1
|
Huang X, Song Q, Guo S, Fei Q. Transcription regulation strategies in methylotrophs: progress and challenges. BIORESOUR BIOPROCESS 2022; 9:126. [PMID: 38647763 PMCID: PMC10992012 DOI: 10.1186/s40643-022-00614-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
As a promising industrial microorganism, methylotroph is capable of using methane or methanol as the sole carbon source natively, which has been utilized in the biosynthesis of various bioproducts. However, the relatively low efficiency of carbon conversion has become a limiting factor throughout the development of methanotrophic cell factories due to the unclear genetic background. To better highlight their advantages in methane or methanol-based biomanufacturing, some metabolic engineering strategies, including upstream transcription regulation projects, are being popularized in methylotrophs. In this review, several strategies of transcription regulations applied in methylotrophs are summarized and their applications are discussed and prospected.
Collapse
Affiliation(s)
- Xiaohan Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiaoqiao Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Yang G, Liu GL, Wang SJ, Chi ZM, Chi Z. Pullulan biosynthesis in yeast-like fungal cells is regulated by the transcriptional activator Msn2 and cAMP-PKA signaling pathway. Int J Biol Macromol 2020; 157:591-603. [PMID: 32339573 DOI: 10.1016/j.ijbiomac.2020.04.174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Pullulan is an important polysaccharide. Although its synthetic pathway in Aureobasidium melanogenum has been elucidated, the mechanism underlying its biosynthesis as regulated by signaling pathway and transcriptional regulator is still unknown. In this study, it was found that the expression of the UGP1 gene encoding UDPG-pyrophosphorylase (Ugp1) and other genes which were involved in pullulan biosynthesis was controlled by the transcriptional activator Msn2 in the nuclei of yeast-like fungal cells. The Ugp1 was a rate-limiting enzyme for pullulan biosynthesis. In addition, the activity and subcellular localization of the Msn2 were regulated only by the cAMP-PKA signaling pathway. When the cAMP-PKA activity was low, the Msn2 was localized in the nuclei, the UGP1 gene was highly expressed, and pullulan was actively synthesized. By contrast, when the cAMP-PKA activity was high, the Msn2 was localized in the cytoplasm and the UGP1 gene expression was disabled so that pullulan was stopped, but lipid biosynthesis was actively enhanced. This study was the first to report that pullulan and lipid biosynthesis in yeast-like fungal cells were regulated by the Msn2 and cAMP-PKA signaling pathway. Elucidating the regulation mechanisms was important to understand their functions and enhance pullulan and lipid biosynthesis.
Collapse
Affiliation(s)
- Guang Yang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Shu-Jun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhen-Ming Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| |
Collapse
|
3
|
Inulinase hyperproduction by Kluyveromyces marxianus through codon optimization, selection of the promoter, and high-cell-density fermentation for efficient inulin hydrolysis. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
4
|
Aung T, Jiang H, Chen CC, Liu GL, Hu Z, Chi ZM, Chi Z. Production, Gene Cloning, and Overexpression of a Laccase in the Marine-Derived Yeast Aureobasidium melanogenum Strain 11-1 and Characterization of the Recombinant Laccase. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:76-87. [PMID: 30456695 DOI: 10.1007/s10126-018-9860-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Aureobasidium melanogenum strain 11-1 with a high laccase activity was isolated from a mangrove ecosystem. Under the optimal conditions, the 11-1 strain yielded the highest laccase activity up to 3120.0 ± 170 mU/ml (1.2 U/mg protein) within 5 days. A laccase gene (LAC1) of the yeast strain 11-1 contained two introns and encoded a protein with 570 amino acids and four conserved copper-binding domains typical of the fungal laccase. Expression of the LAC1 gene in the yeast strain 11-1 made a recombinant yeast strain produce the laccase activity of 6005 ± 140 mU/ml. The molecular weight of the recombinant laccase after removing the sugar was about 62.5 kDa. The optimal temperature and pH of the recombinant laccase were 40 °C and 3.2, respectively, and it was stable at a temperature less than 25 °C. The laccase was inhibited in the presence of sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), phenylmethanesulfonyl fluoride (PMSF), and DL-dithiothreitol (DTT). The Km and Vmax values of the laccase for 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was 6.3 × 10-2 mM and 177.4 M/min, respectively. Many synthetic dyes were greatly decolored by the laccase.
Collapse
Affiliation(s)
- Thu Aung
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Yushan Road, No. 5, Qingdao, China
| | - Hong Jiang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Shi, 266003, Shandong Sheng, Qingdao, China
| | - Cheng-Cheng Chen
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Shi, 266003, Shandong Sheng, Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, China
| | - Zhen-Ming Chi
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Yushan Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Shi, 266003, Shandong Sheng, Qingdao, China.
| | - Zhe Chi
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Yushan Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Shi, 266003, Shandong Sheng, Qingdao, China.
| |
Collapse
|
5
|
Zhao SF, Jiang H, Chi Z, Liu GL, Chi ZM, Chen TJ, Yang G, Hu Z. Genome sequencing of Aureobasidium pullulans P25 and overexpression of a glucose oxidase gene for hyper-production of Ca2+-gluconic acid. Antonie Van Leeuwenhoek 2018; 112:669-678. [DOI: 10.1007/s10482-018-1197-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 11/30/2022]
|
6
|
Ma Y, Chi Z, Li YF, Jiang H, Liu GL, Hu Z, Chi ZM. Cloning, deletion, and overexpression of a glucose oxidase gene in Aureobasidium sp. P6 for Ca2+-gluconic acid overproduction. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1393-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Simultaneous production of single cell oil and fumaric acid by a newly isolated yeast Aureobasidium pullulans var. aubasidani DH177. Bioprocess Biosyst Eng 2018; 41:1707-1716. [DOI: 10.1007/s00449-018-1994-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/29/2018] [Indexed: 01/24/2023]
|
8
|
Tang RR, Chi Z, Jiang H, Liu GL, Xue SJ, Hu Z, Chi ZM. Overexpression of a pyruvate carboxylase gene enhances extracellular liamocin and intracellular lipid biosynthesis by Aureobasidium melanogenum M39. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Chen TJ, Chi Z, Jiang H, Liu GL, Hu Z, Chi ZM. Cell wall integrity is required for pullulan biosynthesis and glycogen accumulation in Aureobasidium melanogenum P16. Biochim Biophys Acta Gen Subj 2018; 1862:1516-1526. [PMID: 29550432 DOI: 10.1016/j.bbagen.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pullulan and glycogen have many applications and physiological functions. However, to date, it has been unknown where and how the pullulan is synthesized in the yeast cells and if cell wall structure of the producer can affect pullulan and glycogen biosynthesis. METHODS The genes related to cell wall integrity were cloned, characterized, deleted and complemented. The cell wall integrity, pullulan biosynthesis, glycogen accumulation and gene expression were examined. RESULTS In this study, the GT6 and GT7 genes encoding different α1,2 mannosyltransferases in Aureobasidium melanogenum P16 were cloned and characterized. The proteins deduced from both the GT6 and GT7 genes contained the conserved sequences YNMCHFWSNFEI and YSTCHFWSNFEI of a Ktr mannosyltransferase family. The removal of each gene and both the two genes caused the changes in colony and cell morphology and enhanced glycogen accumulation, leading to a reduced pullulan biosynthesis and the declined expression of many genes related to pullulan biosynthesis. The swollen cells of the disruptants were due to increased accumulation of glycogen, suggesting that uridine diphosphate glucose (UDP-glucose) was channeled to glycogen biosynthesis in the disruptants, rather than pullulan biosynthesis. Complementation of the GT6 and GT7 genes in the corresponding disruptants and growth of the disruptants in the presence of 0.6 M KCl made pullulan biosynthesis, glycogen accumulation, colony and cell morphology be restored. GENERAL SIGNIFICANCE This is the first report that the two α1,2 mannosyltransferases were required for colony and cell morphology, glycogen accumulation and pullulan biosynthesis in the pullulan producing yeast.
Collapse
Affiliation(s)
- Tie-Jun Chen
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| |
Collapse
|
10
|
Jiang H, Liu GL, Chi Z, Hu Z, Chi ZM. Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments. Curr Genet 2017; 64:479-491. [PMID: 29018921 DOI: 10.1007/s00294-017-0762-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/26/2022]
Abstract
Melanin plays an important role in the stress adaptation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. A trehalose-6-phosphate synthase gene (TPS1 gene) was cloned from K5, characterized, and then deleted to determine the role of trehalose in the stress adaptation of the albino mutant K5. No stress response element and heat shock element were found in the promoter of the TPS1 gene. Deletion of the TPS1 gene in the albino mutant rendered a strain DT43 unable to synthesize any trehalose, but DT43 still could grow in glucose, suggesting that its hexokinase was insensitive to inhibition by trehalose-6-phosphate. Overexpression of the TPS1 gene enhanced trehalose biosynthesis in strain ET6. DT43 could not grow at 33 °C, whereas K5, ET6, and XJ5-1 could grow well at this temperature. Compared with K5 and ET6, DT43 was highly sensitive to heat shock treatment, high oxidation, and high desiccation, but all the three strains demonstrated the same sensitivity to UV light and high NaCl concentration. Therefore, trehalose played an important role in the adaptation of K5 to heat shock treatment, high oxidation, and high desiccation.
Collapse
Affiliation(s)
- Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Yushan-Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan-Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan-Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan-Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
11
|
Yin H, Wang Y, He Y, Xing L, Zhang X, Wang S, Qi X, Zheng Z, Lu J, Miao J. Cloning and expression analysis of tps, and cryopreservation research of trehalose from Antarctic strain Pseudozyma sp. 3 Biotech 2017; 7:343. [PMID: 28955640 PMCID: PMC5610133 DOI: 10.1007/s13205-017-0983-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022] Open
Abstract
Trehalose is a non-reducing disaccharide sugar that widely exists in a variety of organisms, such as bacteria and eukaryotes except the vertebrates. It plays an important role in a number of critical metabolic functions especially in response to stressful environmental conditions. However, the biosynthetic pathways of trehalose in cold-adapted yeast and its responses to temperature and salinity changes remain little understood. In this study, the genome of Antarctic-isolated Pseudozyma sp. NJ7 was generated from which we identified the gene coding for trehalose phosphate synthase (TPS1) and trehalose phosphate phosphatase (TPS2), the two enzymes most critical for trehalose production. The whole draft genome length of Pseudozyma sp. NJ7 was 18,021,233 bp, and encoded at least 34 rRNA operons and 72 tRNAs. The open reading frame of tps1 contained 1827 nucleotide encoding 608 amino acids with a molecular weight of 67.64 kDa, and an isoelectric point of 5.54, while tps2 contained 3948 nucleotide encoding 1315 amino acids with a molecular weight of 144.47 kDa and an isoelectric point of 6.36. The TPS1 and TPS2 protein sequences were highly homologous to Moesziomyces antarcticus T-34, but TPS2 had obvious specificity and differently with others which suggest species specificity and different evolutionary history. Expression level of tps1 gene was strongly influenced by temperature and high salinity. In addition, addition of 0.5% trehalose preserved yeast cells in the short term but was not effective for cryopreservation for more than 5 days, but still suggesting that exogenous trehalose could indeed significantly improve the survival of yeast cells under freezing conditions. Our results provided new insights on the molecular basis of cold adaptations of Antarctic Pseudozyma sp., and also generated new information on the roles trehalose play in yeast tolerance to extreme conditions in the extreme Antarctic environments.
Collapse
Affiliation(s)
- Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266061 China
| | - Yibin Wang
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235 China
| | - Yingying He
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
| | - Lei Xing
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266061 China
| | - Xiufang Zhang
- Clinical Laboratory, Qingdao Hiser Medical Center, Qingdao, 266033 China
| | - Shuai Wang
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Marine and Fisheries Monitoring Center of Sanya, Sanya, 572000 China
| | - Xiaoqing Qi
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
| | - Zhou Zheng
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235 China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
| | - Jinlai Miao
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061 China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235 China
| |
Collapse
|
12
|
Cloning and characterization of pyruvate carboxylase gene responsible for calcium malate overproduction in Penicillium viticola 152 and its expression analysis. Gene 2017; 605:81-91. [DOI: 10.1016/j.gene.2016.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/12/2016] [Accepted: 12/29/2016] [Indexed: 11/22/2022]
|
13
|
Wang QQ, Lu Y, Ren ZY, Chi Z, Liu GL, Chi ZM. CreA is directly involved in pullulan biosynthesis and regulation of Aureobasidium melanogenum P16. Curr Genet 2016; 63:471-485. [DOI: 10.1007/s00294-016-0650-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
|
14
|
Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst Eng 2016; 39:1289-96. [PMID: 27100721 DOI: 10.1007/s00449-016-1607-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L(-1), CA concentration formed by the transformant PG86 was 34.02 g L(-1), leading to a CA yield of 0.57 g g(-1) of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L(-1), the yield was 0.89 g g(-1) of glucose, the productivity was 0.42 g L(-1) h(-1) and only 5.93 g L(-1) reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.
Collapse
|
15
|
Fu GY, Lu Y, Chi Z, Liu GL, Zhao SF, Jiang H, Chi ZM. Cloning and Characterization of a Pyruvate Carboxylase Gene from Penicillium rubens and Overexpression of the Genein the Yeast Yarrowia lipolytica for Enhanced Citric Acid Production. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:1-14. [PMID: 26470708 DOI: 10.1007/s10126-015-9665-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
In this study, a pyruvate carboxylase gene (PYC1) from a marine fungus Penicillium rubens I607 was cloned and characterized. ORF of the gene (accession number: KM397349.1) had 3534 bp encoding 1177 amino acids with a molecular weight of 127.531 kDa and a PI of 6.20. The promoter of the gene was located at -1200 bp and contained a TATAA box, several CAAT boxes and a sequence 5'-SYGGRG-3'. The PYC1 deduced from the gene had no signal peptide, was a homotetramer (α4), and had the four functional domains. After expression of the PYC1 gene from the marine fungus in the marine-derived yeast Yarrowia lipolytica SWJ-1b, the transformant PR32 obtained had much higher specific pyruvate carboxylase activity (0.53 U/mg) than Y. lipolytica SWJ-1b (0.07 U/mg), and the PYC1 gene expression (133.8%) and citric acid production (70.2 g/l) by the transformant PR32 were also greatly enhanced compared to those (100 % and 27.3 g/l) by Y. lipolytica SWJ-1b. When glucose concentration in the medium was 60.0 g/l, citric acid (CA) concentration formed by the transformant PR32 was 36.1 g/l, leading to conversion of 62.1% of glucose into CA. During a 10-l fed-batch fermentation, the final concentration of CA was 111.1 ± 1.3 g/l, the yield was 0.93 g/g, the productivity was 0.46 g/l/h, and only 1.72 g/l reducing sugar was left in the fermented medium within 240 h. HPLC analysis showed that most of the fermentation products were CA. However, minor malic acid and other unknown products also existed in the culture.
Collapse
|
16
|
Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Appl Microbiol Biotechnol 2014; 99:1637-45. [DOI: 10.1007/s00253-014-6236-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/31/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
|
17
|
Isolation of cDNA and upstream sequence of a gene encoding trehalose-6-phosphate synthase 1 from Beauveria bassiana and its functional identification in Pichia pastoris. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Tan H, Dong J, Wang G, Xu H, Zhang C, Xiao D. Enhanced freeze tolerance of baker’s yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. ACTA ACUST UNITED AC 2014; 41:1275-85. [DOI: 10.1007/s10295-014-1467-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022]
Abstract
Abstract
Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker’s yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301TPS1 overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301TPS1 were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301TPS1 was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker’s yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker’s yeast.
Collapse
Affiliation(s)
- Haigang Tan
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
- grid.412608.9 0000000095266338 College of Food Science and Engineering Qingdao Agricultural University 266109 Qingdao People’s Republic of China
| | - Jian Dong
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| | - Guanglu Wang
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| | - Haiyan Xu
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| | - Cuiying Zhang
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| | - Dongguang Xiao
- grid.413109.e 0000000097356249 Tianjin Industrial Microbiology Key Laboratory College of Biotechnology, Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China
- grid.419897.a 000000040369313X Key Laboratory of Industrial Fermentation Microbiology Ministry of Education Tianjin People’s Republic of China
| |
Collapse
|