1
|
Amin A, Khan IU, Amin M, Fatima M, Sajjad W, Shah TA, Dawoud TM, Wondmie GF. Resurrected microorganisms: a plethora of resting bacteria underway for human interaction. AMB Express 2024; 14:106. [PMID: 39342060 PMCID: PMC11438741 DOI: 10.1186/s13568-024-01750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
Glaciers, which form due to the accumulation of snow, play a crucial role in providing freshwater resources, supporting river systems, and maintaining ecosystem stability. Pakistan is habitat to over 5000 glaciers, primarily located in the Hindukash, Himalaya, and Karakoram mountain ranges. Understanding the microbial communities thriving in these extreme environments becomes of utmost importance. These glaciers offer a unique perspective on extremophile adaptation, as they harbor microorganisms that are capable of surviving and thriving under harsh conditions. Glacial melting poses a significant threat to ancient microbiomes, potentially leading to the resurgence of epidemics and exposure of life to paleomicrobiota. Mostly glacial microbiome is evenly distributed and shows similar diversity. With the threat of resurrection of ages old microbiome and its incorporation into the waters have raised a major concern for revival of epidemics and exposure of life with paleanmicrobiota again. This has led the scientist to deeply observe the bacterial flora embedded in the cryonite holes of glaciers. This study aims to investigate the bacterial diversity within various glaciers of Pakistan using metagenomic techniques. Kamri, Burzil, Siachin, Baltoro, Shigar Basin, Biafo and Panama Glaciers designated from G1 to G7 respectively were chosen from Pakistan. Through rigorous physicochemical analyses, distinct characteristics among glaciers are revealed, including variations in temperature, depth, electrical conductivity, pH levels, and nutrient concentrations. The exploration of alpha diversity, employing metrics such as Chao1, Shannon, Simpson, and Inverse Simpson indices, offers valuable insights into the richness, evenness, and dominance of species within different samples. Beta diversity was calculated by using R software. The vegan package was used for NMSD, cluster and PCoA analysis based on Bray-Curtis distance. PCA analysis was done by using prcomp package from R software. Based on OTU abundance and environmental factor data, DCA analysis was done to determine the linear model from the gradient value (RDA) and the unimodal model (CCA). results were compiled by drawing cluster dendrogram which predicts the patterns of similarity and dissimilarity between different samples. Notably, phyla Proteobacteria emerge as the dominant phylum, accompanied by Actinobacteria, Firmicutes, and Bacteroidetes. The dendrogram shows five clusters, with close similarity between G1 and G4, glacier samples G3 and G8, and G2 and G7. Seasonal variations in glacier physicochemical properties were also observed, with summer samples having shallower depths, lower temperatures, and slightly acidic pH. In contrast, winter samples have higher electrical conductivity and sulfur content. Ultimately, this research provides a foundational framework for comprehending glacier ecosystems, their resident microbial communities, and their broader ecological significance. The study highlights the potential public health risks linked to the release of ancient microorganisms due to climate change, emphasizing the need for comprehensive monitoring and research to mitigate potential public health threats.
Collapse
Affiliation(s)
- Arshia Amin
- Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan.
| | | | - Mehroze Amin
- School of Biological Sciences, University of Punjab, Lahore, Pakistan
| | - Maliha Fatima
- Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Tawaf Ali Shah
- College of agriculture engineering and food science, Shandong University of Technology, Zibo, 255000, China
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, 11451, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Avalon N, Reis MA, Thornburg CC, Williamson RT, Petras D, Aron AT, Neuhaus GF, Al-Hindy M, Mitrevska J, Ferreira L, Morais J, El Abiead Y, Glukhov E, Alexander KL, Vulpanovici FA, Bertin MJ, Whitner S, Choi H, Spengler G, Blinov K, Almohammadi AM, Shaala LA, Kew WR, Paša-Tolić L, Youssef DTA, Dorrestein PC, Vasconcelos V, Gerwick L, McPhail KL, Gerwick WH. Leptochelins A-C, Cytotoxic Metallophores Produced by Geographically Dispersed Leptothoe Strains of Marine Cyanobacteria. J Am Chem Soc 2024; 146:18626-18638. [PMID: 38918178 PMCID: PMC11240249 DOI: 10.1021/jacs.4c05399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.
Collapse
Affiliation(s)
- Nicole
E. Avalon
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Mariana A. Reis
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | | | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Daniel Petras
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Biochemistry, University of California
Riverside, Riverside, California 92507, United States
- CMFI Cluster
of Excellence, University of Tuebingen, Tuebingen 72706, Germany
| | - Allegra T. Aron
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - George F. Neuhaus
- College
of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Momen Al-Hindy
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Jana Mitrevska
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Leonor Ferreira
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | - João Morais
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | - Yasin El Abiead
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Evgenia Glukhov
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kelsey L. Alexander
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Matthew J. Bertin
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Syrena Whitner
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Hyukjae Choi
- College
of Pharmacy, Yeungnam University, Gyeongsan, Gyeong-buk 38541, South Korea
| | - Gabriella Spengler
- Department
of Medical Microbiology, Albert Szent-Györgyi Health Center
and Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6725, Hungary
| | - Kirill Blinov
- Molecule
Apps, LLC, Corvallis, Oregon 97330, United States
| | - Ameen M. Almohammadi
- Department
of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Lamiaa A. Shaala
- Suez Canal
University Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - William R. Kew
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Ljiljana Paša-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Diaa T. A. Youssef
- Department
of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Pieter C. Dorrestein
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Vitor Vasconcelos
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | - Lena Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kerry L. McPhail
- College
of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Hong YW, Ban GH, Bae D, Kim SA. Microbial investigation of aquacultured olive flounder (Paralichthys olivaceus) from farm to table based on high-throughput sequencing. Int J Food Microbiol 2023; 389:110111. [PMID: 36746029 DOI: 10.1016/j.ijfoodmicro.2023.110111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/02/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
The microbial ecologies of fish, such as the olive flounder (Paralichthys olivaceus), one of the most widely consumed fish in East Asia, remain to be elucidated. The microbiome of olive flounder and related environmental samples (i.e., feed, water, workers' aprons and gloves) were collected from six different sources (i.e., a fish farm, a transporting truck, a Wando market and restaurant, and a Seoul market and restaurant). These samples (n = 102) were investigated at various farm-to-distribution stages based on their 16S rRNA sequences. The microbial communities of fish from the farms and trucks were dominated by Photobacterium (>86 %) and showed distinct differences from fish from the Wando and Seoul markets and restaurants. There was also a significant difference in fish microbiomes according to geographical location. The relative abundances of Shewanella, Acinetobacter, Enterobacteriaceae, and Pseudomonas increased as the distribution and consumption stages of the supply chain advanced. The percentages of Shewanella (24.74 %), Acinetobacter (18.32 %), and Enterobacteriaceae (11.24 %) in Wando, and Pseudomonas (42.98 %) in Seoul markets and restaurants implied the importance of sanitation control in these areas. Alpha and beta diversity results corresponded to taxonomic analyses and showed the division of two groups (i.e., fish from the production and transporting stage (farm and truck fish) and fish from the distribution and consumption stages (market and restaurant fish)). The present study provides an in-depth understanding of olive flounder and its environmental microbiomes and suggests control measures to improve food safety.
Collapse
Affiliation(s)
- Ye Won Hong
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Dongryeoul Bae
- Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
4
|
Keuschnig C, Vogel TM, Barbaro E, Spolaor A, Koziol K, Björkman MP, Zdanowicz C, Gallet JC, Luks B, Layton R, Larose C. Selection processes of Arctic seasonal glacier snowpack bacterial communities. MICROBIOME 2023; 11:35. [PMID: 36864462 PMCID: PMC9979512 DOI: 10.1186/s40168-023-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.
Collapse
Affiliation(s)
- Christoph Keuschnig
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
- Currently at Interface Geochemistry, German Research Center for Geosciences, GFZ, Potsdam, Germany
| | - Timothy M Vogel
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Elena Barbaro
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Krystyna Koziol
- Department of Environmental Change and Geochemistry, Faculty of Geographical Sciences, the Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mats P Björkman
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-40530, Gothenburg, Sweden
| | - Christian Zdanowicz
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236, Uppsala, Sweden
| | | | - Bartłomiej Luks
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
| | - Rose Layton
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Catherine Larose
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France.
| |
Collapse
|
5
|
Malard LA, Pearce DA. Bacterial Colonisation: From Airborne Dispersal to Integration Within the Soil Community. Front Microbiol 2022; 13:782789. [PMID: 35615521 PMCID: PMC9125085 DOI: 10.3389/fmicb.2022.782789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
Abstract
The deposition of airborne microorganisms into new ecosystems is the first stage of colonisation. However, how and under what circumstances deposited microorganisms might successfully colonise a new environment is still unclear. Using the Arctic snowpack as a model system, we investigated the colonisation potential of snow-derived bacteria deposited onto Arctic soils during and after snowmelt using laboratory-based microcosm experiments to mimic realistic environmental conditions. We tested different melting rate scenarios to evaluate the influence of increased precipitation as well as the influence of soil pH on the composition of bacterial communities and on the colonisation potential. We observed several candidate colonisations in all experiments; with a higher number of potentially successful colonisations in acidoneutral soils, at the average snowmelt rate measured in the Arctic. While the higher melt rate increased the total number of potentially invading bacteria, it did not promote colonisation (snow ASVs identified in the soil across multiple sampling days and still present on the last day). Instead, most potential colonists were not identified by the end of the experiments. On the other hand, soil pH appeared as a determinant factor impacting invasion and subsequent colonisation. In acidic and alkaline soils, bacterial persistence with time was lower than in acidoneutral soils, as was the number of potentially successful colonisations. This study demonstrated the occurrence of potentially successful colonisations of soil by invading bacteria. It suggests that local soil properties might have a greater influence on the colonisation outcome than increased precipitation or ecosystem disturbance.
Collapse
Affiliation(s)
- Lucie A. Malard
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Lucie A. Malard,
| | - David A. Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
- David A. Pearce,
| |
Collapse
|
6
|
Els N, Greilinger M, Reisecker M, Tignat-Perrier R, Baumann-Stanzer K, Kasper-Giebl A, Sattler B, Larose C. Comparison of Bacterial and Fungal Composition and Their Chemical Interaction in Free Tropospheric Air and Snow Over an Entire Winter Season at Mount Sonnblick, Austria. Front Microbiol 2020; 11:980. [PMID: 32508790 PMCID: PMC7251065 DOI: 10.3389/fmicb.2020.00980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
We investigated the interactions of air and snow over one entire winter accumulation period as well as the importance of chemical markers in a pristine free-tropospheric environment to explain variation in a microbiological dataset. To overcome the limitations of short term bioaerosol sampling, we sampled the atmosphere continuously onto quartzfiber air filters using a DIGITEL high volume PM10 sampler. The bacterial and fungal communities, sequenced using Illumina MiSeq, as well as the chemical components of the atmosphere were compared to those of a late season snow profile. Results reveal strong dynamics in the composition of bacterial and fungal communities in air and snow. In fall the two compartments were similar, suggesting a strong interaction between them. The overlap diminished as the season progressed due to an evolution within the snowpack throughout winter and spring. Certain bacterial and fungal genera were only detected in air samples, which implies that a distinct air microbiome might exist. These organisms are likely not incorporated in clouds and thus not precipitated or scavenged in snow. Although snow appears to be seeded by the atmosphere, both air and snow showed differing bacterial and fungal communities and chemical composition. Season and alpha diversity were major drivers for microbial variability in snow and air, and only a few chemical markers were identified as important in explaining microbial diversity. Air microbial community variation was more related to chemical markers than snow microbial composition. For air microbial communities Cl–, TC/OC, SO42–, Mg2+, and Fe/Al, all compounds related to dust or anthropogenic activities, were identified as related to bacterial variability while dust related Ca2+ was significant in snow. The only common driver for snow and air was SO42–, a tracer for anthropogenic sources. The occurrence of chemical compounds was coupled with boundary layer injections in the free troposphere (FT). Boundary layer injections also caused the observed variations in community composition and chemistry between the two compartments. Long-term monitoring is required for a more valid insight in post-depositional selection in snow.
Collapse
Affiliation(s)
- Nora Els
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Marion Greilinger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, Austria
| | - Michael Reisecker
- Avalanche Warning Service Tyrol, Department of Civil Protection, Federal State Government of Tyrol, Innsbruck, Austria
| | - Romie Tignat-Perrier
- Environmental Microbial Genomics Group, Laboratoire Ampère, École Centrale de Lyon, Écully, France
| | | | - Anne Kasper-Giebl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Birgit Sattler
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Catherine Larose
- Environmental Microbial Genomics Group, Laboratoire Ampère, École Centrale de Lyon, Écully, France
| |
Collapse
|
7
|
Zhou Z, Tran PQ, Kieft K, Anantharaman K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME JOURNAL 2020; 14:2060-2077. [PMID: 32393808 PMCID: PMC7367891 DOI: 10.1038/s41396-020-0669-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Proteobacteria constitute one of the most diverse and abundant groups of microbes on Earth. In productive marine environments like deep-sea hydrothermal systems, Proteobacteria are implicated in autotrophy coupled to sulfur, methane, and hydrogen oxidation, sulfate reduction, and denitrification. Beyond chemoautotrophy, little is known about the ecological significance of poorly studied Proteobacteria lineages that are globally distributed and active in hydrothermal systems. Here we apply multi-omics to characterize 51 metagenome-assembled genomes from three hydrothermal vent plumes in the Pacific and Atlantic Oceans that are affiliated with nine Proteobacteria lineages. Metabolic analyses revealed these organisms to contain a diverse functional repertoire including chemolithotrophic ability to utilize sulfur and C1 compounds, and chemoorganotrophic ability to utilize environment-derived fatty acids, aromatics, carbohydrates, and peptides. Comparative genomics with marine and terrestrial microbiomes suggests that lineage-associated functional traits could explain niche specificity. Our results shed light on the ecological functions and metabolic strategies of novel Proteobacteria in hydrothermal systems and beyond, and highlight the relationship between genome diversification and environmental adaptation.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Antimicrobial and Antioxidant Effects of a Forest Actinobacterium V 002 as New Producer of Spectinabilin, Undecylprodigiosin and Metacycloprodigiosin. Curr Microbiol 2020; 77:2575-2583. [PMID: 32372105 DOI: 10.1007/s00284-020-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
The aim of the study is the research and identification of a Streptomyces strain as a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin. Among 54 actinomycete isolates isolated from El-Ogbane forest soils in Algeria, only one isolate, designated V002, was selected for its ability to produce prodigiosins. The selected strain was analysed for its ability to produce three different secondary metabolites as well as their biological activities. V002 belongs to the Streptomyces genus and has significant antimicrobial and antioxidant activities. The taxonomic position of V002 by 16S rRNA sequence analysis showed a similarity of 99.93% with Streptomyces lasiicapitis DSM 103124T and 98.96% with Streptomyces spectabilis DSM 40512T. Fractionation of crude secondary metabolites produced by the strain using HPLC-MS revealed the presence of spectinabilin, undecylprodigiosin and metacycloprodigiosin, which demonstrated significant activity. Strain V002 is considered a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin with significant antimicrobial and antioxidant activity.
Collapse
|
9
|
Soto DF, Fuentes R, Huovinen P, Gómez I. Microbial composition and photosynthesis in Antarctic snow algae communities: Integrating metabarcoding and pulse amplitude modulation fluorometry. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Maccario L, Carpenter SD, Deming JW, Vogel TM, Larose C. Sources and selection of snow-specific microbial communities in a Greenlandic sea ice snow cover. Sci Rep 2019; 9:2290. [PMID: 30783153 PMCID: PMC6381142 DOI: 10.1038/s41598-019-38744-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
Sea ice and its snow cover are critical for global processes including climate regulation and biogeochemical cycles. Despite an increase in studies focused on snow microorganisms, the ecology of snow inhabitants remains unclear. In this study, we investigated sources and selection of a snowpack-specific microbial community by comparing metagenomes from samples collected in a Greenlandic fjord within a vertical profile including atmosphere, snowpack with four distinct layers of snow, sea ice brine and seawater. Microbial communities in all snow layers derived from mixed sources, both marine and terrestrial, and were more similar to atmospheric communities than to sea ice or seawater communities. The surface snow metagenomes were characterized by the occurrence of genes involved in photochemical stress resistance, primary production and metabolism of diverse carbon sources. The basal saline snow layer that was in direct contact with the sea ice surface harbored a higher abundance of cells than the overlying snow layers, with a predominance of Alteromonadales and a higher relative abundance of marine representatives. However, the overall taxonomic structure of the saline layer was more similar to that of other snow layers and the atmosphere than to underlying sea ice and seawater. The expulsion of relatively nutrient-rich sea ice brine into basal snow might have stimulated the growth of copiotrophic psychro- and halotolerant snow members. Our study indicates that the size, composition and function of snowpack microbial communities over sea ice were influenced primarily by atmospheric deposition and inflow of sea ice brine and that they form a snow-specific assemblage reflecting the particular environmental conditions of the snowpack habitat.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France.
- Microbiology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, USA
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| |
Collapse
|
11
|
Fernández-Gómez B, Díez B, Polz MF, Arroyo JI, Alfaro FD, Marchandon G, Sanhueza C, Farías L, Trefault N, Marquet PA, Molina-Montenegro MA, Sylvander P, Snoeijs-Leijonmalm P. Bacterial community structure in a sympagic habitat expanding with global warming: brackish ice brine at 85-90 °N. THE ISME JOURNAL 2019; 13:316-333. [PMID: 30228379 PMCID: PMC6331608 DOI: 10.1038/s41396-018-0268-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/11/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023]
Abstract
Larger volumes of sea ice have been thawing in the Central Arctic Ocean (CAO) during the last decades than during the past 800,000 years. Brackish brine (fed by meltwater inside the ice) is an expanding sympagic habitat in summer all over the CAO. We report for the first time the structure of bacterial communities in this brine. They are composed of psychrophilic extremophiles, many of them related to phylotypes known from Arctic and Antarctic regions. Community structure displayed strong habitat segregation between brackish ice brine (IB; salinity 2.4-9.6) and immediate sub-ice seawater (SW; salinity 33.3-34.9), expressed at all taxonomic levels (class to genus), by dominant phylotypes as well as by the rare biosphere, and with specialists dominating IB and generalists SW. The dominant phylotypes in IB were related to Candidatus Aquiluna and Flavobacterium, those in SW to Balneatrix and ZD0405, and those shared between the habitats to Halomonas, Polaribacter and Shewanella. A meta-analysis for the oligotrophic CAO showed a pattern with Flavobacteriia dominating in melt ponds, Flavobacteriia and Gammaproteobacteria in solid ice cores, Flavobacteriia, Gamma- and Betaproteobacteria, and Actinobacteria in brine, and Alphaproteobacteria in SW. Based on our results, we expect that the roles of Actinobacteria and Betaproteobacteria in the CAO will increase with global warming owing to the increased production of meltwater in summer. IB contained three times more phylotypes than SW and may act as an insurance reservoir for bacterial diversity that can act as a recruitment base when environmental conditions change.
Collapse
Affiliation(s)
- Beatriz Fernández-Gómez
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
- INTA-Universidad de Chile, Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile.
- Center for Climate and Resilience Research, Concepción, Chile.
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - José Ignacio Arroyo
- Department of Ecology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Germán Marchandon
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Cynthia Sanhueza
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Laura Farías
- Center for Climate and Resilience Research, Concepción, Chile
- Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
| | - Pablo A Marquet
- Department of Ecology, Pontifical University Catholic of Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Coquimbo, Chile
| | - Peter Sylvander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
12
|
MGmapper: Reference based mapping and taxonomy annotation of metagenomics sequence reads. PLoS One 2017; 12:e0176469. [PMID: 28467460 PMCID: PMC5415185 DOI: 10.1371/journal.pone.0176469] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
An increasing amount of species and gene identification studies rely on the use of next generation sequence analysis of either single isolate or metagenomics samples. Several methods are available to perform taxonomic annotations and a previous metagenomics benchmark study has shown that a vast number of false positive species annotations are a problem unless thresholds or post-processing are applied to differentiate between correct and false annotations. MGmapper is a package to process raw next generation sequence data and perform reference based sequence assignment, followed by a post-processing analysis to produce reliable taxonomy annotation at species and strain level resolution. An in-vitro bacterial mock community sample comprised of 8 genuses, 11 species and 12 strains was previously used to benchmark metagenomics classification methods. After applying a post-processing filter, we obtained 100% correct taxonomy assignments at species and genus level. A sensitivity and precision at 75% was obtained for strain level annotations. A comparison between MGmapper and Kraken at species level, shows MGmapper assigns taxonomy at species level using 84.8% of the sequence reads, compared to 70.5% for Kraken and both methods identified all species with no false positives. Extensive read count statistics are provided in plain text and excel sheets for both rejected and accepted taxonomy annotations. The use of custom databases is possible for the command-line version of MGmapper, and the complete pipeline is freely available as a bitbucked package (https://bitbucket.org/genomicepidemiology/mgmapper). A web-version (https://cge.cbs.dtu.dk/services/MGmapper) provides the basic functionality for analysis of small fastq datasets.
Collapse
|
13
|
Wunderlin T, Ferrari B, Power M. Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps. FEMS Microbiol Ecol 2016; 92:fiw132. [PMID: 27297721 DOI: 10.1093/femsec/fiw132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Seasonally, snow environments cover up to 50% of the land's surface, yet the microbial diversity and ecosystem functioning within snow, particularly from alpine regions are not well described. This study explores the bacterial diversity in snow using next-generation sequencing technology. Our data expand the global inventory of snow microbiomes by focusing on two understudied regions, the Swiss Alps and the Australian Alps. A total biomass similar to cell numbers in polar snow was detected, with 5.2 to 10.5 × 10(3) cells mL(-1) of snow. We found that microbial community structure of surface snow varied by country and site and along the altitudinal range (alpine and sub-alpine). The bacterial communities present were diverse, spanning 25 distinct phyla, but the six phyla Proteobacteria (Alpha- and Betaproteobacteria), Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes, accounted for 72%-98% of the total relative abundance. Taxa such as Acidobacteriaceae and Methylocystaceae, associated with cold soils, may be part of the atmospherically sourced snow community, while families like Sphingomonadaceae were detected in every snow sample and are likely part of the common snow biome.
Collapse
Affiliation(s)
- Tina Wunderlin
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia Molecular Ecology, Institute for Sustainability Sciences, Agroscope, Zurich, Switzerland
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Randwick, Sydney 2052, NSW, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia
| |
Collapse
|
14
|
Maccario L, Sanguino L, Vogel TM, Larose C. Snow and ice ecosystems: not so extreme. Res Microbiol 2015; 166:782-95. [PMID: 26408452 DOI: 10.1016/j.resmic.2015.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Laura Sanguino
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|
15
|
Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677-90. [PMID: 26344407 DOI: 10.1038/nrmicro3522] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.
Collapse
Affiliation(s)
- Antje Boetius
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Alexandre M Anesio
- Bristol Glaciology Center, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Jody W Deming
- School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195, USA
| | - Jill A Mikucki
- Department of Biology, 276 Bicentennial Way, Middlebury College, Middlebury, Vermont 05753, USA
| | - Josephine Z Rapp
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
16
|
Microbial abundance and community structure in a melting alpine snowpack. Extremophiles 2015; 19:631-42. [PMID: 25783662 DOI: 10.1007/s00792-015-0744-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Snowmelt is a crucial period for alpine soil ecosystems, as it is related to inputs of nutrients, particulate matter and microorganisms to the underlying soil. Although snow-inhabiting microbial communities represent an important inoculum for soils, they have thus far received little attention. The distribution and structure of these microorganisms in the snowpack may be linked to the physical properties of the snowpack at snowmelt. Snow samples were taken from snow profiles at four sites (1930-2519 m a.s.l.) in the catchment of the Tiefengletscher, Canton Uri, Switzerland. Microbial (Archaea, Bacteria and Fungi) communities were investigated through T-RFLP profiling of the 16S and 18S rRNA genes, respectively. In parallel, we assessed physical and chemical parameters relevant to the understanding of melting processes. Along the snow profiles, density increased with depth due to compaction, while other physico-chemical parameters, such as temperature and concentrations of DOC and soluble ions, remained in the same range (e.g. <2 mg DOC L(-1), 5-30 μg NH4 (+)-N L(-1)) in all samples at all sites. Along the snow profiles, no major change was observed either in cell abundance or in bacterial and fungal diversity. No Archaea could be detected in the snow. Microbial communities, however, differed significantly between sites. Our results show that meltwater rearranges soluble ions and microbial communities in the snowpack.
Collapse
|