1
|
Bolla M, Pettinato M, Ferrari PF, Fabiano B, Perego P. Polyhydroxyalkanoates production from laboratory to industrial scale: A review. Int J Biol Macromol 2025; 310:143255. [PMID: 40250686 DOI: 10.1016/j.ijbiomac.2025.143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Environmental issues related to fossil-based plastics are getting the attention of the media and legislative authorities, addressing the need to improve the plastics' design, collection, and circular economy. In this regard, polyhydroxyalkanoates (PHAs) represent a promising alternative to the conventional polymers, given their biological origin, biodegradability, and biocompatibility. To date, their commercialization covers only a little percentage of the biodegradable plastic application, mainly due to their high cost. However, new production strategies are being investigated and patented, enhancing the PHA market competitiveness. This review tries to fill the gap about the critical investigation on innovative and up-to-date process strategies in PHA production field, deeply evaluating them from a plant-engineering point of view. Several aspects are considered regarding the reduction of the production costs and the increase in the overall PHA productivity and recovery. Among them, the feeding of pre-treated carbon sources derived from food and agro-industrial wastes, the use of mixed microbial cultures as convenient substitutes to the pure ones, and optimized downstream processes are widely discussed. The overlook of the topic is completed by evaluating the innovative technologies existing at pilot and industrial scale, able to achieve improved production yields. Finally, PHA economic and market current conditions are investigated.
Collapse
Affiliation(s)
- Maria Bolla
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
| | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Bruno Fabiano
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
2
|
Christensen M, Jablonski P, Altermark B, Irgum K, Hansen H. High natural PHA production from acetate in Cobetia sp. MC34 and Cobetia marina DSM 4741 T and in silico analyses of the genus specific PhaC 2 polymerase variant. Microb Cell Fact 2021; 20:225. [PMID: 34930259 PMCID: PMC8686332 DOI: 10.1186/s12934-021-01713-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Several members of the bacterial Halomonadacea family are natural producers of polyhydroxyalkanoates (PHA), which are promising materials for use as biodegradable bioplastics. Type-strain species of Cobetia are designated PHA positive, and recent studies have demonstrated relatively high PHA production for a few strains within this genus. Industrially relevant PHA producers may therefore be present among uncharacterized or less explored members. In this study, we characterized PHA production in two marine Cobetia strains. We further analyzed their genomes to elucidate pha genes and metabolic pathways which may facilitate future optimization of PHA production in these strains. RESULTS Cobetia sp. MC34 and Cobetia marina DSM 4741T were mesophilic, halotolerant, and produced PHA from four pure substrates. Sodium acetate with- and without co-supplementation of sodium valerate resulted in high PHA production titers, with production of up to 2.5 g poly(3-hydroxybutyrate) (PHB)/L and 2.1 g poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/L in Cobetia sp. MC34, while C. marina DSM 4741T produced 2.4 g PHB/L and 3.7 g PHBV/L. Cobetia marina DSM 4741T also showed production of 2.5 g PHB/L from glycerol. The genome of Cobetia sp. MC34 was sequenced and phylogenetic analyses revealed closest relationship to Cobetia amphilecti. PHA biosynthesis genes were located at separate loci similar to the arrangement in other Halomonadacea. Further genome analyses revealed some differences in acetate- and propanoate metabolism genes between the two strains. Interestingly, only a single PHA polymerase gene (phaC2) was found in Cobetia sp. MC34, in contrast to two copies (phaC1 and phaC2) in C. marina DSM 4741T. In silico analyses based on phaC genes show that the PhaC2 variant is conserved in Cobetia and contains an extended C-terminus with a high isoelectric point and putative DNA-binding domains. CONCLUSIONS Cobetia sp. MC34 and C. marina DSM 4741T are natural producers of PHB and PHBV from industrially relevant pure substrates including acetate. However, further scale up, optimization of growth conditions, or use of metabolic engineering is required to obtain industrially relevant PHA production titers. The putative role of the Cobetia PhaC2 variant in DNA-binding and the potential implications remains to be addressed by in vitro- or in vivo methods.
Collapse
Affiliation(s)
- Mikkel Christensen
- Department of Chemistry, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Piotr Jablonski
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Bjørn Altermark
- Department of Chemistry, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Knut Irgum
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Hilde Hansen
- Department of Chemistry, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
3
|
Sea-Ice Bacteria Halomonas sp. Strain 363 and Paracoccus sp. Strain 392 Produce Multiple Types of Poly-3-Hydroxyalkaonoic Acid (PHA) Storage Polymers at Low Temperature. Appl Environ Microbiol 2021; 87:e0092921. [PMID: 34160268 PMCID: PMC8357295 DOI: 10.1128/aem.00929-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly-3-hydroxyalkanoic acids (PHAs) are bacterial storage polymers commonly used in bioplastic production. Halophilic bacteria are industrially interesting organisms, as their salinity tolerance and psychrophilic nature lowers sterility requirements and subsequent production costs. We investigated PHA synthesis in two bacterial strains, Halomonas sp. 363 and Paracoccus sp. 392, isolated from Southern Ocean sea ice and elucidated the related PHA biopolymer accumulation and composition with various approaches, such as transcriptomics, microscopy, and chromatography. We show that both bacterial strains produce PHAs at 4°C when the availability of nitrogen and/or oxygen limited growth. The genome of Halomonas sp. 363 carries three phaC synthase genes and transcribes genes along three PHA pathways (I to III), whereas Paracoccus sp. 392 carries only one phaC gene and transcribes genes along one pathway (I). Thus, Halomonas sp. 363 has a versatile repertoire of phaC genes and pathways enabling production of both short- and medium-chain-length PHA products. IMPORTANCE Plastic pollution is one of the most topical threats to the health of the oceans and seas. One recognized way to alleviate the problem is to use degradable bioplastic materials in high-risk applications. PHA is a promising bioplastic material as it is nontoxic and fully produced and degraded by bacteria. Sea ice is an interesting environment for prospecting novel PHA-producing organisms, since traits advantageous to lower production costs, such as tolerance for high salinities and low temperatures, are common. We show that two sea-ice bacteria, Halomonas sp. 363 and Paracoccus sp. 392, are able to produce various types of PHA from inexpensive carbon sources. Halomonas sp. 363 is an especially interesting PHA-producing organism, since it has three different synthesis pathways to produce both short- and medium-chain-length PHAs.
Collapse
|
4
|
Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. BIORESOURCE TECHNOLOGY 2021; 326:124767. [PMID: 33540213 DOI: 10.1016/j.biortech.2021.124767] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters which, apart from their primary storage role, enhance the stress robustness of PHA accumulating cells against various stressors. PHA also represent interesting alternatives to petrochemical polymers, which can be produced from renewable resources employing approaches of microbial biotechnology. During biotechnological processes, bacterial cells are exposed to various stressor factors such as fluctuations in temperature, osmolarity, pH-value, elevated pressure or the presence of microbial inhibitors. This review summarizes how PHA helps microbial cells to cope with biotechnological process-relevant stressors and, vice versa, how various stress conditions can affect PHA production processes. The review suggests a fundamentally new strategy for PHA production: the fine-tuned exposure to selected stressors, which might be used to boost PHA production and even to tailor their structure.
Collapse
Affiliation(s)
- Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| |
Collapse
|
5
|
Rogala MM, Gawor J, Gromadka R, Kowalczyk M, Grzesiak J. Biodiversity and Habitats of Polar Region Polyhydroxyalkanoic Acid-Producing Bacteria: Bioprospection by Popular Screening Methods. Genes (Basel) 2020; 11:genes11080873. [PMID: 32752049 PMCID: PMC7464897 DOI: 10.3390/genes11080873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/31/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs), the intracellular polymers produced by various microorganisms as carbon and energy storage, are of great technological potential as biodegradable versions of common plastics. PHA-producing microbes are therefore in great demand and a plethora of different environments, especially extreme habitats, have been probed for the presence of PHA-accumulators. However, the polar region has been neglected in this regard, probably due to the low accessibility of the sampling material and unusual cultivation regime. Here, we present the results of a screening procedure involving 200 bacterial strains isolated from 25 habitats of both polar regions. Agar-based tests, microscopy, and genetic methods were conducted to elucidate the biodiversity and potential of polar-region PHA-accumulators. Microscopic observation of Nile Red stained cells proved to be the most reliable screening method as it allowed to confirm the characteristic bright orange glow of the Nile Red–PHA complex as well as the typical morphology of the PHA inclusions. Psychrophilic PHA-producers belonged mostly to the Comamonadaceae family (Betaproteobacteria) although actinobacterial PHA synthesizers of the families, Microbacteriaceae and Micrococcaceae also featured prominently. Glacial and postglacial habitats as well as developed polar region soils, were evaluated as promising for PHA-producer bioprospection. This study highlights the importance of psychrophiles as biodiverse and potent polyhydroxyalkanoate sources for scientific and application-aimed research.
Collapse
Affiliation(s)
- Małgorzata Marta Rogala
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5A, 02-106 Warszawa, Poland;
| | - Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland; (J.G.); (R.G.)
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland; (J.G.); (R.G.)
| | - Magdalena Kowalczyk
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5A, 02-106 Warszawa, Poland;
| | - Jakub Grzesiak
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5A, 02-106 Warszawa, Poland;
- Correspondence:
| |
Collapse
|
6
|
Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 2020; 104:4795-4810. [PMID: 32303817 DOI: 10.1007/s00253-020-10568-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Polyhydroxyalkanoates (PHA), polyesters accumulated by numerous prokaryotes in the form of intracellular granules, have been for decades considered being predominantly storage molecules. However, numerous recent discoveries revealed and emphasized their complex biological role for microbial cells. Most of all, it was repeatedly reported and confirmed that the presence of PHA granules in prokaryotic cells enhances stress resistance and robustness of microbes against various environmental stress factors such as high or low temperature, freezing, oxidative, and osmotic pressure. It seems that protective mechanisms of PHA granules are associated with their extraordinary architecture and biophysical properties as well as with the complex and deeply interconnected nature of PHA metabolism. Therefore, this review aims at describing novel and unexpected properties of PHA granules with respect to their contribution to stress tolerance of various prokaryotes including common mesophilic heterotrophic bacteria, but also extremophiles or photo-autotrophic cyanobacteria. KEY POINTS: • PHA granules present in bacterial cells reveal unique properties and functions. • PHA enhances stress robustness of bacterial cells.
Collapse
|
7
|
Kumar V, Kumar S, Singh D. Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. Int J Biol Macromol 2019; 147:1255-1267. [PMID: 31739043 DOI: 10.1016/j.ijbiomac.2019.09.253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023]
Abstract
Extreme niches are offered with unusual physiochemical conditions that impose stress to the life-forms including microbial communities. Microbes have evolved unique physiology and genetics to interact dynamically with extreme environments for their adaptation and survival. Amongst the several adaptive features of microbes in stressed conditions, polyhydroxyalkanoates synthesis is a crucial strategy of many bacteria and archaea to reserve carbon and energy inside the cell. Apart from the relevance of PHA to microbial world, these intracellular polyesters are seen as essential biological macromolecules for the bio-material industry owing to their plastic-like properties, biodegradable and eco-friendly nature. Recently, much attention has been attracted by the microbes of extreme habitats for a new source of industrially suited PHA producers and novel PHA with unique properties. Therefore, the current review is focused on the critical evaluation of microbes from extreme niches for PHA production and opportunities for the development of commercially feasible PHA bioprocess.
Collapse
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.
| |
Collapse
|
8
|
Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 2019; 103:2857-2871. [PMID: 30729286 DOI: 10.1007/s00253-019-09659-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Cold-adapted microorganisms inhabiting permanently low-temperature environments were initially just a biological curiosity but have emerged as rich sources of numerous valuable tools for application in a broad spectrum of innovative technologies. To overcome the multiple challenges inherent to life in their cold habitats, these microorganisms have developed a diverse array of highly sophisticated synergistic adaptations at all levels within their cells: from cell envelope and enzyme adaptation, to cryoprotectant and chaperone production, and novel metabolic capabilities. Basic research has provided valuable insights into how these microorganisms can thrive in their challenging habitat conditions and into the mechanisms of action of the various adaptive features employed, and such insights have served as a foundation for the knowledge-based development of numerous novel biotechnological tools. In this review, we describe the current knowledge of the adaptation strategies of cold-adapted microorganisms and the biotechnological perspectives and commercial tools emerging from this knowledge. Adaptive features and, where possible, applications, in relation to membrane fatty acids, membrane pigments, the cell wall peptidoglycan layer, the lipopolysaccharide component of the outer cell membrane, compatible solutes, antifreeze and ice-nucleating proteins, extracellular polymeric substances, biosurfactants, chaperones, storage materials such as polyhydroxyalkanoates and cyanophycins and metabolic adjustments are presented and discussed.
Collapse
|
9
|
Martínez-Gutiérrez CA, Latisnere-Barragán H, García-Maldonado JQ, López-Cortés A. Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico. PeerJ 2018; 6:e4780. [PMID: 29761063 PMCID: PMC5944434 DOI: 10.7717/peerj.4780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
Hypersaline microbial mats develop through seasonal and diel fluctuations, as well as under several physicochemical variables. Hence, resident microorganisms commonly employ strategies such as the synthesis of polyhydroxyalkanoates (PHAs) in order to resist changing and stressful conditions. However, the knowledge of bacterial PHA production in hypersaline microbial mats has been limited to date, particularly in regard to medium-chain length PHAs (mcl-PHAs), which have biotechnological applications due to their plastic properties. The aim of this study was to obtain evidence for PHA production in two hypersaline microbial mats of Guerrero Negro, Mexico by searching for PHA granules and PHA synthase genes in isolated bacterial strains and environmental samples. Six PHA-producing strains were identified by 16S rRNA gene sequencing; three of them corresponded to a Halomonas sp. In addition, Paracoccus sp., Planomicrobium sp. and Staphylococcus sp. were also identified as PHA producers. Presumptive PHA granules and PHA synthases genes were detected in both sampling sites. Moreover, phylogenetic analysis showed that most of the phylotypes were distantly related to putative PhaC synthases class I sequences belonging to members of the classes Alphaproteobacteria and Gammaproteobacteria distributed within eight families, with higher abundances corresponding mainly to Rhodobacteraceae and Rhodospirillaceae. This analysis also showed that PhaC synthases class II sequences were closely related to those of Pseudomonas putida, suggesting the presence of this group, which is probably involved in the production of mcl-PHA in the mats. According to our state of knowledge, this study reports for the first time the occurrence of phaC and phaC1 sequences in hypersaline microbial mats, suggesting that these ecosystems may be a novel source for the isolation of short- and medium-chain length PHA producers.
Collapse
Affiliation(s)
- Carolina A Martínez-Gutiérrez
- Laboratorio de Geomicrobiología y Biotecnología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Hever Latisnere-Barragán
- Laboratorio de Geomicrobiología y Biotecnología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - José Q García-Maldonado
- CONACYT-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | - Alejandro López-Cortés
- Laboratorio de Geomicrobiología y Biotecnología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| |
Collapse
|
10
|
Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 2018; 36:856-870. [DOI: 10.1016/j.biotechadv.2017.12.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/24/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023]
|
11
|
Abstract
It is well known that cold environments are predominant over the Earth and there are a great number of reports analyzing bacterial adaptations to cold. Most of these works are focused on characteristics traditionally involved in cold adaptation, such as the structural adjustment of enzymes, maintenance of membrane fluidity, expression of cold shock proteins and presence of compatible solutes. Recent works based mainly on novel "omic" technologies have presented evidence of the presence of other important features to thrive in cold. In this work, we analyze cold-adapted bacteria, looking for strategies involving novel features, and/or activation of non-classical metabolisms for a cold lifestyle. Metabolic traits related to energy generation, compounds and mechanisms involved in stress resistance and cold adaptation, as well as characteristics of the cell envelope, are analyzed in heterotrophic cold-adapted bacteria. In addition, metagenomic, metatranscriptomic and metaproteomic data are used to detect key functions in bacterial communities inhabiting cold environments.
Collapse
Affiliation(s)
- Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
- IQUIBICEN, CONICET, C1428EGA Buenos Aires, Argentina.
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
- IQUIBICEN, CONICET, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
12
|
Foong CP, Lakshmanan M, Abe H, Taylor TD, Foong SY, Sudesh K. A novel and wide substrate specific polyhydroxyalkanoate (PHA) synthase from unculturable bacteria found in mangrove soil. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1403-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Cheng J, Charles TC. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases. Appl Microbiol Biotechnol 2016; 100:7611-27. [PMID: 27333909 DOI: 10.1007/s00253-016-7666-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.
Collapse
Affiliation(s)
- Jiujun Cheng
- Department of Biology and Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Trevor C Charles
- Department of Biology and Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
14
|
Huang L, Liu C, Liu Y, Jia X. The composition analysis and preliminary cultivation optimization of a PHA-producing microbial consortium with xylose as a sole carbon source. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 52:77-85. [PMID: 27021696 DOI: 10.1016/j.wasman.2016.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
This work aimed at using xylose as sole substrate, and combining feast-famine process with Nile blue staining as well as denaturing gradient gel electrophoresis (DGGE) analysis to screen polyhydroxyalkanoate (PHA)-producing bacteria from waste activated sludge (WAS). Composition changes of the microbial consortium during domestication were analyzed by DGGE, and the results indicated that there were mainly four classes of bacteria in the final stable system, which were γ-Proteobacteria, Cellvibrio sp., an uncultured bacterium and Pseudomonas sp., respectively. After preliminary optimization, the optimal conditions for the microbial consortium to produce PHA were also obtained as follows: temperature 33°C, pH 8, xylose concentration 2.4g/L, C/N ratio 160 and C/P ratio 125. The final PHA accumulation was up to 31% of dry cell weight (DCW), compared to 23.8% of the original consortia. Though our process is at the very beginning and the PHA yield is relatively low, producing PHA from xylose by using microbial consortia is a promising way to save the PHA production cost.
Collapse
Affiliation(s)
- Luokun Huang
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chang Liu
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yingjie Liu
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaoqiang Jia
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China.
| |
Collapse
|
15
|
Mahansaria R, Choudhury JD, Mukherjee J. Polymerase chain reaction-based screening method applicable universally to environmental haloarchaea and halobacteria for identifying polyhydroxyalkanoate producers among them. Extremophiles 2015; 19:1041-54. [DOI: 10.1007/s00792-015-0775-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
|
16
|
Bhatia SK, Yi DH, Kim HJ, Jeon JM, Kim YH, Sathiyanarayanan G, Seo HM, Lee JH, Kim JH, Park K, Brigham CJ, Yang YH. Overexpression of succinyl-CoA synthase for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production in engineered Escherichia coli BL21(DE3). J Appl Microbiol 2015; 119:724-35. [PMID: 26109231 DOI: 10.1111/jam.12880] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 01/27/2023]
Abstract
AIM This study aims to increase the 3-hydroxyvalerate (3HV) fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] using succinyl-CoA synthase. METHODS AND RESULTS Escherichia coli YH090, a polyhydroxyalkonate (PHA)-producing strain, was further engineered for overexpression of succinyl-CoA synthase genes (sucCD), and examined for P(HB-co-HV) copolymer production in the presence of various precursor molecules using mixture analysis. Glycerol, succinate and propionate were screened as important factors for controlling intracellular PHA accumulation and monomer composition. Glycerol concentrations exerted the greatest influence on the overall biomass concentration and the intracellular PHA content, while propionate concentrations in the presence of succinate influenced the 3HV content of the copolymer. Mixture analysis also demonstrated that the engineered strain has the capacity to accumulate up to 80% of its cell dry weight (CDW) as PHA with a variable fraction of 3HV monomer (maximum of 72 wt %) depending on the controlled conditions. CONCLUSIONS Propionate is the principal precursor for 3HV monomer in P(HB-co-HV) biopolymer and its utilization requires conversion to propionyl-CoA. Engineered E. coli YHY99, overexpressing sucCD genes, leads to an increase of the succinyl-CoA pool, which enhances the conversion rate of propionate by providing a CoA supply to other acyltransferase enzymes that have a role in propionate utilization. SIGNIFICANCE AND IMPACT OF THE STUDY Engineered E. coli YHY99 was able to utilize propionate with a 4·5-fold increase in rate, as compared to the control strain, and resulted in the synthesis of a copolymer with high 3HV monomer content.
Collapse
Affiliation(s)
- S K Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - D-H Yi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - H-J Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - J-M Jeon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Y-H Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - G Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - H M Seo
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - J H Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - J-H Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - K Park
- Department of Biological and Chemical Engineering, Hongik University, Jochiwon, Sejong City, Korea
| | - C J Brigham
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Y-H Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea.,Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul, South Korea
| |
Collapse
|
17
|
López NI, Pettinari MJ, Nikel PI, Méndez BS. Polyhydroxyalkanoates: Much More than Biodegradable Plastics. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:73-106. [PMID: 26505689 DOI: 10.1016/bs.aambs.2015.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in central metabolism, as they act as dynamic reservoirs of carbon and reducing equivalents. These polymers have a number of technical applications since they exhibit thermoplastic and elastomeric properties, making them attractive as a replacement of oil-derived materials. PHAs are accumulated under conditions of nutritional imbalance (usually an excess of carbon source with respect to a limiting nutrient, such as nitrogen or phosphorus). The cycle of PHA synthesis and degradation has been recognized as an important physiological feature when these biochemical pathways were originally described, yet its role in bacterial processes as diverse as global regulation and cell survival is just starting to be appreciated in full. In the present revision, the complex regulation of PHA synthesis and degradation at the transcriptional, translational, and metabolic levels are explored by analyzing examples in natural producer bacteria, such as Pseudomonas species, as well as in recombinant Escherichia coli strains. The ecological role of PHAs, together with the interrelations with other polymers and extracellular substances, is also discussed, along with their importance in cell survival, resistance to several types of environmental stress, and planktonic-versus-biofilm lifestyle. Finally, bioremediation and plant growth promotion are presented as examples of environmental applications in which PHA accumulation has successfully been exploited.
Collapse
|