotal Group, and South African GoldMine Euryarchaeotal Group; the Crenarchaeota-related sequences were dominated by Marine Benthic Group B, Marine Group I, pSL12, and C3. The community structure showed no significant difference with depth at each location, suggesting the lack of stratification of archaeal populations in the deep-sea marine sediments in the South China Sea. On the other hand, the community structure is significantly different between the two sites, which may be related to geographical difference in the South China Sea.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Pradhan S, Srinivas TNR, Pindi PK, Kishore KH, Begum Z, Singh PK, Singh AK, Pratibha MS, Yasala AK, Reddy GSN, Shivaji S. Bacterial biodiversity from Roopkund Glacier, Himalayan mountain ranges, India. Extremophiles 2010; 14:377-95. [PMID: 20505964 DOI: 10.1007/s00792-010-0318-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
The bacterial diversity of two soil samples collected from the periphery of the Roopkund glacial lake and one soil sample from the surface of the Roopkund Glacier in the Himalayan ranges was determined by constructing three 16S rRNA gene clone libraries. The three clone libraries yielded a total of 798 clones belonging to 25 classes. Actinobacteria was the most predominant class (>10% of the clones) in the three libraries. In the library from the glacial soil, class Betaproteobacteria (24.2%) was the most predominant. The rarefaction analysis indicated coverage of 43.4 and 41.2% in the samples collected from the periphery of the lake thus indicating a limited bacterial diversity covered; at the same time, the coverage of 98.4% in the glacier sample indicated most of the diversity was covered. Further, the bacterial diversity in the Roopkund glacier soil was low, but was comparable with the bacterial diversity of a few other glaciers. The results of principal component analysis based on the 16S rRNA gene clone library data, percentages of OTUs and biogeochemical data revealed that the lake soil samples were different from the glacier soil sample and the biogeochemical properties affected the diversity of microbial communities in the soil samples.
Collapse
Affiliation(s)
- Suman Pradhan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol 2009; 76:757-68. [PMID: 19948847 DOI: 10.1128/aem.02409-09] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.
Collapse
|
16
|
Dang H, Li J, Chen M, Li T, Zeng Z, Yin X. Fine-scale vertical distribution of bacteria in the East Pacific deep-sea sediments determined via 16S rRNA gene T-RFLP and clone library analyses. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9877-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|