1
|
Betancurt-Anzola L, Martínez-Carranza M, Delarue M, Zatopek KM, Gardner AF, Sauguet L. Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases. Nat Commun 2023; 14:8306. [PMID: 38097591 PMCID: PMC10721889 DOI: 10.1038/s41467-023-44125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Replicative DNA polymerases duplicate entire genomes at high fidelity. This feature is shared among the three domains of life and is facilitated by their dual polymerase and exonuclease activities. Family D replicative DNA polymerases (PolD), found exclusively in Archaea, contain an unusual RNA polymerase-like catalytic core, and a unique Mre11-like proofreading active site. Here, we present cryo-EM structures of PolD trapped in a proofreading mode, revealing an unanticipated correction mechanism that extends the repertoire of protein domains known to be involved in DNA proofreading. Based on our experimental structures, mutants of PolD were designed and their contribution to mismatch bypass and exonuclease kinetics was determined. This study sheds light on the convergent evolution of structurally distinct families of DNA polymerases, and the domain acquisition and exchange mechanism that occurred during the evolution of the replisome in the three domains of life.
Collapse
Affiliation(s)
- Leonardo Betancurt-Anzola
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
- New England Biolabs France, 5 Rue Henri Auguste Desbruères, 91000, Évry-Courcouronnes, France
- Sorbonne Université, Collège Doctoral, ED 515, Paris, France
| | - Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Marc Delarue
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Kelly M Zatopek
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| | - Andrew F Gardner
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France.
| |
Collapse
|
2
|
Pan L, Liu Y, Lan H, Bao N, Zhao Y, Sun H, Qin G, Farouk MH. Biological Mechanisms Induced by Soybean Agglutinin Using an Intestinal Cell Model of Monogastric Animals. Front Vet Sci 2021; 8:639792. [PMID: 34150879 PMCID: PMC8207199 DOI: 10.3389/fvets.2021.639792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
Soybean agglutinin (SBA) has a toxic effect on most animals. The anti-nutritional mechanisms of SBA are not fully understood, in terms of cell survival activity and metabolism of intestinal cells. This study aims to investigate the effects of SBA on the cell cycle, apoptosis, and to verify the mechanism of SBA anti-nutritional characters based on proteomic-based analysis. The IPEC-J2 cell line was cultured with medium containing 0.0, 0.5, or 2.0 mg/mL SBA. With increasing SBA levels, the percentage of the cells at G0/G1 phase, cell apoptosis rates, expressions of Bax and p21, and the activities of Casp-3 and Casp-9 were increased, while cyclin D1 and Bcl-2 expressions were declined (p < 0.05). The proteomic analysis showed that the numbers of differentially expressed proteins, induced by SBA, were mainly enriched in different pathways including DNA replication, base excision repair, nucleus excision repair, mismatch repair, amide and peptide biosynthesis, ubiquitin-mediated proteolysis, as well as structures and functions of mitochondria and ribosome. In conclusion, the anti-nutritional mechanism of SBA is a complex cellular process. Such process including DNA related activities; protein synthesis and metabolism; signal-conducting relation; as well as subcellular structure and function. This study provides comprehensive information to understand the toxic mechanism of SBA in monogastrics.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yan Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Chen J, Feng J, Fang Z, Ye J, Chen Q, Chen Q, Chen K, Xiong X, Li G, Song H, Xu B. Anlotinib suppresses MLL-rearranged acute myeloid leukemia cell growth by inhibiting SETD1A/AKT-mediated DNA damage response. Am J Transl Res 2021; 13:1494-1504. [PMID: 33841673 PMCID: PMC8014360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Leukemias driven by chromosomal translocation of the mixed-lineage leukemia (MLL) gene are highly prevalent in hematological malignancy. The poor survival rate and lack of effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The present study aimed to investigate the potential effectiveness and mechanism of Anlotinib, a novel receptor tyrosine kinase inhibitor, in MLL-r acute myeloid leukemia (AML). The findings revealed that Anlotinib significantly inhibited the growth of MLL-r AML cells in both in vivo and a murine xenograft model. RNA sequencing identified that multiple genes involved in DNA damage response were responsible for Anlotinib activity. To further elucidate the correlation between the DNA damage response induced by Anlotinib and MLL fusion, Gene Expression Profiling Interactive Analysis (GEPIA) was conducted. It revealed that Anlotinib impaired DNA damage response via inhibiting SETD1A and AKT. In conclusion, Anlotinib exerts anti-leukemia function by inhibiting SETD1A/AKT-mediated DNA damage response and highlights a novel mechanism underlying Anlotinib in the treatment of MLL-r AML.
Collapse
Affiliation(s)
- Jinzhu Chen
- Department of Hematology, The First Hospital of Longhai 363199Fujian, P. R. China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Juan Feng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Jing Ye
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Qiuling Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Kai Chen
- The First People’s Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University)Foshan 528000, Guangdong, P. R. China
| | - Xiaoming Xiong
- Department of Hematology, The First Hospital of Longhai 363199Fujian, P. R. China
| | - Guowei Li
- Department of Hematology, Huizhou Municipal Central HospitalHuizhou 516001, P. R. China
| | - Haihan Song
- Department of Immunology, DICAT Biomedical Computation CentreVancouver, BC, Canada
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| |
Collapse
|
4
|
Zatopek KM, Alpaslan E, Evans T, Sauguet L, Gardner A. Novel ribonucleotide discrimination in the RNA polymerase-like two-barrel catalytic core of Family D DNA polymerases. Nucleic Acids Res 2020; 48:12204-12218. [PMID: 33137176 PMCID: PMC7708050 DOI: 10.1093/nar/gkaa986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Family D DNA polymerase (PolD) is the essential replicative DNA polymerase for duplication of most archaeal genomes. PolD contains a unique two-barrel catalytic core absent from all other DNA polymerase families but found in RNA polymerases (RNAPs). While PolD has an ancestral RNA polymerase catalytic core, its active site has evolved the ability to discriminate against ribonucleotides. Until now, the mechanism evolved by PolD to prevent ribonucleotide incorporation was unknown. In all other DNA polymerase families, an active site steric gate residue prevents ribonucleotide incorporation. In this work, we identify two consensus active site acidic (a) and basic (b) motifs shared across the entire two-barrel nucleotide polymerase superfamily, and a nucleotide selectivity (s) motif specific to PolD versus RNAPs. A novel steric gate histidine residue (H931 in Thermococcus sp. 9°N PolD) in the PolD s-motif both prevents ribonucleotide incorporation and promotes efficient dNTP incorporation. Further, a PolD H931A steric gate mutant abolishes ribonucleotide discrimination and readily incorporates a variety of 2' modified nucleotides. Taken together, we construct the first putative nucleotide bound PolD active site model and provide structural and functional evidence for the emergence of DNA replication through the evolution of an ancestral RNAP two-barrel catalytic core.
Collapse
Affiliation(s)
| | - Ece Alpaslan
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Thomas C Evans
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Ludovic Sauguet
- Institut Pasteur, Unité de Dynamique Structurale des Macromolécules, 75015 Paris, France
| | | |
Collapse
|
5
|
Gehring AM, Zatopek KM, Burkhart BW, Potapov V, Santangelo TJ, Gardner AF. Biochemical reconstitution and genetic characterization of the major oxidative damage base excision DNA repair pathway in Thermococcus kodakarensis. DNA Repair (Amst) 2020; 86:102767. [PMID: 31841800 PMCID: PMC8061334 DOI: 10.1016/j.dnarep.2019.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species drive the oxidation of guanine to 8-oxoguanine (8oxoG), which threatens genome integrity. The repair of 8oxoG is carried out by base excision repair enzymes in Bacteria and Eukarya, however, little is known about archaeal 8oxoG repair. This study identifies a member of the Ogg-subfamily archaeal GO glycosylase (AGOG) in Thermococcus kodakarensis, an anaerobic, hyperthermophilic archaeon, and delineates its mechanism, kinetics, and substrate specificity. TkoAGOG is the major 8oxoG glycosylase in T. kodakarensis, but is non-essential. In addition to TkoAGOG, the major apurinic/apyrimidinic (AP) endonuclease (TkoEndoIV) required for archaeal base excision repair and cell viability was identified and characterized. Enzymes required for the archaeal oxidative damage base excision repair pathway were identified and the complete pathway was reconstituted. This study illustrates the conservation of oxidative damage repair across all Domains of life.
Collapse
Affiliation(s)
| | | | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | | | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | | |
Collapse
|
6
|
Combined immunodeficiency caused by a loss-of-function mutation in DNA polymerase delta 1. J Allergy Clin Immunol 2019; 145:391-401.e8. [PMID: 31629014 DOI: 10.1016/j.jaci.2019.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mutations affecting DNA polymerases have been implicated in genomic instability and cancer development, but the mechanisms by which they can affect the immune system remain largely unexplored. OBJECTIVE We sought to establish the role of DNA polymerase δ1 catalytic subunit (POLD1) as the cause of a primary immunodeficiency in an extended kindred. METHODS We performed whole-exome and targeted gene sequencing, lymphocyte characterization, molecular and functional analyses of the DNA polymerase δ (Polδ) complex, and T- and B-cell antigen receptor repertoire analysis. RESULTS We identified a missense mutation (c. 3178C>T; p.R1060C) in POLD1 in 3 related subjects who presented with recurrent, especially herpetic, infections and T-cell lymphopenia with impaired T-cell but not B-cell proliferation. The mutation destabilizes the Polδ complex, leading to ineffective recruitment of replication factor C to initiate DNA replication. Molecular dynamics simulation revealed that the R1060C mutation disrupts the intramolecular interaction between the POLD1 CysB motif and the catalytic domain and also between POLD1 and the Polδ subunit POLD2. The patients exhibited decreased numbers of naive CD4 and especially CD8 T cells in favor of effector memory subpopulations. This skewing was associated with oligoclonality and restricted T-cell receptor β-chain V-J pairing in CD8+ but not CD4+ T cells, suggesting that POLD1R1060C differentially affects peripheral CD8+ T-cell expansion and possibly thymic selection. CONCLUSION These results identify gene defects in POLD1 as a novel cause of T-cell immunodeficiency.
Collapse
|
7
|
Takashima N, Ishino S, Oki K, Takafuji M, Yamagami T, Matsuo R, Mayanagi K, Ishino Y. Elucidating functions of DP1 and DP2 subunits from the Thermococcus kodakarensis family D DNA polymerase. Extremophiles 2018; 23:161-172. [PMID: 30506100 DOI: 10.1007/s00792-018-1070-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 11/29/2022]
Abstract
DNA polymerase D (PolD), originally discovered in Pyrococcus furiosus, has no sequence homology with any other DNA polymerase family. Genes encoding PolD are found in most of archaea, except for those archaea in the Crenarchaeota phylum. PolD is composed of two proteins: DP1 and DP2. To date, the 3D structure of the PolD heteromeric complex is yet to be determined. In this study, we established a method that prepared highly purified PolD from Thermococcus kodakarensis, and purified DP1 and DP2 proteins formed a stable complex in solution. An intrinsically disordered region was identified in the N-terminal region of DP1, but the static light scattering analysis provided a reasonable molecular weight of DP1. In addition, PolD forms as a complex of DP1 and DP2 in a 1:1 ratio. Electron microscope single particle analysis supported this composition of PolD. Both proteins play an important role in DNA synthesis activity and in 3'-5' degradation activity. DP1 has extremely low affinity for DNA, while DP2 is mainly responsible for DNA binding. Our work will provide insight and the means to further understand PolD structure and the molecular mechanism of this archaea-specific DNA polymerase.
Collapse
Affiliation(s)
- Natsuki Takashima
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Sonoko Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Keisuke Oki
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mika Takafuji
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takeshi Yamagami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ryotaro Matsuo
- Division of Malvern Panalytical, Spectris Co., Ltd, Tokyo, 105-0013, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshizumi Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
8
|
Characterization of Copy Number Control of Two Haloferax volcanii Replication Origins Using Deletion Mutants and Haloarchaeal Artificial Chromosomes. J Bacteriol 2017; 200:JB.00517-17. [PMID: 29038254 DOI: 10.1128/jb.00517-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/08/2017] [Indexed: 12/17/2022] Open
Abstract
Haloferax volcanii is polyploid and contains about 20 genome copies under optimal conditions. However, the chromosome copy number is highly regulated and ranges from two during phosphate starvation to more than 40 under conditions of phosphate surplus. The aim of this study was the characterization of the influence of two replication origins on the genome copy number. The origin repeats and the genes encoding origin recognition complex (ORC) proteins were deleted. The core origin oriC1-orc1 (ori1) deletion mutant had a lower genome copy number and a higher level of fitness than the wild type, in stark contrast to the oriC2-orc5 (ori2) deletion mutant. The genes adjacent to ori1 could not be deleted, and thus, at least two of them are probably essential, while deletion of the genes adjacent to ori2 was possible. Various fragments of and around the origins were cloned into a suicide plasmid to generate haloarchaeal artificial chromosomes (HACs). The copy number of the oriC1-orc1 HAC was much higher than that of the oriC2-orc5 HAC. The addition of adjacent genes influenced both the HAC copy number and the chromosome copy number. The results indicate that the origins of H. volcanii are not independent but that the copy number is regulated via a network of genes around the origins.IMPORTANCE Several species of archaea have more than one origin of replication on their major chromosome and are thus the only known prokaryotic species that allow the analysis of the evolution of multiorigin replication. The widely studied Haloferax volcanii H26 strain has a major chromosome with four origins of replication. Two origins, ori1 and ori2, were chosen for an in-depth analysis using deletion mutants and haloarchaeal artificial chromosomes. The analysis was not restricted to the core origin regions; origin-adjacent genes were also included. Because H. volcanii is polyploid, the effects on the chromosome copy number were of specific importance. The results revealed extreme differences between the two origins.
Collapse
|
9
|
Heider MR, Burkhart BW, Santangelo TJ, Gardner AF. Defining the RNaseH2 enzyme-initiated ribonucleotide excision repair pathway in Archaea. J Biol Chem 2017; 292:8835-8845. [PMID: 28373277 PMCID: PMC5448109 DOI: 10.1074/jbc.m117.783472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/31/2017] [Indexed: 11/06/2022] Open
Abstract
Incorporation of ribonucleotides during DNA replication has severe consequences for genome stability. Although eukaryotes possess a number of redundancies for initiating and completing repair of misincorporated ribonucleotides, archaea such as Thermococcus rely only upon RNaseH2 to initiate the pathway. Because Thermococcus DNA polymerases incorporate as many as 1,000 ribonucleotides per genome, RNaseH2 must be efficient at recognizing and nicking at embedded ribonucleotides to ensure genome integrity. Here, we show that ribonucleotides are incorporated by the hyperthermophilic archaeon Thermococcus kodakarensis both in vitro and in vivo and a robust ribonucleotide excision repair pathway is critical to keeping incorporation levels low in wild-type cells. Using pre-steady-state and steady-state kinetics experiments, we also show that archaeal RNaseH2 rapidly cleaves at embedded ribonucleotides (200-450 s-1), but exhibits an ∼1,000-fold slower turnover rate (0.06-0.17 s-1), suggesting a potential role for RNaseH2 in protecting or marking nicked sites for further processing. We found that following RNaseH2 cleavage, the combined activities of polymerase B (PolB), flap endonuclease (Fen1), and DNA ligase are required to complete ribonucleotide processing. PolB formed a ribonucleotide-containing flap by strand displacement synthesis that was cleaved by Fen1, and DNA ligase sealed the nick for complete repair. Our study reveals conservation of the overall mechanism of ribonucleotide excision repair across domains of life. The lack of redundancies in ribonucleotide repair in archaea perhaps suggests a more ancestral form of ribonucleotide excision repair compared with the eukaryotic pathway.
Collapse
Affiliation(s)
| | - Brett W Burkhart
- the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80521
| | - Thomas J Santangelo
- the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80521
| | - Andrew F Gardner
- From New England Biolabs, Inc., Ipswich, Massachusetts 01938 and
| |
Collapse
|
10
|
Abellón-Ruiz J, Waldron KJ, Connolly BA. Archaeoglobus Fulgidus DNA Polymerase D: A Zinc-Binding Protein Inhibited by Hypoxanthine and Uracil. J Mol Biol 2016; 428:2805-13. [PMID: 27320386 PMCID: PMC4942837 DOI: 10.1016/j.jmb.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 02/03/2023]
Abstract
Archaeal family-D DNA polymerases (Pol-D) comprise a small (DP1) proofreading subunit and a large (DP2) polymerase subunit. Pol-D is one of the least studied polymerase families, and this publication investigates the enzyme from Archaeoglobus fulgidus (Afu Pol-D). The C-terminal region of DP2 contains two conserved cysteine clusters, and their roles are investigated using site-directed mutagenesis. The cluster nearest the C terminus is essential for polymerase activity, and the cysteines are shown to serve as ligands for a single, critical Zn(2+) ion. The cysteines farthest from the C terminal were not required for activity, and a role for these amino acids has yet to be defined. Additionally, it is shown that Afu Pol-D activity is slowed by the template strand hypoxanthine, extending previous results that demonstrated inhibition by uracil. Hypoxanthine was a weaker inhibitor than uracil. Investigations with isolated DP2, which has a measurable polymerase activity, localised the deaminated base binding site to this subunit. Uracil and hypoxanthine slowed Afu Pol-D "in trans", that is, a copied DNA strand could be inhibited by a deaminated base in the alternate strand of a replication fork. The error rate of Afu Pol-D, measured in vitro, was 0.24×10(-5), typical for a polymerase that has been proposed to carry out genome replication in the Archaea. Deleting the 3'-5' proofreading exonuclease activity reduced fidelity twofold. The results presented in this publication considerably increase our knowledge of Pol-D.
Collapse
Affiliation(s)
- Javier Abellón-Ruiz
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin J Waldron
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Bernard A Connolly
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
11
|
A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases. SCIENCE CHINA-LIFE SCIENCES 2016; 59:709-16. [DOI: 10.1007/s11427-016-5076-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/29/2016] [Indexed: 10/21/2022]
|
12
|
Pseudomonas aeruginosa phage PaP1 DNA polymerase is an A-family DNA polymerase demonstrating ssDNA and dsDNA 3′–5′ exonuclease activity. Virus Genes 2016; 52:538-51. [DOI: 10.1007/s11262-016-1329-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
|
13
|
Hoshino H, Kasahara Y, Fujita H, Kuwahara M, Morihiro K, Tsunoda SI, Obika S. Consecutive incorporation of functionalized nucleotides with amphiphilic side chains by novel KOD polymerase mutant. Bioorg Med Chem Lett 2015; 26:530-533. [PMID: 26627581 DOI: 10.1016/j.bmcl.2015.11.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 11/29/2022]
Abstract
Recently, 7-substituted 7-deazapurine nucleoside triphosphates and 5-substituted pyrimidine nucleoside triphosphates (dN(am)TPs) were synthesized to extend enzymatically using commercially available polymerase. However, extension was limited when we attempted to incorporate the substrates consecutively. To address this, we have produced a mutant polymerase that can efficiently accept the modified nucleotide with amphiphilic groups as substrates. Here we show that the KOD polymerase mutant, KOD exo(-)/A485L, had the ability to incorporate dN(am)TP continuously over 50nt, indicating that the mutant is sufficient for generating functional nucleic acid molecules.
Collapse
Affiliation(s)
- Hidekazu Hoshino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroto Fujita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Kunihiko Morihiro
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Shin-Ichi Tsunoda
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
14
|
Greenough L, Schermerhorn KM, Mazzola L, Bybee J, Rivizzigno D, Cantin E, Slatko BE, Gardner AF. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes. Nucleic Acids Res 2015; 44:e15. [PMID: 26365239 PMCID: PMC4737176 DOI: 10.1093/nar/gkv899] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/28/2015] [Indexed: 01/26/2023] Open
Abstract
Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner.
Collapse
Affiliation(s)
| | | | | | - Joanna Bybee
- From New England Biolabs, Inc., Ipswich, MA 01938, USA
| | | | | | | | | |
Collapse
|
15
|
Schermerhorn KM, Gardner AF. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance. J Biol Chem 2015; 290:21800-10. [PMID: 26160179 PMCID: PMC4571936 DOI: 10.1074/jbc.m115.662841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 12/18/2022] Open
Abstract
Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼ 2.5 s(-1)) and especially tight nucleotide binding (Kd (dNTP) ∼ 1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3'-5' exonuclease hydrolysis activity in the presence of Mg(2+) and Mn(2+). Interestingly, substituting Mn(2+) for Mg(2+) accelerated hydrolysis rates > 40-fold (kexo ≥ 110 s(-1) versus ≥ 2.5 s(-1)). Preference for Mn(2+) over Mg(2+) in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families.
Collapse
|
16
|
Abstract
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Collapse
Affiliation(s)
- Lori M Kelman
- Program in Biotechnology, Montgomery College, Germantown, Maryland 20876;
| | | |
Collapse
|
17
|
Greenough L, Kelman Z, Gardner AF. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation. J Biol Chem 2015; 290:12514-22. [PMID: 25814667 PMCID: PMC4432273 DOI: 10.1074/jbc.m115.638130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 01/03/2023] Open
Abstract
During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed.
Collapse
Affiliation(s)
- Lucia Greenough
- From New England Biolabs, Inc., Ipswich, Massachusetts 01938 and
| | - Zvi Kelman
- the National Institute of Standards and Technology, Rockville, Maryland 20850
| | - Andrew F Gardner
- From New England Biolabs, Inc., Ipswich, Massachusetts 01938 and
| |
Collapse
|
18
|
Ishino S, Ishino Y. DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field. Front Microbiol 2014; 5:465. [PMID: 25221550 PMCID: PMC4148896 DOI: 10.3389/fmicb.2014.00465] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/15/2014] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase is a ubiquitous enzyme that synthesizes complementary DNA strands according to the template DNA in living cells. Multiple enzymes have been identified from each organism, and the shared functions of these enzymes have been investigated. In addition to their fundamental role in maintaining genome integrity during replication and repair, DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, labeling, mutagenesis, and other purposes. The fundamental ability of DNA polymerases to synthesize a deoxyribonucleotide chain is conserved. However, the more specific properties, including processivity, fidelity (synthesis accuracy), and substrate nucleotide selectivity, differ among the enzymes. The distinctive properties of each DNA polymerase may lead to the potential development of unique reagents, and therefore searching for novel DNA polymerase has been one of the major focuses in this research field. In addition, protein engineering techniques to create mutant or artificial DNA polymerases have been successfully developing powerful DNA polymerases, suitable for specific purposes among the many kinds of DNA manipulations. Thermostable DNA polymerases are especially important for PCR-related techniques in molecular biology. In this review, we summarize the history of the research on developing thermostable DNA polymerases as reagents for genetic manipulation and discuss the future of this research field.
Collapse
Affiliation(s)
- Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
19
|
Chen CY. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol 2014; 5:305. [PMID: 25009536 PMCID: PMC4068291 DOI: 10.3389/fmicb.2014.00305] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/03/2014] [Indexed: 12/27/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.
Collapse
|