1
|
Varliero G, Lebre PH, Adams B, Chown SL, Convey P, Dennis PG, Fan D, Ferrari B, Frey B, Hogg ID, Hopkins DW, Kong W, Makhalanyane T, Matcher G, Newsham KK, Stevens MI, Weigh KV, Cowan DA. Biogeographic survey of soil bacterial communities across Antarctica. MICROBIOME 2024; 12:9. [PMID: 38212738 PMCID: PMC10785390 DOI: 10.1186/s40168-023-01719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Antarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs. RESULTS Soil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs. CONCLUSIONS Overall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities. Video Abstract.
Collapse
Affiliation(s)
- Gilda Varliero
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Pedro H Lebre
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
| | - Byron Adams
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton, VA, 3800, Australia
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| | - Paul G Dennis
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dandan Fan
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, University of NSW, Sydney, NSW, 2052, Australia
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Ian D Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada
| | - David W Hopkins
- SRUC - Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, Scotland, UK
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Thulani Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Gwynneth Matcher
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Kevin K Newsham
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Mark I Stevens
- Securing Antarctica's Environmental Future, Earth and Biological Sciences, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Katherine V Weigh
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
2
|
Li J, Gu X, Gui Y. Prokaryotic Diversity and Composition of Sediments From Prydz Bay, the Antarctic Peninsula Region, and the Ross Sea, Southern Ocean. Front Microbiol 2020; 11:783. [PMID: 32411115 PMCID: PMC7198716 DOI: 10.3389/fmicb.2020.00783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The V3–V4 hypervariable regions of the 16S ribosomal RNA gene were analyzed to assess prokaryotic diversity and community compositions within 19 surface sediment samples collected from three different regions (depth: 250–3,548 m) of Prydz Bay, the Antarctic Peninsula region, and the Ross Sea. In our results, we characterized 1,079,709 clean tag sequences representing 43,227 operational taxonomic units (OTUs, 97% similarity). The prokaryotic community distribution exhibited obvious geographical differences, and the sequences formed three distinct clusters according to the samples’ origins. In general, the biodiversity of Prydz Bay was higher than those of the Antarctic Peninsula region and the Ross Sea, and there were similar prokaryotic communities in different geographic locations. The most dominant clades in the prokaryotic communities were Proteobacteria, Bacteroidetes, Thaumarchaeota, Oxyphotobacteria, Deinococcus-Thermus, Firmicutes, Acidobacteria, Fusobacteria, and Planctomycetes, but unique prokaryotic community compositions were found in each of the sampling regions. Our results also demonstrated that the prokaryotic diversity and community distribution were mainly influenced by geographical and physicochemical factors, such as Zn, V, Na, K, water depth, and especially geographical distance (longitude variation of sample location) and Ba ion content. Moreover, geochemical factors such as nutrient contents (TC, P, and Ca) also played important roles in prokaryotic diversity and community distribution. This represents the first report that Ba ion content has an obvious effect on prokaryotic diversity and community distribution in Southern Ocean sediments.
Collapse
Affiliation(s)
- Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xiaoqian Gu
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yuanyuan Gui
- College of Environmental Science and Engineering Qingdao University, Qingdao, China
| |
Collapse
|
3
|
González-Rocha G, Muñoz-Cartes G, Canales-Aguirre CB, Lima CA, Domínguez-Yévenes M, Bello-Toledo H, Hernández CE. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective. PLoS One 2017. [PMID: 28632790 PMCID: PMC5478107 DOI: 10.1371/journal.pone.0179390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that Antarctic environments select microorganisms with unique biochemical adaptations, based on the tenet 'Everything is everywhere, but, the environment selects' by Baas-Becking. However, this is a hypothesis that has not been extensively evaluated. This study evaluated the fundamental prediction contained in this hypothesis-in the sense that species are structured in the landscape according to their local habitats-, using as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations in the area, were recovered. Based on phylogenetic analysis of 16S rRNA gene sequences, the isolates were grouped into twenty-six phylotypes distributed in three main clades, of which only six are exclusive to Antarctica. Results showed that phylotypes do not group significantly by habitat type; however, local habitat types had phylogenetic signal, which support the phylogenetic niche conservatism hypothesis and not a selective role of the environment like the Baas-Becking hypothesis suggests. We propose that, more than habitat selection resulting in new local adaptations and diversity, local historical colonization and species sorting (i.e. differences in speciation and extinction rates that arise by interaction of species level traits with the environment) play a fundamental role on the culturable bacterial diversity in Antarctica.
Collapse
Affiliation(s)
- Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gabriel Muñoz-Cartes
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristian B. Canales-Aguirre
- Laboratorio de Ecología Evolutiva y Filoinformática. Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue 6 km, Puerto Montt, Chile
| | - Celia A. Lima
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Mariana Domínguez-Yévenes
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristián E. Hernández
- Laboratorio de Ecología Evolutiva y Filoinformática. Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- * E-mail:
| |
Collapse
|
4
|
Freshwater diatom biogeography and the genus Luticola: an extreme case of endemism in Antarctica. Polar Biol 2017. [DOI: 10.1007/s00300-017-2090-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
|
6
|
Gawor J, Grzesiak J, Sasin-Kurowska J, Borsuk P, Gromadka R, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Zdanowski MK. Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles 2016; 20:403-13. [PMID: 27097637 PMCID: PMC4921121 DOI: 10.1007/s00792-016-0831-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/05/2016] [Indexed: 10/26/2022]
Abstract
Polaromonas is one of the most abundant genera found on glacier surfaces, yet its ecology remains poorly described. Investigations made to date point towards a uniform distribution of Polaromonas phylotypes across the globe. We compared 43 Polaromonas isolates obtained from surfaces of Arctic and Antarctic glaciers to address this issue. 16S rRNA gene sequences, intergenic transcribed spacers (ITS) and metabolic fingerprinting showed great differences between hemispheres but also between neighboring glaciers. Phylogenetic distance between Arctic and Antarctic isolates indicated separate species. The Arctic group clustered similarly, when constructing dendrograms based on 16S rRNA gene and ITS sequences, as well as metabolic traits. The Antarctic strains, although almost identical considering 16S rRNA genes, diverged into 2 groups based on the ITS sequences and metabolic traits, suggesting recent niche separation. Certain phenotypic traits pointed towards cell adaptation to specific conditions on a particular glacier, like varying pH levels. Collected data suggest, that seeding of glacial surfaces with Polaromonas cells transported by various means, is of greater efficiency on local than global scales. Selection mechanisms present of glacial surfaces reduce the deposited Polaromonas diversity, causing subsequent adaptation to prevailing environmental conditions. Furthermore, interactions with other supraglacial microbiota, like algae cells may drive postselectional niche separation and microevolution within the Polaromonas genus.
Collapse
Affiliation(s)
- Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jakub Grzesiak
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna Sasin-Kurowska
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Piotr Borsuk
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Dorota Górniak
- Department of Microbiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Aleksander Świątecki
- Department of Microbiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Tamara Aleksandrzak-Piekarczyk
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marek K Zdanowski
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
7
|
Obbels D, Verleyen E, Mano MJ, Namsaraev Z, Sweetlove M, Tytgat B, Fernandez-Carazo R, De Wever A, D'hondt S, Ertz D, Elster J, Sabbe K, Willems A, Wilmotte A, Vyverman W. Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica. FEMS Microbiol Ecol 2016; 92:fiw041. [PMID: 26936447 DOI: 10.1093/femsec/fiw041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses, endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematoda were present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type. However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science, which underscores the need for additional biodiversity assessments in Antarctic inland locations.
Collapse
Affiliation(s)
- Dagmar Obbels
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Marie-José Mano
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Zorigto Namsaraev
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium Winogradsky Institute of Microbiology RAS, Pr-t 60-letya Oktyabrya, 7/2, Moscow 117312, Russia NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 12 31 82, Russia
| | - Maxime Sweetlove
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Rafael Fernandez-Carazo
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Aaike De Wever
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Sofie D'hondt
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Damien Ertz
- Botanic Garden Meise, Department Bryophytes-Thallophytes, Nieuwelaan 38, B-1860 Meise, Belgium Federation Wallonia-Brussels, General Administration of the Non-Compulsory Education and Scientific Research, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Josef Elster
- Centre for Polar Ecology, Faculty of Sciences, University of South Bohemia, Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 379 82, Třeboň, Czech republic
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Anne Willems
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Annick Wilmotte
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| |
Collapse
|
8
|
Archer SDJ, McDonald IR, Herbold CW, Lee CK, Niederberger TS, Cary C. Temporal, regional and geochemical drivers of microbial community variation in the melt ponds of the Ross Sea region, Antarctica. Polar Biol 2016. [DOI: 10.1007/s00300-015-1780-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Chong CW, Pearce DA, Convey P. Emerging spatial patterns in Antarctic prokaryotes. Front Microbiol 2015; 6:1058. [PMID: 26483777 PMCID: PMC4588704 DOI: 10.3389/fmicb.2015.01058] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate. Based on our synthesis, it is clear that spatial patterns of Antarctic prokaryotes can be unique at local scales, while the limited evidence available to date supports the group exhibiting overall regional biogeographical patterns similar to the eukaryotes. We further consider the applicability of the concept of “functional redundancy” for the Antarctic microbial community and highlight the requirements for proper consideration of their important and distinctive roles in Antarctic terrestrial ecosystems.
Collapse
Affiliation(s)
- Chun-Wie Chong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur Malaysia ; National Antarctic Research Center, University of Malaya, Kuala Lumpur Malaysia
| | - David A Pearce
- National Antarctic Research Center, University of Malaya, Kuala Lumpur Malaysia ; Faculty of Health and Life Sciences, University of Northumbria, Newcastle upon Tyne UK ; University Centre in Svalbard, Longyearbyen Norway ; British Antarctic Survey, Cambridge UK
| | - Peter Convey
- National Antarctic Research Center, University of Malaya, Kuala Lumpur Malaysia ; British Antarctic Survey, Cambridge UK
| |
Collapse
|