1
|
Touchette D, Gostinčar C, Whyte LG, Altshuler I. Lichen-associated microbial members are prevalent in the snow microbiome of a sub-arctic alpine tundra. FEMS Microbiol Ecol 2023; 99:fiad151. [PMID: 37977855 DOI: 10.1093/femsec/fiad151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Snow is the largest component of the cryosphere, with its cover and distribution rapidly decreasing over the last decade due to climate warming. It is imperative to characterize the snow (nival) microbial communities to better understand the role of microorganisms inhabiting these rapidly changing environments. Here, we investigated the core nival microbiome, the cultivable microbial members, and the microbial functional diversity of the remote Uapishka mountain range, a massif of alpine sub-arctic tundra and boreal forest. Snow samples were taken over a two-month interval along an altitude gradient with varying degree of anthropogenic traffic and vegetation cover. The core snow alpine tundra/boreal microbiome, which was present across all samples, constituted of Acetobacterales, Rhizobiales and Acidobacteriales bacterial orders, and of Mycosphaerellales and Lecanorales fungal orders, with the dominant fungal taxa being associated with lichens. The snow samples had low active functional diversity, with Richness values ranging from 0 to 19.5. The culture-based viable microbial enumeration ranged from 0 to 8.05 × 103 CFUs/mL. We isolated and whole-genome sequenced five microorganisms which included three fungi, one alga, and one potentially novel bacterium of the Lichenihabitans genus; all of which appear to be part of lichen-associated taxonomic clades.
Collapse
Affiliation(s)
- D Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- River Ecosystems Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| | - C Gostinčar
- University of Ljubljana, Department of Biology, Biotechnical Faculty, Ljubljana 1000, Slovenia
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
| | - I Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1950, Sion, Switzerland
| |
Collapse
|
2
|
Keuschnig C, Vogel TM, Barbaro E, Spolaor A, Koziol K, Björkman MP, Zdanowicz C, Gallet JC, Luks B, Layton R, Larose C. Selection processes of Arctic seasonal glacier snowpack bacterial communities. MICROBIOME 2023; 11:35. [PMID: 36864462 PMCID: PMC9979512 DOI: 10.1186/s40168-023-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.
Collapse
Affiliation(s)
- Christoph Keuschnig
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
- Currently at Interface Geochemistry, German Research Center for Geosciences, GFZ, Potsdam, Germany
| | - Timothy M Vogel
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Elena Barbaro
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Krystyna Koziol
- Department of Environmental Change and Geochemistry, Faculty of Geographical Sciences, the Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mats P Björkman
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-40530, Gothenburg, Sweden
| | - Christian Zdanowicz
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236, Uppsala, Sweden
| | | | - Bartłomiej Luks
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
| | - Rose Layton
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Catherine Larose
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France.
| |
Collapse
|
3
|
Fillinger L, Hürkamp K, Stumpp C, Weber N, Forster D, Hausmann B, Schultz L, Griebler C. Spatial and Annual Variation in Microbial Abundance, Community Composition, and Diversity Associated With Alpine Surface Snow. Front Microbiol 2021; 12:781904. [PMID: 34912321 PMCID: PMC8667604 DOI: 10.3389/fmicb.2021.781904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Understanding microbial community dynamics in the alpine cryosphere is an important step toward assessing climate change impacts on these fragile ecosystems and meltwater-fed environments downstream. In this study, we analyzed microbial community composition, variation in community alpha and beta diversity, and the number of prokaryotic cells and virus-like particles (VLP) in seasonal snowpack from two consecutive years at three high altitude mountain summits along a longitudinal transect across the European Alps. Numbers of prokaryotic cells and VLP both ranged around 104 and 105 per mL of snow meltwater on average, with variation generally within one order of magnitude between sites and years. VLP-to-prokaryotic cell ratios spanned two orders of magnitude, with median values close to 1, and little variation between sites and years in the majority of cases. Estimates of microbial community alpha diversity inferred from Hill numbers revealed low contributions of common and abundant microbial taxa to the total taxon richness, and thus low community evenness. Similar to prokaryotic cell and VLP numbers, differences in alpha diversity between years and sites were generally relatively modest. In contrast, community composition displayed strong variation between sites and especially between years. Analyses of taxonomic and phylogenetic community composition showed that differences between sites within years were mainly characterized by changes in abundances of microbial taxa from similar phylogenetic clades, whereas shifts between years were due to significant phylogenetic turnover. Our findings on the spatiotemporal dynamics and magnitude of variation of microbial abundances, community diversity, and composition in surface snow may help define baseline levels to assess future impacts of climate change on the alpine cryosphere.
Collapse
Affiliation(s)
- Lucas Fillinger
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Kerstin Hürkamp
- Institute of Radiation Medicine, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nina Weber
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Forster
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Lotta Schultz
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
4
|
Smirnova M, Miamin U, Kohler A, Valentovich L, Akhremchuk A, Sidarenka A, Dolgikh A, Shapaval V. Isolation and characterization of fast-growing green snow bacteria from coastal East Antarctica. Microbiologyopen 2021; 10:e1152. [PMID: 33377317 PMCID: PMC7887010 DOI: 10.1002/mbo3.1152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
Snow microorganisms play a significant role in climate change and affecting the snow melting rate in the Arctic and Antarctic regions. While research on algae inhabiting green and red snow has been performed extensively, bacteria dwelling in this biotope have been studied to a much lesser extent. In this study, we performed 16S rRNA gene amplicon sequencing of two green snow samples collected from the coastal area of the eastern part of Antarctica and conducted genotypic and phenotypic profiling of 45 fast-growing bacteria isolated from these samples. 16S rRNA gene amplicon sequencing of two green snow samples showed that bacteria inhabiting these samples are mostly represented by families Burkholderiaceae (46.31%), Flavobacteriaceae (22.98%), and Pseudomonadaceae (17.66%). Identification of 45 fast-growing bacteria isolated from green snow was performed using 16S rRNA gene sequencing. We demonstrated that they belong to the phyla Actinobacteria and Proteobacteria, and are represented by the genera Arthrobacter, Cryobacterium, Leifsonia, Salinibacterium, Paeniglutamicibacter, Rhodococcus, Polaromonas, Pseudomonas, and Psychrobacter. Nearly all bacterial isolates exhibited various growth temperatures from 4°C to 25°C, and some isolates were characterized by a high level of enzymatic activity. Phenotyping using Fourier transform infrared (FTIR) spectroscopy revealed a possible accumulation of intracellular polymer polyhydroxyalkanoates (PHA) or lipids in some isolates. The bacteria showed different lipids/PHA and protein profiles. It was shown that lipid/PHA and protein spectral regions are the most discriminative for differentiating the isolates.
Collapse
Affiliation(s)
- Margarita Smirnova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | | | - Achim Kohler
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Leonid Valentovich
- Faculty of BiologyBelarusian State UniversityMinskBelarus
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Artur Akhremchuk
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Anastasiya Sidarenka
- Faculty of BiologyBelarusian State UniversityMinskBelarus
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Andrey Dolgikh
- Institute of GeographyRussian Academy of SciencesMoscowRussia
| | - Volha Shapaval
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
5
|
Sannino C, Borruso L, Smiraglia C, Bani A, Mezzasoma A, Brusetti L, Turchetti B, Buzzini P. Dynamics of in situ growth and taxonomic structure of fungal communities in Alpine supraglacial debris. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Baloh P, Els N, David RO, Larose C, Whitmore K, Sattler B, Grothe H. Assessment of Artificial and Natural Transport Mechanisms of Ice Nucleating Particles in an Alpine Ski Resort in Obergurgl, Austria. Front Microbiol 2019; 10:2278. [PMID: 31636618 PMCID: PMC6788259 DOI: 10.3389/fmicb.2019.02278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/18/2019] [Indexed: 01/31/2023] Open
Abstract
Artificial snow production is a crucial part of modern skiing resorts in Austria and globally, and will develop even more so with changing precipitation patterns and a warming climate trend. Producing artificial snow requires major investments in energy, water, infrastructure and manpower for skiing resorts. In addition to appropriate meteorological conditions, the efficiency of artificial snow production depends on heterogeneous ice-nucleation, which can occur at temperatures as high as -2°C when induced by specific bacterial ice nucleating particles (INPs). We aimed to investigate the presence, source and ice nucleating properties of these particles in the water cycle of an alpine ski resort in Obergurgl, Tyrol, Austria. We sampled artificial snow, river water, water pumped from a storage pond and compared it to samples collected from fresh natural snow and aged piste snow from the area. Particles from each sampled system were characterized in order to determine their transport mechanisms at a ski resort. We applied a physical droplet freezing assay [DRoplet Ice Nuclei Counter Zurich (DRINCZ)] to heated and unheated samples to characterize the biological and non-biological component of IN-activity. Bacterial abundance and community structure of the samples was obtained using quantitative PCR and Illumina Mi-Seq Amplicon Sequencing, and their chemical properties were determined by liquid ion-chromatography, energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show the flow of biological and inorganic material from the river to the slopes, an uptake of new microorganisms through the air and the piping, and possible proliferation or introduction of ice nucleation active biological particles in aged piste snow. Natural snow, as the first stage in this system, had the lowest amount of ice nucleation active particles and the least amount of biological and mineral particles in general, yet shares some microbial characteristics with fresh artificial snow.
Collapse
Affiliation(s)
- Philipp Baloh
- Institute for Materials Chemistry, TU Wien, Vienna, Austria
| | - Nora Els
- Lake and Glacier Research Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Robert O David
- Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
| | - Catherine Larose
- Laboratoire Ampère, Environmental Microbial Genomics, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Karin Whitmore
- University Service Center for Transmission Electron Microscopy, TU Wien, Vienna, Austria
| | - Birgit Sattler
- Lake and Glacier Research Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Hinrich Grothe
- Institute for Materials Chemistry, TU Wien, Vienna, Austria
| |
Collapse
|
7
|
Meola M, Rifa E, Shani N, Delbès C, Berthoud H, Chassard C. DAIRYdb: a manually curated reference database for improved taxonomy annotation of 16S rRNA gene sequences from dairy products. BMC Genomics 2019; 20:560. [PMID: 31286860 PMCID: PMC6615214 DOI: 10.1186/s12864-019-5914-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background Reads assignment to taxonomic units is a key step in microbiome analysis pipelines. To date, accurate taxonomy annotation of 16S reads, particularly at species rank, is still challenging due to the short size of read sequences and differently curated classification databases. The close phylogenetic relationship between species encountered in dairy products, however, makes it crucial to annotate species accurately to achieve sufficient phylogenetic resolution for further downstream ecological studies or for food diagnostics. Curated databases dedicated to the environment of interest are expected to improve the accuracy and resolution of taxonomy annotation. Results We provide a manually curated database composed of 10’290 full-length 16S rRNA gene sequences from prokaryotes tailored for dairy products analysis (https://github.com/marcomeola/DAIRYdb). The performance of the DAIRYdb was compared with the universal databases Silva, LTP, RDP and Greengenes. The DAIRYdb significantly outperformed all other databases independently of the classification algorithm by enabling higher accurate taxonomy annotation down to the species rank. The DAIRYdb accurately annotates over 90% of the sequences of either single or paired hypervariable regions automatically. The manually curated DAIRYdb strongly improves taxonomic annotation accuracy for microbiome studies in dairy environments. The DAIRYdb is a practical solution that enables automatization of this key step, thus facilitating the routine application of NGS microbiome analyses for microbial ecology studies and diagnostics in dairy products. Electronic supplementary material The online version of this article (10.1186/s12864-019-5914-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Meola
- Agroscope, Competence Division Methods Development and Analytics, Research Group Fermenting Organisms, Schwarzenburgstrasse 161, Bern, 3003, Switzerland.
| | - Etienne Rifa
- Université Clermont Auvergne, INRA, VetAgro Sup, UMRF, 20 côte de Reyne, Aurillac, 15000, France
| | - Noam Shani
- Agroscope, Competence Division Methods Development and Analytics, Research Group Fermenting Organisms, Schwarzenburgstrasse 161, Bern, 3003, Switzerland
| | - Céline Delbès
- Université Clermont Auvergne, INRA, VetAgro Sup, UMRF, 20 côte de Reyne, Aurillac, 15000, France
| | - Hélène Berthoud
- Agroscope, Competence Division Methods Development and Analytics, Research Group Fermenting Organisms, Schwarzenburgstrasse 161, Bern, 3003, Switzerland
| | - Christophe Chassard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMRF, 20 côte de Reyne, Aurillac, 15000, France
| |
Collapse
|
8
|
Maccario L, Carpenter SD, Deming JW, Vogel TM, Larose C. Sources and selection of snow-specific microbial communities in a Greenlandic sea ice snow cover. Sci Rep 2019; 9:2290. [PMID: 30783153 PMCID: PMC6381142 DOI: 10.1038/s41598-019-38744-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
Sea ice and its snow cover are critical for global processes including climate regulation and biogeochemical cycles. Despite an increase in studies focused on snow microorganisms, the ecology of snow inhabitants remains unclear. In this study, we investigated sources and selection of a snowpack-specific microbial community by comparing metagenomes from samples collected in a Greenlandic fjord within a vertical profile including atmosphere, snowpack with four distinct layers of snow, sea ice brine and seawater. Microbial communities in all snow layers derived from mixed sources, both marine and terrestrial, and were more similar to atmospheric communities than to sea ice or seawater communities. The surface snow metagenomes were characterized by the occurrence of genes involved in photochemical stress resistance, primary production and metabolism of diverse carbon sources. The basal saline snow layer that was in direct contact with the sea ice surface harbored a higher abundance of cells than the overlying snow layers, with a predominance of Alteromonadales and a higher relative abundance of marine representatives. However, the overall taxonomic structure of the saline layer was more similar to that of other snow layers and the atmosphere than to underlying sea ice and seawater. The expulsion of relatively nutrient-rich sea ice brine into basal snow might have stimulated the growth of copiotrophic psychro- and halotolerant snow members. Our study indicates that the size, composition and function of snowpack microbial communities over sea ice were influenced primarily by atmospheric deposition and inflow of sea ice brine and that they form a snow-specific assemblage reflecting the particular environmental conditions of the snowpack habitat.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France.
- Microbiology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, USA
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| |
Collapse
|
9
|
High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils. Appl Environ Microbiol 2017; 83:AEM.01139-17. [PMID: 28687652 DOI: 10.1128/aem.01139-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/30/2017] [Indexed: 11/20/2022] Open
Abstract
Glacier forefield soils can provide a substantial sink for atmospheric CH4, facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and temporal variability of atmospheric-CH4 oxidation in an Alpine glacier forefield during the snow-free season of 2013. We quantified CH4 flux in soils of increasing age and in different landforms (sandhill, terrace, and floodplain forms) by using soil gas profile and static flux chamber methods. To determine MOB abundance and community structure, we employed pmoA gene-based quantitative PCR and targeted amplicon sequencing. Uptake of CH4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH4 uptake rates ranging from -3.7 to -0.03 mg CH4 m-2 day-1 Floodplain and terrace soils exhibited lower uptake rates and even intermittent CH4 emissions. Linear mixed-effects models indicated that soil age and landform were the dominating factors shaping CH4 flux, followed by cumulative rainfall (weighted sum ≤4 days prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with upland soil clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical but differed significantly from the highly variable sandhill soil communities. We concluded that soil age and landform modulate the soil CH4 sink strength in glacier forefields and that recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH4 inventories.IMPORTANCE Oxidation of methane (CH4) in well-drained, "upland" soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric-CH4 oxidation in mature upland soils, little is known about this important function in young, developing soils, such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat. In this field-based study, we investigated the spatial and temporal variability of atmospheric-CH4 oxidation and associated MOB communities in Alpine glacier forefield soils, aiming at better understanding the factors that shape the sink for atmospheric CH4 in this young soil ecosystem. This study contributes to the knowledge on the dynamics of atmospheric-CH4 oxidation in developing upland soils and represents a further step toward the inclusion of Alpine glacier forefield soils in global CH4 inventories.
Collapse
|
10
|
Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. THE ISME JOURNAL 2016; 10:1625-41. [PMID: 26771926 PMCID: PMC4918445 DOI: 10.1038/ismej.2015.238] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/09/2015] [Accepted: 11/08/2015] [Indexed: 11/09/2022]
Abstract
Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N.
Collapse
Affiliation(s)
- Thomas Rime
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Martin Hartmann
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
11
|
Wunderlin T, Ferrari B, Power M. Global and local-scale variation in bacterial community structure of snow from the Swiss and Australian Alps. FEMS Microbiol Ecol 2016; 92:fiw132. [PMID: 27297721 DOI: 10.1093/femsec/fiw132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Seasonally, snow environments cover up to 50% of the land's surface, yet the microbial diversity and ecosystem functioning within snow, particularly from alpine regions are not well described. This study explores the bacterial diversity in snow using next-generation sequencing technology. Our data expand the global inventory of snow microbiomes by focusing on two understudied regions, the Swiss Alps and the Australian Alps. A total biomass similar to cell numbers in polar snow was detected, with 5.2 to 10.5 × 10(3) cells mL(-1) of snow. We found that microbial community structure of surface snow varied by country and site and along the altitudinal range (alpine and sub-alpine). The bacterial communities present were diverse, spanning 25 distinct phyla, but the six phyla Proteobacteria (Alpha- and Betaproteobacteria), Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes, accounted for 72%-98% of the total relative abundance. Taxa such as Acidobacteriaceae and Methylocystaceae, associated with cold soils, may be part of the atmospherically sourced snow community, while families like Sphingomonadaceae were detected in every snow sample and are likely part of the common snow biome.
Collapse
Affiliation(s)
- Tina Wunderlin
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia Molecular Ecology, Institute for Sustainability Sciences, Agroscope, Zurich, Switzerland
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Randwick, Sydney 2052, NSW, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, Sydney 2109, NSW, Australia
| |
Collapse
|
12
|
Pearce DA, Magiopoulos I, Mowlem M, Tranter M, Holt G, Woodward J, Siegert MJ. Microbiology: lessons from a first attempt at Lake Ellsworth. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2014.0291. [PMID: 26667906 DOI: 10.1098/rsta.2014.0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
During the attempt to directly access, measure and sample Subglacial Lake Ellsworth in 2012-2013, we conducted microbiological analyses of the drilling equipment, scientific instrumentation, field camp and natural surroundings. From these studies, a number of lessons can be learned about the cleanliness of deep Antarctic subglacial lake access leading to, in particular, knowledge of the limitations of some of the most basic relevant microbiological principles. Here, we focus on five of the core challenges faced and describe how cleanliness and sterilization were implemented in the field. In the light of our field experiences, we consider how effective these actions were, and what can be learnt for future subglacial exploration missions. The five areas covered are: (i) field camp environment and activities, (ii) the engineering processes surrounding the hot water drilling, (iii) sample handling, including recovery, stability and preservation, (iv) clean access methodologies and removal of sample material, and (v) the biodiversity and distribution of bacteria around the Antarctic. Comparisons are made between the microbiology of the Lake Ellsworth field site and other Antarctic systems, including the lakes on Signy Island, and on the Antarctic Peninsula at Lake Hodgson. Ongoing research to better define and characterize the behaviour of natural and introduced microbial populations in response to deep-ice drilling is also discussed. We recommend that future access programmes: (i) assess each specific local environment in enhanced detail due to the potential for local contamination, (ii) consider the sterility of the access in more detail, specifically focusing on single cell colonization and the introduction of new species through contamination of pre-existing microbial communities, (iii) consider experimental bias in methodological approaches, (iv) undertake in situ biodiversity detection to mitigate risk of non-sample return and post-sample contamination, and (v) address the critical question of how important these microbes are in the functioning of Antarctic ecosystems.
Collapse
Affiliation(s)
- D A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK Department of Arctic Biology, University Centre in Svalbard, Longyearbyen 9171, Norway
| | - I Magiopoulos
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - M Mowlem
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - M Tranter
- Centre for Glaciology, University of Bristol, 12 Berkeley Square, University Road, Clifton, Bristol BS8 1SS, UK
| | - G Holt
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - J Woodward
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - M J Siegert
- Grantham Institute and Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
13
|
Meola M, Lazzaro A, Zeyer J. Bacterial Composition and Survival on Sahara Dust Particles Transported to the European Alps. Front Microbiol 2015; 6:1454. [PMID: 26733988 PMCID: PMC4686684 DOI: 10.3389/fmicb.2015.01454] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022] Open
Abstract
Deposition of Sahara dust (SD) particles is a frequent phenomenon in Europe, but little is known about the viability and composition of the bacterial community transported with SD. The goal of this study was to characterize SD-associated bacteria transported to the European Alps, deposited and entrapped in snow. During two distinct events in February and May 2014, SD particles were deposited and promptly covered by falling snow, thus preserving them in distinct ochre layers within the snowpack. In June 2014, we collected samples at different depths from a snow profile at the Jungfraujoch (Swiss Alps; 3621 m a.s.l.). After filtration, we performed various microbiological and physicochemical analyses of the snow and dust particles therein that originated in Algeria. Our results show that bacteria survive and are metabolically active after the transport to the European Alps. Using high throughput sequencing, we observed distinct differences in bacterial community composition and structure in SD-layers as compared to clean snow layers. Sporulating bacteria were not enriched in the SD-layers; however, phyla with low abundance such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bio-indicators for SD. Since many members of these phyla are known to be adapted to arid oligotrophic environments and UV radiation, they are well suited to survive the harsh conditions of long-range airborne transport.
Collapse
Affiliation(s)
- Marco Meola
- Environmental Microbiology, Institute of Biogeochemistry and Pollutant Dynamics, Environmental Systems Science, Swiss Federal Institute of Technology ETH Zurich, Zurich, Switzerland
| | - Anna Lazzaro
- Environmental Microbiology, Institute of Biogeochemistry and Pollutant Dynamics, Environmental Systems Science, Swiss Federal Institute of Technology ETH Zurich, Zurich, Switzerland
| | - Josef Zeyer
- Environmental Microbiology, Institute of Biogeochemistry and Pollutant Dynamics, Environmental Systems Science, Swiss Federal Institute of Technology ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Lazzaro A, Hilfiker D, Zeyer J. Structures of Microbial Communities in Alpine Soils: Seasonal and Elevational Effects. Front Microbiol 2015; 6:1330. [PMID: 26635785 PMCID: PMC4660872 DOI: 10.3389/fmicb.2015.01330] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial communities in alpine environments are exposed to several environmental factors related to elevation and local site conditions and to extreme seasonal variations. However, little is known on the combined impact of such factors on microbial community structure. We assessed the effects of seasonal variations on soil fungal and bacterial communities along an elevational gradient (from alpine meadows to a glacier forefield, 1930-2519 m a.s.l.) over 14 months. Samples were taken during all four seasons, even under the winter snowpack and at snowmelt. Microbial community structures and abundances were investigated using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and quantitative PCR (qPCR) of the 16S and 18S rRNA genes. Illumina sequencing was performed to identify key bacterial groups in selected samples. We found that the soil properties varied significantly with the seasons and along the elevational gradient. For example, concentrations of soluble nutrients (e.g., [Formula: see text], [Formula: see text], [Formula: see text]) significantly increased in October but decreased drastically under the winter snowpack. At all times, the alpine meadows showed higher soluble nutrient concentrations than the glacier forefield. Microbial community structures at the different sites were strongly affected by seasonal variations. Under winter snowpack, bacterial communities were dominated by ubiquitous groups (i.e., beta-Proteobacteria, which made up to 25.7% of the total reads in the glacier forefield). In the snow-free seasons, other groups (i.e., Cyanobacteria) became more abundant (from 1% under winter snow in the glacier forefield samples to 8.1% in summer). In summary, elevation had a significant effect on soil properties, whereas season influenced soil properties as well as microbial community structure. Vegetation had a minor impact on microbial communities. At every elevation analyzed, bacterial, and fungal community structures exhibited a pronounced annual cycle.
Collapse
Affiliation(s)
- Anna Lazzaro
- Environmental Microbiology, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich Zurich, Switzerland
| | - Daniela Hilfiker
- Environmental Microbiology, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich Zurich, Switzerland
| | - Josef Zeyer
- Environmental Microbiology, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich Zurich, Switzerland
| |
Collapse
|