1
|
Kania K, Drożak A, Borkowski A, Działak P, Majcher K, Sawicka PD, Zienkiewicz M. Mechanisms of temperature acclimatisation in the psychrotolerant green alga Coccomyxa subellipsoidea C-169 (Trebouxiophyceae). PHYSIOLOGIA PLANTARUM 2023; 175:e14034. [PMID: 37882306 DOI: 10.1111/ppl.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
Despite the interest in different temperature acclimatisations of higher plants, few studies have considered the mechanisms that allow psychrotolerant microalgae to live in a cold environment. Although the analysis of the genomes of some algae revealed the presence of specific genes that encode enzymes that can be involved in the response to stress, this area has not been explored deeply. This work aims to clarify the acclimatisation mechanisms that enable the psychrotolerant green alga Coccomyxa subellipsoidea C-169 to grow in a broad temperature spectrum. The contents of various biochemical compounds in cells, the lipid composition of the biological membranes of entire cells, and the thylakoid fraction as well as the electron transport rate and PSII efficiency were investigated. The results demonstrate an acclimatisation mechanism that is specific for C. subellipsoidea and that allows the maintenance of appropriate membrane fluidity, for example, in thylakoid membranes. It is achieved almost exclusively by changes within the unsaturated fatty acid pool, like changes from C18:2 into C18:3 and C16:2 into C16:3 or vice versa. This ensures, for example, an effective transport rate through PSII and in consequence a maximum quantum yield of it in cells growing at different temperatures. Furthermore, reactions characteristic for both psychrotolerant and mesophilic microalgae, involving the accumulation of lipids and soluble sugars in cells at temperatures other than optimal, were observed. These findings add substantially to our understanding of the acclimatisation of psychrotolerant organisms to a wide range of temperatures and prove that this process could be accomplished in a species-specific manner.
Collapse
Affiliation(s)
- Kinga Kania
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Drożak
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Borkowski
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Paweł Działak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Katarzyna Majcher
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paulina D Sawicka
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maksymilian Zienkiewicz
- Department of Molecular Plant Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
DISCOVR strain pipeline screening – Part I: Maximum specific growth rate as a function of temperature and salinity for 38 candidate microalgae for biofuels production. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Dong T, Sha Y, Liu H, Sun L. Altitudinal Variation of Metabolites, Mineral Elements and Antioxidant Activities of Rhodiola crenulata (Hook.f. & Thomson) H.Ohba. Molecules 2021; 26:7383. [PMID: 34885966 PMCID: PMC8658832 DOI: 10.3390/molecules26237383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Rhodiolacrenulata (Hook.f. & Thomson) H.Ohba is an alpine medicinal plant that can survive in extreme high altitude environments. However, its changes to extreme high altitude are not yet clear. In this study, the response of Rhodiola crenulata to differences in altitude gradients was investigated through chemical, ICP-MS and metabolomic methods. A targeted study of Rhodiola crenulata growing at three vertical altitudes revealed that the contents of seven elements Ca, Sr, B, Mn, Ni, Cu, and Cd, the phenolic components, the ascorbic acid, the ascorbic acid/dehydroascorbate ratio, and the antioxidant capacity were positively correlated with altitude, while the opposite was true for total ascorbic acid content. Furthermore, 1165 metabolites were identified: flavonoids (200), gallic acids (30), phenylpropanoids (237), amino acids (100), free fatty acids and glycerides (56), nucleotides (60), as well as other metabolites (482). The differential metabolite and biomarker analyses suggested that, with an increasing altitude: (1) the shikimic acid-phenylalanine-phenylpropanoids-flavonoids pathway was enhanced, with phenylpropanoids upregulating biomarkers much more than flavonoids; phenylpropanes and phenylmethanes upregulated, and phenylethanes downregulated; the upregulation of quercetin was especially significant in flavonoids; upregulation of condensed tannins and downregulation of hydrolyzed tannins; upregulation of shikimic acids and amino acids including phenylalanine. (2) significant upregulation of free fatty acids and downregulation of glycerides; and (3) upregulation of adenosine phosphates. Our findings provide new insights on the responses of Rhodiola crenulata to extreme high altitude adversity.
Collapse
Affiliation(s)
| | | | | | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.D.); (Y.S.); (H.L.)
| |
Collapse
|
4
|
Yadav G, Sekar M, Kim SH, Geo VE, Bhatia SK, Sabir JSM, Chi NTL, Brindhadevi K, Pugazhendhi A. Lipid content, biomass density, fatty acid as selection markers for evaluating the suitability of four fast growing cyanobacterial strains for biodiesel production. BIORESOURCE TECHNOLOGY 2021; 325:124654. [PMID: 33461123 DOI: 10.1016/j.biortech.2020.124654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Considering the glitches in making commercially realistic fuel, this research article has demonstrated the lipid accumulation in four fast growing, filamentous cyanobacterial strains. On day 26, the lipid content estimated was 6.7, 8.2, 10.2, and 9.4% from Phormidium sp. FW01, Phormidium sp. FW02, Oscillatoria sp. FW01, and Oscillatoria sp. FW02, respectively. Of the photosynthetically active radiation (PAR) tested, 2000 lx was found to higher biomass and lipid at about 1.83 g/L and 12.5%, respectively for Oscillatoria sp. FW01. Of <5 °C, 15 °C, 25 °C, 37-40 °C tested, 11.2% lipid was extracted from Oscillatoria sp. FW01 grown at 37-40 °C and pH did not make any changes in biomass and lipid content. The optimized abiotic conditions showed higher polar lipids about 75% in all the tested cyanobacteria and further, Oscillatoria sp. FW01 yielded 57% fatty acid methyl ester, which contains desirable fatty acids C 16:0, C 16:1, C18:1, C18:3 for high quality biodiesel.
Collapse
Affiliation(s)
- Geetanjali Yadav
- Department of Chemical Engineering, École Polytechnique de Montreal, H3C 3A7, Canada
| | - Manigandan Sekar
- Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - V Edwin Geo
- Green Vehicle Technology Research Centre, Department of Automobile Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chennai, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jamal S M Sabir
- Centre of of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Nguyen Thuy Lan Chi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Kathirvel Brindhadevi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
5
|
Peng Z, Liu G, Huang K. Cold Adaptation Mechanisms of a Snow Alga Chlamydomonas nivalis During Temperature Fluctuations. Front Microbiol 2021; 11:611080. [PMID: 33584575 PMCID: PMC7874021 DOI: 10.3389/fmicb.2020.611080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Cold environments, such as glaciers and alpine regions, constitute unique habitats for organisms living on Earth. In these harsh ecosystems, snow algae survive, florish, and even become primary producers for microbial communities. How the snow algae maintain physiological activity during violent ambient temperature changes remains unsolved. To explore the cold adaptation mechanisms of the unicellular snow alga Chlamydomonas nivalis, we compared its physiological responses to a model organism from the same genus, Chlamydomonas reinhardtii. When both cell types were exposed to a shift from 22°C to 4°C, C. nivalis exhibited an apparent advantage in cold tolerance over C. reinhardtii, as C. nivalis had both a higher growth rate and photosynthetic efficiency. To determine the cold tolerance mechanisms of C. nivalis, RNA sequencing was used to compare transcriptomes of both species after 1 h of cold treatment, mimicking temperature fluctuations in the polar region. Differential expression analysis showed that C. nivalis had fewer transcriptomic changes and was more stable during rapid temperature decrease relative to C. reinhardtii, especially for the expression of photosynthesis related genes. Additionally, we found that transcription in C. nivalis was precisely regulated by the cold response network, consisting of at least 12 transcription factors and 3 RNA-binding proteins. Moreover, genes participating in nitrogen metabolism, the pentose phosphate pathway, and polysaccharide biosynthesis were upregulated, indicating that increasing resource assimilation and remodeling of metabolisms were critical for cold adaptation in C. nivalis. Furthermore, we identified horizontally transferred genes differentially expressed in C. nivalis, which are critical for cold adaptation in other psychrophiles. Our results reveal that C. nivalis adapts rapid temperature decrease by efficiently regulating transcription of specific genes to optimize resource assimilation and metabolic pathways, providing critical insights into how snow algae survive and propagate in cold environments.
Collapse
Affiliation(s)
- Zhao Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Ma R, Zhao X, Ho SH, Shi X, Liu L, Xie Y, Chen J, Lu Y. Co-production of lutein and fatty acid in microalga Chlamydomonas sp. JSC4 in response to different temperatures with gene expression profiles. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101821] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Mutaf T, Oz Y, Kose A, Elibol M, Oncel SS. The effect of medium and light wavelength towards Stichococcus bacillaris fatty acid production and composition. BIORESOURCE TECHNOLOGY 2019; 289:121732. [PMID: 31323717 DOI: 10.1016/j.biortech.2019.121732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Introduction of novel species will highlight technical feasibility of microalgae-based biofuels for commercial applications. This paper reports the effect of culture medium and light wavelength on biomass and fatty acid production of S. bacillaris which holds some advantages as short life cycle, easy cultivation, high lipid content, diversity of fatty acids and stability under harsh environmental conditions. The results displayed that, soil extract (SE) greatly enhance growth rate of cultures. Maximum biomass and lipid productivity were achieved in TAP medium as 81 mg/L·day, 19.44 mg/L·day; respectively. Light wavelength didn't significantly change growth kinetics but played a critical role on chlorophyll-a accumulation. C14:0, C16:0 and C18:0 fatty acids were abundant which are suitable for biodiesel conversion. Interestingly, blue and red light increased longer chain fatty acids content. These results indicated that; S. bacillaris holds potential for further development of biodiesel production and feasibility of algal biodiesel for fundamental and applied sciences.
Collapse
Affiliation(s)
- Tugce Mutaf
- Department of Bioengineering, Faculty of Engineering, University of Ege, 35100, Bornova, Izmir, Turkey
| | - Yagmur Oz
- Department of Bioengineering, Faculty of Engineering, University of Ege, 35100, Bornova, Izmir, Turkey
| | - Ayse Kose
- Department of Bioengineering, Faculty of Engineering, University of Ege, 35100, Bornova, Izmir, Turkey
| | - Murat Elibol
- Department of Bioengineering, Faculty of Engineering, University of Ege, 35100, Bornova, Izmir, Turkey
| | - Suphi S Oncel
- Department of Bioengineering, Faculty of Engineering, University of Ege, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
8
|
Lachmann SC, Mettler‐Altmann T, Wacker A, Spijkerman E. Nitrate or ammonium: Influences of nitrogen source on the physiology of a green alga. Ecol Evol 2019; 9:1070-1082. [PMID: 30805141 PMCID: PMC6374670 DOI: 10.1002/ece3.4790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 11/25/2022] Open
Abstract
In freshwaters, algal species are exposed to different inorganic nitrogen (Ni) sources whose incorporation varies in biochemical energy demand. We hypothesized that due to the lesser energy requirement of ammonium ( NH 4 + )-use, in contrast to nitrate ( NO 3 - )-use, more energy remains for other metabolic processes, especially under CO2- and phosphorus (Pi) limiting conditions. Therefore, we tested differences in cell characteristics of the green alga Chlamydomonas acidophila grown on NH 4 + or NO 3 - under covariation of CO2 and Pi-supply in order to determine limitations, in a full-factorial design. As expected, results revealed higher carbon fixation rates for NH 4 + -grown cells compared to growth with NO 3 - under low CO2 conditions. NO 3 - -grown cells accumulated more of the nine analyzed amino acids, especially under Pi-limited conditions, compared to cells provided with NH 4 + . This is probably due to a slower protein synthesis in cells provided with NO 3 - . In contrast to our expectations, compared to NH 4 + -grown cells NO 3 - -grown cells had higher photosynthetic efficiency under Pi-limitation. In conclusion, growth on the Ni-source NH 4 + did not result in a clearly enhanced Ci-assimilation, as it was highly dependent on Pi and CO2 conditions (replete or limited). Results are potentially connected to the fact that C. acidophila is able to use only CO2 as its inorganic carbon (Ci) source.
Collapse
Affiliation(s)
| | - Tabea Mettler‐Altmann
- Cluster of Excellence on Plant Sciences and Institute of Plant BiochemistryHeinrich‐Heine UniversityDüsseldorfGermany
| | - Alexander Wacker
- Heisenberg‐Group: Theoretical Aquatic Ecology and Ecophysiology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Elly Spijkerman
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
9
|
Hodač L, Hallmann C, Spitzer K, Elster J, Faßhauer F, Brinkmann N, Lepka D, Diwan V, Friedl T. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol Ecol 2016; 92:fiw122. [PMID: 27279416 DOI: 10.1093/femsec/fiw122] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 11/13/2022] Open
Abstract
Chlorella and Stichococcus are morphologically simple airborne microalgae, omnipresent in terrestrial and aquatic habitats. The minute cell size and resistance against environmental stress facilitate their long-distance dispersal. However, the actual distribution of Chlorella- and Stichococcus-like species has so far been inferred only from ambiguous morphology-based evidence. Here we contribute a phylogenetic analysis of an expanded SSU and ITS2 rDNA sequence dataset representing Chlorella- and Stichococcus-like species from terrestrial habitats of polar, temperate and tropical regions. We aim to uncover biogeographical patterns at low taxonomic levels. We found that psychrotolerant strains of Chlorella and Stichococcus are closely related with strains originating from the temperate zone. Species closely related to Chlorella vulgaris and Muriella terrestris, and recovered from extreme terrestrial environments of polar regions and hot deserts, are particularly widespread. Stichococcus strains from the temperate zone, with their closest relatives in the tropics, differ from strains with the closest relatives being from the polar regions. Our data suggest that terrestrial Chlorella and Stichococcus might be capable of intercontinental dispersal; however, their actual distributions exhibit biogeographical patterns.
Collapse
Affiliation(s)
- Ladislav Hodač
- Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, 37073 Göttingen, Germany Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, 37073 Göttingen, Germany
| | - Christine Hallmann
- Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, 37073 Göttingen, Germany
| | - Karolin Spitzer
- Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, 37073 Göttingen, Germany
| | - Josef Elster
- Centre for Polar Ecology, University of South Bohemia, 37005 České Budějovice, Czech Republic Institute of Botany, Phycology Centrum, Academy of Sciences of the Czech Republic, 37982 Třeboň, Czech Republic
| | - Fabian Faßhauer
- Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, 37073 Göttingen, Germany
| | - Nicole Brinkmann
- Department of Forest Botany, University of Göttingen, 37077 Göttingen, Germany
| | - Daniela Lepka
- Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, 37073 Göttingen, Germany
| | - Vaibhav Diwan
- Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, 37073 Göttingen, Germany
| | - Thomas Friedl
- Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
10
|
Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis. Extremophiles 2016; 20:437-50. [PMID: 27161450 DOI: 10.1007/s00792-016-0834-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
The Antarctic green alga Chlamydomonas sp. ICE-L was isolated from sea ice. As a psychrophilic microalga, it can tolerate the environmental stress in the sea-ice brine, such as freezing temperature and high salinity. We performed a transcriptome analysis to identify freezing stress responding genes and explore the extreme environmental acclimation-related strategies. Here, we show that many genes in ICE-L transcriptome that encoding PUFA synthesis enzymes, molecular chaperon proteins, and cell membrane transport proteins have high similarity to the gens from Antarctic bacteria. These ICE-L genes are supposed to be acquired through horizontal gene transfer from its symbiotic microbes in the sea-ice brine. The presence of these genes in both sea-ice microalgae and bacteria indicated the biological processes they involved in are possibly contributing to ICE-L success in sea ice. In addition, the biological pathways were compared between ICE-L and its closely related sister species, Chlamydomonas reinhardtii and Volvox carteri. In ICE-L transcripome, many sequences homologous to the plant or bacteria proteins in the post-transcriptional, post-translational modification, and signal-transduction KEGG pathways, are absent in the nonpsychrophilic green algae. These complex structural components might imply enhanced stress adaptation capacity. At last, differential gene expression analysis at the transcriptome level of ICE-L indicated that genes that associated with post-translational modification, lipid metabolism, and nitrogen metabolism are responding to the freezing treatment. In conclusion, the transcriptome of Chlamydomonas sp. ICE-L is very useful for exploring the mutualistic interaction between microalgae and bacteria in sea ice; and discovering the specific genes and metabolism pathways responding to the freezing acclimation in psychrophilic microalgae.
Collapse
|
11
|
Sivakumar G, Jeong K, Lay JO. Bioprocessing of Stichococcus bacillaris strain siva2011. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:62. [PMID: 24731690 PMCID: PMC4022374 DOI: 10.1186/1754-6834-7-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Globally, the development of a cost-effective long-term renewable energy infrastructure is one of the most challenging problems faced by society today. Microalgae are rich in potential biofuel substrates such as lipids, including triacylglycerols (TAGs). Some of these algae also biosynthesize small molecule hydrocarbons. These hydrocarbons can often be used as liquid fuels, often with more versatility and by a more direct approach than some TAGs. However, the appropriate TAGs, accumulated from microalgae biomass, can be used as substrates for different kinds of renewable liquid fuels such as biodiesel and jet fuel. RESULTS This article describes the isolation and identification of a lipid-rich, hydrocarbon-producing alga, Stichococcus bacillaris strain siva2011, together with its bioprocessing, hydrocarbon and fatty acid methyl ester (FAME) profiles. The S. bacillaris strain siva2011 was scaled-up in an 8 L bioreactor with 0.2% CO2. The C16:0, C16:3, C18:1, C18:2 and C18:3 were 112.2, 9.4, 51.3, 74.1 and 69.2 mg/g dry weight (DW), respectively. This new strain produced a significant amount of biomass of 3.79 g/L DW on day 6 in the 8 L bioreactor and also produced three hydrocarbons. CONCLUSIONS A new oil-rich microalga S. bacillaris strain siva2011 was discovered and its biomass has been scaled-up in a newly designed balloon-type bioreactor. The TAGs and hydrocarbons produced by this organism could be used as substrates for jet fuel or biodiesel.
Collapse
Affiliation(s)
- Ganapathy Sivakumar
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, PO Box 639, Jonesboro, AR 72401, USA
| | - Kwangkook Jeong
- College of Engineering, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jackson O Lay
- Arkansas Statewide Mass Spectrometry Facility, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
12
|
Lyon BR, Mock T. Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment. BIOLOGY 2014; 3:56-80. [PMID: 24833335 PMCID: PMC4009763 DOI: 10.3390/biology3010056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 02/02/2023]
Abstract
Polar Regions are unique and highly prolific ecosystems characterized by extreme environmental gradients. Photosynthetic autotrophs, the base of the food web, have had to adapt physiological mechanisms to maintain growth, reproduction and metabolic activity despite environmental conditions that would shut-down cellular processes in most organisms. High latitudes are characterized by temperatures below the freezing point, complete darkness in winter and continuous light and high UV in the summer. Additionally, sea-ice, an ecological niche exploited by microbes during the long winter seasons when the ocean and land freezes over, is characterized by large salinity fluctuations, limited gas exchange, and highly oxic conditions. The last decade has been an exciting period of insights into the molecular mechanisms behind adaptation of microalgae to the cryosphere facilitated by the advancement of new scientific tools, particularly "omics" techniques. We review recent insights derived from genomics, transcriptomics, and proteomics studies. Genes, proteins and pathways identified from these highly adaptable polar microbes have far-reaching biotechnological applications. Furthermore, they may provide insights into life outside this planet, as well as glimpses into the past. High latitude regions also have disproportionately large inputs into global biogeochemical cycles and are the region most sensitive to climate change.
Collapse
Affiliation(s)
- Barbara R Lyon
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
13
|
Dolhi JM, Maxwell DP, Morgan-Kiss RM. The Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis. Extremophiles 2013; 17:711-22. [PMID: 23903324 DOI: 10.1007/s00792-013-0571-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Permanently cold habitats dominate our planet and psychrophilic microorganisms thrive in cold environments. Environmental adaptations unique to psychrophilic microorganisms have been thoroughly described; however, the vast majority of studies to date have focused on cold-adapted bacteria. The combination of low temperatures in the presence of light is one of the most damaging environmental stresses for a photosynthetic organism: in order to survive, photopsychrophiles (i.e. photosynthetic organisms adapted to low temperatures) balance temperature-independent reactions of light energy capture/transduction with downstream temperature-dependent metabolic processes such as carbon fixation. Here, we review research on photopsychrophiles with a focus on an emerging model organism, Chlamydomonas raudensis UWO241 (UWO241). UWO241 is a psychrophilic green algal species and is a member of the photosynthetic microbial eukaryote community that provides the majority of fixed carbon for ice-covered lake ecosystems located in the McMurdo Dry Valleys, Antarctica. The water column exerts a range of environmental stressors on the phytoplankton community that inhabits this aquatic ecosystem, including low temperatures, extreme shade of an unusual spectral range (blue-green), high salinity, nutrient deprivation and extremes in seasonal photoperiod. More than two decades of work on UWO241 have produced one of our most comprehensive views of environmental adaptation in a cold-adapted, photosynthetic microbial eukaryote.
Collapse
Affiliation(s)
- Jenna M Dolhi
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH 45056, USA
| | | | | |
Collapse
|
14
|
Purification and biochemical characterisation of a glucose-6-phosphate dehydrogenase from the psychrophilic green alga Koliella antarctica. Extremophiles 2012; 17:53-62. [DOI: 10.1007/s00792-012-0492-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
15
|
Chen Z, Gong Y, Fang X, Hu H. Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World J Microbiol Biotechnol 2012; 28:3219-25. [PMID: 22851191 DOI: 10.1007/s11274-012-1132-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 07/13/2012] [Indexed: 11/26/2022]
Abstract
Microalgal lipids are promising alternative feedstocks for biodiesel production. Scenedesmus sp. NJ-1, an oil-rich freshwater microalga isolated from Antarctica, was identified to be a suitable candidate to produce biodiesel in this study. This strain could grow at temperatures ranging from 4 to 35 °C. With regular decrease in nitrate concentration in the medium, large quantities of triacylglycerols accumulated under batch culture conditions detected by thin layer chromatography and BODIPY 505/515 fluorescent staining. Scenedesmus sp. NJ-1 achieved the average biomass productivity of 0.105 g l⁻¹ d⁻¹ (dry weight) and nearly the highest lipid content (35 % of dry cell weight) was reached at day 28 in the batch culture. Neutral lipids accounted for 78 % of total lipids, and C18:1 (n-9), C16:0 were the major fatty acids in total lipids, composing 37 and 20 % of total fatty acids of Scenedesmus sp. NJ-1 grown for 36 days, respectively. These results suggested that Scenedesmus sp. NJ-1 was a good source of microalgal oils for biodiesel production.
Collapse
Affiliation(s)
- Zhuo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | | | | | | |
Collapse
|