1
|
Saracco M, Schaeffer P, Tourte M, Albers SV, Louis Y, Peters J, Demé B, Fontanay S, Oger PM. Bilayer-Forming Lipids Enhance Archaeal Monolayer Membrane Stability. Int J Mol Sci 2025; 26:3045. [PMID: 40243703 PMCID: PMC11988840 DOI: 10.3390/ijms26073045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Archaeal membranes exhibit remarkable stability under extreme environmental conditions, a feature attributed to their unique lipid composition. While it is widely accepted that tetraether lipids confer structural integrity by forming monolayers, the role of bilayer-forming diether lipids in membrane stability remains unclear. Here, we demonstrate that incorporating diethers into archaeal-like lipid assemblies enhances membrane organization and adaptability under thermal stress. Using neutron diffraction, we show that membranes composed of mixed diethers and tetraethers exhibit greater structural order and stability compared to pure lipid systems. Contrary to expectations, monolayer-forming tetraethers alone display increased variability in lamellar spacing under fluctuating temperature and humidity, whereas mixed lipid membranes maintain a consistent architecture. Furthermore, neutron-scattering length density profiles reveal an unexpected density feature at the bilayer midplane, challenging conventional models of archaeal monolayer organization. These findings suggest that molecular diversity of lipid molecules, rather than tetraether dominance, plays a critical role in membrane auto-assembly, stability, and adaptability. Our results provide new insights into archaeal membrane adaptation strategies, with implications for the development of bioinspired, robust synthetic membranes for industrial and biomedical applications.
Collapse
Affiliation(s)
- Margot Saracco
- INSA Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5240, F-69100 Villeurbanne, France; (M.S.); (Y.L.); (S.F.)
| | - Philippe Schaeffer
- Biogéochimie Moléculaire, University of Strasbourg, CNRS UMR 7177, F-67000 Strasbourg, France;
| | - Maxime Tourte
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, D-79104 Freiburg, Germany; (M.T.); (S.-V.A.)
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, D-79104 Freiburg, Germany; (M.T.); (S.-V.A.)
| | - Yoann Louis
- INSA Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5240, F-69100 Villeurbanne, France; (M.S.); (Y.L.); (S.F.)
| | - Judith Peters
- Institut Laue Langevin, F-38042 Grenoble, France; (J.P.); (B.D.)
- Interdisciplinary Laboratory of Physics, Université Grenoble Alpes, CNRS UMR5588, F-38400 Grenoble, France
- Institut Universitaire de France, F-75231 Paris, France
| | - Bruno Demé
- Institut Laue Langevin, F-38042 Grenoble, France; (J.P.); (B.D.)
| | - Stephane Fontanay
- INSA Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5240, F-69100 Villeurbanne, France; (M.S.); (Y.L.); (S.F.)
| | - Philippe M. Oger
- INSA Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5240, F-69100 Villeurbanne, France; (M.S.); (Y.L.); (S.F.)
| |
Collapse
|
2
|
Garcia AA, Chadwick GL, Liu XL, Welander PV. Identification of two archaeal GDGT lipid-modifying proteins reveals diverse microbes capable of GMGT biosynthesis and modification. Proc Natl Acad Sci U S A 2024; 121:e2318761121. [PMID: 38885389 PMCID: PMC11214058 DOI: 10.1073/pnas.2318761121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications-a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail. Heterologous expression of Gms proteins from various archaea in Thermococcus kodakarensis results in the production of GMGTs in two isomeric forms. Further, coexpression of Gms and Gmm produces mono- and dimethylated GMGTs and minor amounts of trimethylated GMGTs with only trace GDGT methylation. Phylogenetic analyses reveal the presence of Gms homologs in diverse archaeal genomes spanning all four archaeal superphyla and in multiple bacterial phyla with the genetic potential to synthesize fatty acid-based MSLs, demonstrating that GMGT production may be more widespread than previously appreciated. We demonstrate GMGT production in three Gms-encoding archaea, identifying an increase in GMGTs in response to elevated temperature in two Archaeoglobus species and the production of GMGTs with up to six rings in Vulcanisaeta distributa. The occurrence of such highly cyclized GMGTs has been limited to environmental samples and their detection in culture demonstrates the utility of combining genetic, bioinformatic, and lipid analyses to identify producers of distinct archaeal membrane lipids.
Collapse
Affiliation(s)
- Andy A. Garcia
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Grayson L. Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Xiao-Lei Liu
- Department of Geology and Geophysics, University of Oklahoma, Norman, OK73019
| | - Paula V. Welander
- Department of Earth System Science, Stanford University, Stanford, CA94305
| |
Collapse
|
3
|
Li Y, Yu T, Feng X, Zhao B, Chen H, Yang H, Chen X, Zhang XH, Anderson HR, Burns NZ, Zeng F, Tao L, Zeng Z. Biosynthesis of GMGT lipids by a radical SAM enzyme associated with anaerobic archaea and oxygen-deficient environments. Nat Commun 2024; 15:5256. [PMID: 38898040 PMCID: PMC11186832 DOI: 10.1038/s41467-024-49650-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Archaea possess characteristic membrane-spanning lipids that are thought to contribute to the adaptation to extreme environments. However, the biosynthesis of these lipids is poorly understood. Here, we identify a radical S-adenosyl-L-methionine (SAM) enzyme that synthesizes glycerol monoalkyl glycerol tetraethers (GMGTs). The enzyme, which we name GMGT synthase (Gms), catalyzes the formation of a C(sp3)-C(sp3) linkage between the two isoprenoid chains of glycerol dialkyl glycerol tetraethers (GDGTs). This conclusion is supported by heterologous expression of gene gms from a GMGT-producing species in a methanogen, as well as demonstration of in vitro activity using purified Gms enzyme. Additionally, we show that genes encoding putative Gms homologs are present in obligate anaerobic archaea and in metagenomes obtained from oxygen-deficient environments, and appear to be absent in metagenomes from oxic settings.
Collapse
Affiliation(s)
- Yanan Li
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ting Yu
- Department of Systems Biology and Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Xi Feng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bo Zhao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huahui Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huan Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, USA
| | - Fuxing Zeng
- Department of Systems Biology and Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Lizhi Tao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Zhirui Zeng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Tourte M, Coffinet S, Wörmer L, Lipp JS, Hinrichs KU, Oger PM. The Exploration of the Thermococcus barophilus Lipidome Reveals the Widest Variety of Phosphoglycolipids in Thermococcales. Front Microbiol 2022; 13:869479. [PMID: 35865931 PMCID: PMC9294538 DOI: 10.3389/fmicb.2022.869479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most distinctive characteristics of archaea is their unique lipids. While the general nature of archaeal lipids has been linked to their tolerance to extreme conditions, little is known about the diversity of lipidic structures archaea are able to synthesize, which hinders the elucidation of the physicochemical properties of their cell membrane. In an effort to widen the known lipid repertoire of the piezophilic and hyperthermophilic model archaeon Thermococcus barophilus, we comprehensively characterized its intact polar lipid (IPL), core lipid (CL), and polar head group compositions using a combination of cutting-edge liquid chromatography and mass spectrometric ionization systems. We tentatively identified 82 different IPLs based on five distinct CLs and 10 polar head group derivatives of phosphatidylhexoses, including compounds reported here for the first time, e.g., di-N-acetylhexosamine phosphatidylhexose-bearing lipids. Despite having extended the knowledge on the lipidome, our results also indicate that the majority of T. barophilus lipids remain inaccessible to current analytical procedures and that improvements in lipid extraction and analysis are still required. This expanded yet incomplete lipidome nonetheless opens new avenues for understanding the physiology, physicochemical properties, and organization of the membrane in this archaeon as well as other archaea.
Collapse
Affiliation(s)
- Maxime Tourte
- Univ. Lyon, Univ. Lyon 1, CNRS, UMR 5240, Villeurbanne, France
- Univ. Lyon, INSA Lyon, CNRS, UMR 5240, Villeurbanne, France
| | - Sarah Coffinet
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Lars Wörmer
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Julius S. Lipp
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | |
Collapse
|
5
|
Baumann LMF, Taubner RS, Oláh K, Rohrweber AC, Schuster B, Birgel D, Rittmann SKMR. Quantitative Analysis of Core Lipid Production in Methanothermobacter marburgensis at Different Scales. Bioengineering (Basel) 2022; 9:169. [PMID: 35447729 PMCID: PMC9027985 DOI: 10.3390/bioengineering9040169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Archaeal lipids have a high biotechnological potential, caused by their high resistance to oxidative stress, extreme pH values and temperatures, as well as their ability to withstand phospholipases. Further, methanogens, a specific group of archaea, are already well-established in the field of biotechnology because of their ability to use carbon dioxide and molecular hydrogen or organic substrates. In this study, we show the potential of the model organism Methanothermobacter marburgensis to act both as a carbon dioxide based biological methane producer and as a potential supplier of archaeal lipids. Different cultivation settings were tested to gain an insight into the optimal conditions to produce specific core lipids. The study shows that up-scaling at a constant particle number (n/n = const.) seems to be a promising approach. Further optimizations regarding the length and number of the incubation periods and the ratio of the interaction area to the total liquid volume are necessary for scaling these settings for industrial purposes.
Collapse
Affiliation(s)
- Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria;
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Kinga Oláh
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
| | - Ann-Cathrin Rohrweber
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria;
- Arkeon GmbH, Technopark 1, 3430 Tulln an der Donau, Austria
| |
Collapse
|
6
|
Tourte M, Schaeffer P, Grossi V, Oger PM. Membrane adaptation in the hyperthermophilic archaeon Pyrococcus furiosus relies upon a novel strategy involving glycerol monoalkyl glycerol tetraether lipids. Environ Microbiol 2022; 24:2029-2046. [PMID: 35106897 DOI: 10.1111/1462-2920.15923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
Microbes preserve membrane functionality under fluctuating environmental conditions by modulating their membrane lipid composition. Although several studies have documented membrane adaptations in Archaea, the influence of most biotic and abiotic factors on archaeal lipid compositions remains underexplored. Here, we studied the influence of temperature, pH, salinity, the presence/absence of elemental sulfur, the carbon source, and the genetic background on the lipid core composition of the hyperthermophilic neutrophilic marine archaeon Pyrococcus furiosus. Every growth parameter tested affected the lipid core composition to some extent, the carbon source and the genetic background having the greatest influence. Surprisingly, P. furiosus appeared to only marginally rely on the two major responses implemented by Archaea, i.e., the regulation of the ratio of diether to tetraether lipids and that of the number of cyclopentane rings in tetraethers. Instead, this species increased the ratio of glycerol monoalkyl glycerol tetraethers (GMGT, aka. H-shaped tetraethers) to glycerol dialkyl glycerol tetrathers (GDGT) in response to decreasing temperature and pH and increasing salinity, thus providing for the first time evidence of adaptive functions for GMGT. Besides P. furiosus, numerous other species synthesize significant proportions of GMGT, which suggests that this unprecedented adaptive strategy might be common in Archaea. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Maxime Tourte
- Univ Lyon, Univ. Lyon 1, CNRS, UMR 5240, F-69622, Villeurbanne, France.,Univ Lyon, INSA Lyon, CNRS, UMR 5240, F-69621, Villeurbanne, France
| | | | - Vincent Grossi
- Univ Lyon, Univ. Lyon 1, CNRS, ENSL, UJM, UMR 5276 LGL-TPE, F-69622, Villeurbanne, France
| | - Philippe M Oger
- Univ Lyon, INSA Lyon, CNRS, UMR 5240, F-69621, Villeurbanne, France
| |
Collapse
|
7
|
Law KP, He W, Tao J, Zhang C. A Novel Approach to Characterize the Lipidome of Marine Archaeon Nitrosopumilus maritimus by Ion Mobility Mass Spectrometry. Front Microbiol 2021; 12:735878. [PMID: 34925256 PMCID: PMC8674956 DOI: 10.3389/fmicb.2021.735878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Archaea are differentiated from the other two domains of life by their biomolecular characteristics. One such characteristic is the unique structure and composition of their lipids. Characterization of the whole set of lipids in a biological system (the lipidome) remains technologically challenging. This is because the lipidome is innately complex, and not all lipid species are extractable, separable, or ionizable by a single analytical method. Furthermore, lipids are structurally and chemically diverse. Many lipids are isobaric or isomeric and often indistinguishable by the measurement of mass or even their fragmentation spectra. Here we developed a novel analytical protocol based on liquid chromatography ion mobility mass spectrometry to enhance the coverage of the lipidome and characterize the conformations of archaeal lipids by their collision cross-sections (CCSs). The measurements of ion mobility revealed the gas-phase ion chemistry of representative archaeal lipids and provided further insights into their attributions to the adaptability of archaea to environmental stresses. A comprehensive characterization of the lipidome of mesophilic marine thaumarchaeon, Nitrosopumilus maritimus (strain SCM1) revealed potentially an unreported phosphate- and sulfate-containing lipid candidate by negative ionization analysis. It was the first time that experimentally derived CCS values of archaeal lipids were reported. Discrimination of crenarchaeol and its proposed stereoisomer was, however, not achieved with the resolving power of the SYNAPT G2 ion mobility system, and a high-resolution ion mobility system may be required for future work. Structural and spectral libraries of archaeal lipids were constructed in non-vendor-specific formats and are being made available to the community to promote research of Archaea by lipidomics.
Collapse
Affiliation(s)
- Kai P Law
- Southern University of Science and Technology, SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Tao
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
8
|
Ábrego-Gacía A, Poggi-Varaldo HM, Robles-González V, Ponce-Noyola T, Calva-Calva G, Ríos-Leal E, Estrada-Bárcenas D, Mendoza-Vargas A. Lovastatin as a supplement to mitigate rumen methanogenesis: an overview. J Anim Sci Biotechnol 2021; 12:123. [PMID: 34911584 PMCID: PMC8675506 DOI: 10.1186/s40104-021-00641-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/03/2021] [Indexed: 11/23/2022] Open
Abstract
Methane from enteric fermentation is the gas with the greatest environmental impact emitted by ruminants. Lovastatin (Lv) addition to feedstocks could be a strategy to mitigate rumen methane emissions via decreasing the population of methanogenic archaea (MA). Thus, this paper provides the first overview of the effects of Lv supplementation, focusing on the inhibition of methane production, rumen microbiota, and ruminal fermentation. Results indicated that Lv treatment had a strong anti-methanogenic effect on pure strains of MA. However, there are uncertainties from in vitro rumen fermentation trials with complex substrates and rumen inoculum. Solid-state fermentation (SSF) has emerged as a cost-effective option to produce Lv. In this way, SSF of agricultural residues as an Lv-carrier supplement in sheep and goats demonstrated a consistent decrease in ruminal methane emissions. The experimental evidence for in vitro conditions showed that Lv did not affect the volatile fatty acids (VFA). However, in vivo experiments demonstrated that the production of VFA was decreased. Lv did not negatively affect the digestibility of dry matter during in vitro and in vivo methods, and there is even evidence that it can induce an increase in digestibility. Regarding the rumen microbiota, populations of MA were reduced, and no differences were detected in alpha and beta diversity associated with Lv treatment. However, some changes in the relative abundance of the microbiota were induced. Further studies are recommended on: (i) Lv biodegradation products and stability, as well as its adsorption onto the solid matter in the rumen, to gain more insight on the “available” or effective Lv concentration; and (ii) to determine whether the effect of Lv on ruminal fermentation also depends on the feed composition and different ruminants.
Collapse
Affiliation(s)
- Amaury Ábrego-Gacía
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico.,Environmental Biotechnology and Renewable Energies Group, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Héctor M Poggi-Varaldo
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico. .,Environmental Biotechnology and Renewable Energies Group, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico.
| | - Vania Robles-González
- Instituto de Hidrología, Universidad Tecnológica de la Mixteca, Oaxaca, 69000, Huajuapan de León, Mexico
| | - Teresa Ponce-Noyola
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Graciano Calva-Calva
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Elvira Ríos-Leal
- Department of Biotechnology and Bioengineering, CINVESTAV-IPN, P.O.Box 17-740, 07000, Mexico City, Mexico
| | - Daniel Estrada-Bárcenas
- National Collection of Microbial and Cellular Cultures, CINVESTAV-IPN, P.O.Box17-740, 07000, Mexico City, Mexico
| | - Alfredo Mendoza-Vargas
- Unidad de Secuenciación e Identificación de Polimorfismos, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| |
Collapse
|
9
|
Tourte M, Kuentz V, Schaeffer P, Grossi V, Cario A, Oger PM. Novel Intact Polar and Core Lipid Compositions in the Pyrococcus Model Species, P. furiosus and P. yayanosii, Reveal the Largest Lipid Diversity Amongst Thermococcales. Biomolecules 2020; 10:biom10060830. [PMID: 32485936 PMCID: PMC7356043 DOI: 10.3390/biom10060830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
Elucidating the lipidome of Archaea is essential to understand their tolerance to extreme environmental conditions. Previous characterizations of the lipid composition of Pyrococcus species, a model genus of hyperthermophilic archaea belonging to the Thermococcales order, led to conflicting results, which hindered the comprehension of their membrane structure and the putative adaptive role of their lipids. In an effort to clarify the lipid composition data of the Pyrococcus genus, we thoroughly investigated the distribution of both the core lipids (CL) and intact polar lipids (IPL) of the model Pyrococcus furiosus and, for the first time, of Pyrococcus yayanosii, the sole obligate piezophilic hyperthermophilic archaeon known to date. We showed a low diversity of IPL in the lipid extract of P. furiosus, which nonetheless allowed the first report of phosphatidyl inositol-based glycerol mono- and trialkyl glycerol tetraethers. With up to 13 different CL structures identified, the acid methanolysis of Pyrococcus furiosus revealed an unprecedented CL diversity and showed strong discrepancies with the IPL compositions reported here and in previous studies. By contrast, P. yayanosii displayed fewer CL structures but a much wider variety of polar heads. Our results showed severe inconsistencies between IPL and CL relative abundances. Such differences highlight the diversity and complexity of the Pyrococcus plasma membrane composition and demonstrate that a large part of its lipids remains uncharacterized. Reassessing the lipid composition of model archaea should lead to a better understanding of the structural diversity of their lipidome and of their physiological and adaptive functions.
Collapse
Affiliation(s)
- Maxime Tourte
- Univ Lyon, Univ Lyon 1, CNRS, UMR 5240, F-69622 Villeurbanne, France;
- Univ Lyon, INSA Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France;
| | - Vanessa Kuentz
- Univ Strasbourg, CNRS, UMR 7177 Strasbourg, France; (V.K.); (P.S.)
| | | | - Vincent Grossi
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622 Villeurbanne, France;
| | - Anais Cario
- Univ Lyon, INSA Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France;
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622 Villeurbanne, France;
| | - Philippe M. Oger
- Univ Lyon, INSA Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France;
- Correspondence: ; Tel.: +33-04-72-43-36-01
| |
Collapse
|
10
|
Tourte M, Schaeffer P, Grossi V, Oger PM. Functionalized Membrane Domains: An Ancestral Feature of Archaea? Front Microbiol 2020; 11:526. [PMID: 32296409 PMCID: PMC7137397 DOI: 10.3389/fmicb.2020.00526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
Bacteria and Eukarya organize their plasma membrane spatially into domains of distinct functions. Due to the uniqueness of their lipids, membrane functionalization in Archaea remains a debated area. A novel membrane ultrastructure predicts that monolayer and bilayer domains would be laterally segregated in the hyperthermophilic archaeon Thermococcus barophilus. With very different physico-chemical parameters of the mono- and bilayer, each domain type would thus allow the docking of different membrane proteins and express different biological functions in the membrane. To estimate the ubiquity of this putative membrane ultrastructure in and out of the order Thermococcales, we re-analyzed the core lipid composition of all the Thermococcales type species and collected all the literature data available for isolated archaea. We show that all species of Thermococcales synthesize a mixture of diether bilayer forming and tetraether monolayer forming lipids, in various ratio from 10 to 80% diether in Pyrococcus horikoshii and Thermococcus gorgonarius, respectively. Since the domain formation prediction rests only on the coexistence of di- and tetraether lipids, we show that all Thermococcales have the ability for domain formation, i.e., differential functionalization of their membrane. Extrapolating this view to the whole Archaea domain, we show that almost all archaea also have the ability to synthesize di- and tetraether lipids, which supports the view that functionalized membrane domains may be shared between all Archaea. Hence domain formation and membrane compartmentalization may have predated the separation of the three domains of life and be essential for the cell cycle.
Collapse
Affiliation(s)
- Maxime Tourte
- Université de Lyon, INSA Lyon, CNRS, MAP UMR 5240, Villeurbanne, France
| | - Philippe Schaeffer
- Université de Strasbourg-CNRS, UMR 7177, Laboratoire de Biogéochimie Moléculaire, Strasbourg, France
| | - Vincent Grossi
- Université de Lyon, ENS Lyon, CNRS, Laboratoire de Géologie de Lyon, UMR 5276, Villeurbanne, France
| | - Phil M. Oger
- Université de Lyon, INSA Lyon, CNRS, MAP UMR 5240, Villeurbanne, France
| |
Collapse
|
11
|
Guan Z, Delago A, Nußbaum P, Meyer BH, Albers SV, Eichler J. Gene deletions leading to a reduction in the number of cyclopentane rings in Sulfolobus acidocaldarius tetraether lipids. FEMS Microbiol Lett 2019; 365:4675213. [PMID: 29211845 DOI: 10.1093/femsle/fnx250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/24/2017] [Indexed: 11/14/2022] Open
Abstract
The cell membrane of (hyper)thermophilic archaea, including the thermoacidophile Sulfolobus acidocaldarius, incorporates dibiphytanylglycerol tetraether lipids. The hydrophobic cores of such tetraether lipids can include up to eight cyclopentane rings. Presently, nothing is known of the biosynthesis of these rings. In this study, a series of S. acidocaldarius mutants deleted of genes currently annotated as encoding proteins involved in sugar/polysaccharide processing were generated and their glycolipids were considered. Whereas the glycerol-dialkyl-glycerol tetraether core of a S. acidocaldarius tetraether glycolipid considered here mostly includes four cyclopentane rings, in cells where the Saci_0421 or Saci_1201 genes had been deleted, species containing zero, two or four cyclopentane rings were observed. At the same time, in cells lacking Saci_0201, Saci_0275, Saci_1101, Saci_1249 or Saci_1706, lipids containing mostly four cyclopentane rings were detected. Although Saci_0421 and Saci_1201 are not found in proximity to other genes putatively involved in lipid biosynthesis, homologs of these sequences exist in other Archaea containing cyclopentane-containing tetraether lipids. Thus, Saci_0421 and Saci_1201 represent the first proteins described that somehow contribute to the appearance of cyclopentane rings in the core moiety of the S. acidocaldarius glycolipid considered here.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Antonia Delago
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | - Phillip Nußbaum
- Molecular Biology of Archaea, Institute for Biology II-Microbiology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Benjamin H Meyer
- Molecular Biology of Archaea, Institute for Biology II-Microbiology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute for Biology II-Microbiology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| |
Collapse
|
12
|
Sollich M, Yoshinaga MY, Häusler S, Price RE, Hinrichs KU, Bühring SI. Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments. Front Microbiol 2017; 8:1550. [PMID: 28878741 PMCID: PMC5572230 DOI: 10.3389/fmicb.2017.01550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Temperature exerts a first-order control on microbial populations, which constantly adjust the fluidity and permeability of their cell membrane lipids to minimize loss of energy by ion diffusion across the membrane. Analytical advances in liquid chromatography coupled to mass spectrometry have allowed the detection of a stunning diversity of bacterial and archaeal lipids in extreme environments such as hot springs, hydrothermal vents and deep subsurface marine sediments. Here, we investigated a thermal gradient from 18 to 101°C across a marine sediment field and tested the hypothesis that cell membrane lipids provide a major biochemical basis for the bioenergetics of archaea and bacteria under heat stress. This paper features a detailed lipidomics approach with the focus on membrane lipid structure-function. Membrane lipids analyzed here include polar lipids of bacteria and polar and core lipids of archaea. Reflecting the low permeability of their ether-linked isoprenoids, we found that archaeal polar lipids generally dominate over bacterial lipids in deep layers of the sediments influenced by hydrothermal fluids. A close examination of archaeal and bacterial lipids revealed a membrane quandary: not only low permeability, but also increased fluidity of membranes are required as a unified property of microbial membranes for energy conservation under heat stress. For instance, bacterial fatty acids were composed of longer chain lengths in concert with higher degree of unsaturation while archaea modified their tetraethers by incorporation of additional methyl groups at elevated sediment temperatures. It is possible that these configurations toward a more fluidized membrane at elevated temperatures are counterbalanced by the high abundance of archaeal glycolipids and bacterial sphingolipids, which could reduce membrane permeability through strong intermolecular hydrogen bonding. Our results provide a new angle for interpreting membrane lipid structure-function enabling archaea and bacteria to survive and grow in hydrothermal systems.
Collapse
Affiliation(s)
- Miriam Sollich
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Marcos Y Yoshinaga
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Stefan Häusler
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Roy E Price
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony BrookNY, United States
| | - Kai-Uwe Hinrichs
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Solveig I Bühring
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| |
Collapse
|
13
|
Elling FJ, Könneke M, Nicol GW, Stieglmeier M, Bayer B, Spieck E, de la Torre JR, Becker KW, Thomm M, Prosser JI, Herndl GJ, Schleper C, Hinrichs KU. Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol 2017; 19:2681-2700. [PMID: 28419726 DOI: 10.1111/1462-2920.13759] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/28/2022]
Abstract
Thaumarchaeota are globally distributed and abundant microorganisms occurring in diverse habitats and thus represent a major source of archaeal lipids. The scope of lipids as taxonomic markers in microbial ecological studies is limited by the scarcity of comparative data on the membrane lipid composition of cultivated representatives, including the phylum Thaumarchaeota. Here, we comprehensively describe the core and intact polar lipid (IPL) inventory of ten ammonia-oxidising thaumarchaeal cultures representing all four characterized phylogenetic clades. IPLs of these thaumarchaeal strains are generally similar and consist of membrane-spanning, glycerol dibiphytanyl glycerol tetraethers with monoglycosyl, diglycosyl, phosphohexose and hexose-phosphohexose headgroups. However, the relative abundances of these IPLs and their core lipid compositions differ systematically between the phylogenetic subgroups, indicating high potential for chemotaxonomic distinction of thaumarchaeal clades. Comparative lipidomic analyses of 19 euryarchaeal and crenarchaeal strains suggested that the lipid methoxy archaeol is synthesized exclusively by Thaumarchaeota and may thus represent a diagnostic lipid biomarker for this phylum. The unprecedented diversity of the thaumarchaeal lipidome with 118 different lipids suggests that membrane lipid composition and adaptation mechanisms in Thaumarchaeota are more complex than previously thought and include unique lipids with as yet unresolved properties.
Collapse
Affiliation(s)
- Felix J Elling
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Martin Könneke
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany.,Marine Archaea Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Graeme W Nicol
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134, Ecully, France
| | | | - Barbara Bayer
- Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Vienna, 1090, Austria
| | - Eva Spieck
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, 22609, Germany
| | - José R de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Kevin W Becker
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Regensburg, 93053, Germany
| | - James I Prosser
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Gerhard J Herndl
- Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Vienna, 1090, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
| | | | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
14
|
Caforio A, Driessen AJM. Archaeal phospholipids: Structural properties and biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1325-1339. [PMID: 28007654 DOI: 10.1016/j.bbalip.2016.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023]
Abstract
Phospholipids are major components of the cellular membranes present in all living organisms. They typically form a lipid bilayer that embroiders the cell or cellular organelles, constitute a barrier for ions and small solutes and form a matrix that supports the function of membrane proteins. The chemical composition of the membrane phospholipids present in the two prokaryotic domains Archaea and Bacteria are vastly different. Archaeal lipids are composed of highly-methylated isoprenoid chains that are ether-linked to a glycerol-1-phosphate backbone while bacterial phospholipids consist of straight fatty acids bound by ester bonds to the enantiomeric glycerol-3-phosphate backbone. The chemical structure of the archaeal lipids and their compositional diversity ensures the required stability at extreme environmental conditions as many archaea thrive at such conditions including high or low temperature, high salinity and extreme acidic or alkaline pH values. However, not all archaea are extremophiles, and the presence of ether-linked phospholipids is a phylogenetic marker that distinguishes Archaea from other life forms. During the past decade, our understanding of the biosynthesis of archaeal lipids has progressed resulting in the characterization of the main biosynthetic steps of the pathway including the reconstitution of lipid biosynthesis in vitro. Here we describe the chemical and physical properties of archaeal lipids and membranes derived thereof, summarize the existing knowledge about the enzymology of the archaeal lipid biosynthetic pathway and discuss evolutionary theories associated with the "Lipid Divide" that resulted in the differentiation of bacterial and archaeal organisms. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Antonella Caforio
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands; The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands; The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
15
|
Unusual Butane- and Pentanetriol-Based Tetraether Lipids in Methanomassiliicoccus luminyensis, a Representative of the Seventh Order of Methanogens. Appl Environ Microbiol 2016; 82:4505-4516. [PMID: 27208108 DOI: 10.1128/aem.00772-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A new clade of archaea has recently been proposed to constitute the seventh methanogenic order, the Methanomassiliicoccales, which is related to the Thermoplasmatales and the uncultivated archaeal clades deep-sea hydrothermal vent Euryarchaeota group 2 and marine group II Euryarchaeota but only distantly related to other methanogens. In this study, we investigated the membrane lipid composition of Methanomassiliicoccus luminyensis, the sole cultured representative of this seventh order. The lipid inventory of M. luminyensis comprises a unique assemblage of novel lipids as well as lipids otherwise typical for thermophilic, methanogenic, or halophilic archaea. For instance, glycerol sesterpanyl-phytanyl diether core lipids found mainly in halophilic archaea were detected, and so were compounds bearing either heptose or methoxylated glycosidic head groups, neither of which have been reported so far for other archaea. The absence of quinones or methanophenazines is consistent with a biochemistry of methanogenesis different from that of the methanophenazine-containing methylotrophic methanogens. The most distinctive characteristic of the membrane lipid composition of M. luminyensis, however, is the presence of tetraether lipids in which one glycerol backbone is replaced by either butane- or pentanetriol, i.e., lipids recently discovered in marine sediments. Butanetriol dibiphytanyl glycerol tetraether (BDGT) constitutes the most abundant core lipid type (>50% relative abundance) in M. luminyensis We have thus identified a source for these unusual orphan lipids. The complementary analysis of diverse marine sediment samples showed that BDGTs are widespread in anoxic layers, suggesting an environmental significance of Methanomassiliicoccales and/or related BDGT producers beyond gastrointestinal tracts. IMPORTANCE Cellular membranes of members of all three domains of life, Archaea, Bacteria, and Eukarya, are largely formed by lipids in which glycerol serves as backbone for the hydrophobic alkyl chains. Recently, however, archaeal tetraether lipids with either butanetriol or pentanetriol as a backbone were identified in marine sediments and attributed to uncultured sediment-dwelling archaea. Here we show that the butanetriol-based dibiphytanyl tetraethers constitute the major lipids in Methanomassiliicoccus luminyensis, currently the only isolate of the novel seventh order of methanogens. Given the absence of these lipids in a large set of archaeal isolates, these compounds may be diagnostic for the Methanomassiliicoccales and/or closely related archaea.
Collapse
|
16
|
Knappy C, Barillà D, Chong J, Hodgson D, Morgan H, Suleman M, Tan C, Yao P, Keely B. Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1420-1432. [PMID: 26634977 DOI: 10.1002/jms.3709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/20/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Higher homologues of widely reported C(86) isoprenoid diglycerol tetraether lipid cores, containing 0-6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography-tandem mass spectrometry confirms that the additional carbon atoms in the C(87-88) homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl ('H-shaped') tetraethers containing C(40-42) or C(81-82) hydrocarbons, respectively, many representing novel compounds. Gas chromatography-mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C(40) chains are biphytanes and the C(41) chains 13-methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di- and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C(87-89) tetraethers highlight their potential as complementary biomarkers for archaea in natural environments.
Collapse
Affiliation(s)
- Chris Knappy
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Daniela Barillà
- Department of Biology, University of York, York, YO10 5DD, UK
| | - James Chong
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Dominic Hodgson
- British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK
| | - Hugh Morgan
- Thermophile Research Unit, University of Waikato, Hamilton, New Zealand
| | - Muhammad Suleman
- Department of Chemistry, University of York, York, YO10 5DD, UK
- Department of Agricultural Chemistry, Agricultural University, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan
| | - Christine Tan
- Thermophile Research Unit, University of Waikato, Hamilton, New Zealand
| | - Peng Yao
- Department of Chemistry, University of York, York, YO10 5DD, UK
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Brendan Keely
- Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
17
|
Biosignatures in chimney structures and sediment from the Loki’s Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge. Extremophiles 2014; 18:545-60. [DOI: 10.1007/s00792-014-0640-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/02/2014] [Indexed: 11/26/2022]
|
18
|
Gibson RA, van der Meer MTJ, Hopmans EC, Reysenbach AL, Schouten S, Sinninghe Damsté JS. Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields. GEOBIOLOGY 2013; 11:72-85. [PMID: 23231657 DOI: 10.1111/gbi.12017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
The intact polar lipid (IPL) composition of twelve hydrothermal vent deposits from the Rainbow (RHF) and Lucky Strike hydrothermal fields (LSHF) has been investigated in order to assess its utility as a proxy for microbial community composition associated with deep-sea hydrothermal locations. Gene-based culture-independent surveys of the microbial populations of the same vent deposits have shown that microbial populations are different in the two locations and appear to be controlled by the geochemical and geological processes that drive hydrothermal circulation. Large differences in the IPL composition between these two sites are evident. In the ultramafic-hosted RHF, mainly archaeal-IPLs were identified, including those known to be produced by hyperthermophilic Euryarchaeota. More specifically, polyglycosyl derivatives of archaeol and macrocyclic archaeol indicate the presence of hyperthermophilic methanogenic archaea in the vent deposits, which are related to members of the Methanocaldococcaceae or Methanococcaceae. In contrast, bacterial IPLs dominate IPL distributions from LSHF, suggesting that bacteria are more predominant at LSHF than at RHF. Bacterial Diacyl glycerol (DAG) IPLs containing phosphocholine, phosphoethanolamine or phosphoglycerol head groups were identified at both vent fields. In some vent deposits from LSHF ornithine lipids and IPLs containing phosphoaminopentanetetrol head groups were also observed. By comparison with previously characterized bacterial communities at the sites, it is likely the DAG-IPLs observed derive from Epsilon- and Gammaproteobacteria. Variation in the relative amounts of archaeal versus bacterial IPLs appears to indicate differences in the microbial community between vent sites. Overall, IPL distributions appear to be consistent with gene-based surveys.
Collapse
Affiliation(s)
- R A Gibson
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Knappy C, Barillà D, de Blaquiere J, Morgan H, Nunn C, Suleman M, Tan C, Keely B. Structural complexity in isoprenoid glycerol dialkyl glycerol tetraether lipid cores of Sulfolobus and other archaea revealed by liquid chromatography–tandem mass spectrometry. Chem Phys Lipids 2012; 165:648-55. [DOI: 10.1016/j.chemphyslip.2012.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/18/2012] [Accepted: 06/28/2012] [Indexed: 11/29/2022]
|
20
|
Knappy CS, Keely BJ. Novel glycerol dialkanol triols in sediments: transformation products of glycerol dibiphytanyl glycerol tetraether lipids or biosynthetic intermediates? Chem Commun (Camb) 2011; 48:841-3. [PMID: 22117226 DOI: 10.1039/c1cc15841d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A glycerol dialkanol triol, similar in structure to glycerol dibiphytanyl glycerol tetraethers but devoid of the carbon atoms of one of the two glycerol termini, has been identified in Messinian sediments (~6 Ma) and characterised using quadrupole ion trap and Fourier transform-ion cyclotron resonance liquid chromatography-tandem mass spectrometry.
Collapse
|