1
|
Ding Y, Ke J, Hong T, Zhang A, Wu X, Jiang X, Shao S, Gong M, Zhao S, Shen L, Chen S. Microbial diversity and ecological roles of halophilic microorganisms in Dingbian (Shaanxi, China) saline-alkali soils and salt lakes. BMC Microbiol 2025; 25:287. [PMID: 40350492 PMCID: PMC12066067 DOI: 10.1186/s12866-025-03997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Halophilic microorganisms abound in numerous hypersaline environments, such as salt lakes, salt mines, solar salterns, and salted seafood. In the northwest of Dingbian county (Shaanxi province, China), there exists a belt of hypersaline habitats extending from the west to the north consisting of saline-alkali soil and salt lakes. Theoretically, such a hypersaline environment has a high probability of containing abundant halophilic archaea communities. Nevertheless, there is nearly no systematic research on halophilic archaea in this area. Here, we employed a combination of culture-dependent and culture-independent methods to analyze the collected samples. The high-throughput sequencing results of the archaeal 16S rRNA gene indicated that the richness of halophilic archaea in saline-alkali soils was significantly higher than that in salt lakes. In saline-alkali soils, the Natronomonas genus of archaea was more predominant compared to other genera, while in salt lakes, the Halonotius, Halorubrum, and Haloarcula genera of archaea had relatively higher abundances. However, the dominant families of halophilic archaea in both environments were mainly Haloferacaceae (30.96-72%), Halomicrobiaceae (17-53.19%) and Nanosalinaceae (1-19.08%). Based on the outcomes of pure culture experiments, a total of 26 genera and 98 strains were identified. Among the identified halophilic microorganisms, the predominant species were Halorubrum and Fodinibius, accounting for 33.67% and 13.27%, respectively. The remainder were mostly low-abundance groups within the community, and 22 potential novel taxa were discovered. Additionally, metagenomic technology was employed in our research. The analysis results demonstrated that the microorganisms in this area possess metabolic pathways capable of degrading various pollutants such as atrazine, methane, and dioxins, suggesting that some microorganisms in this area play a positive role in environmental remediation. This study roughly reveals the diversity composition and dominant species of halophilic archaea in these hypersaline environments and provides a scientific basis for the possible ecological functions of microorganisms in this area during long-term survival. It also offers scientific evidence for the development and utilization of halophilic microbial resources and ecological protection.
Collapse
Affiliation(s)
- Yue Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Aodi Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xue Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xinran Jiang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shilong Shao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Ming Gong
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shengda Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
2
|
Long C, Wang P, Wu J, Liu J, Tan Z, Li W. Structure and diversity of intestinal methanogens in black carp (Mylopharyngodon piceus), grass carp (Ctenopharyngodon idella) and water samples. PLoS One 2025; 20:e0316456. [PMID: 39946339 PMCID: PMC11824978 DOI: 10.1371/journal.pone.0316456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/11/2024] [Indexed: 02/16/2025] Open
Abstract
The present research investigation aims to examine the community features of methanogens in the intestinal tract of black and grass carp, as well as their association with methanogens in water samples. Samples of black carp, grass carp and water in a pond were gathered in Spring 2021. Using the Illumina HiSeq 2500 high-throughput sequencing platform, the metagenomic mcrA gene sequences of black carp, grass carp and cultured water specimens were determined and analyzed. The outcomes indicate that the richness and diversity of methanogens in the intestinal tract of black and carp grass carp were highly correlated with the cultured water. Five bacterial genera were found in the three sets of samples, Methanosarcina, Methanocorpusculum, Methanospirillum, Methanobacterium and Methanofollis, in which Methanosarcina and Methanocorpusculum were the dominant genera. In addition, Methanosarcina had the greatest amount in grass carp and Methanocorpusculum had the greatest quantity in black carp. In conclusion, Methanosarcina and Methanocorpusculum were the main methanogens in the digestive tract of black and grass carp and culture water, and hydrolytic fermentative bacteria were its main metabolic substrate, hydrotrophic was its main metabolic pathway. The results will provide a reference for the relationship between intestinal methanogens and aquaculture and the greenhouse effect.
Collapse
Affiliation(s)
- Chengxing Long
- Science and Technology, Hunan University of Humanities, Loudi, Hunan, China
| | - Peiyang Wang
- Science and Technology, Hunan University of Humanities, Loudi, Hunan, China
| | - Jieqi Wu
- Loudi Fisheries Science Research Institute, Loudi, Hunan, China
| | - Jialin Liu
- Science and Technology, Hunan University of Humanities, Loudi, Hunan, China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenge Li
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Changsha, Hunan, China
| |
Collapse
|
3
|
Zhang R, Xu L, Tian D, Du L, Yang F. Coal mining activities driving the changes in bacterial community. Sci Rep 2024; 14:25615. [PMID: 39463387 PMCID: PMC11514224 DOI: 10.1038/s41598-024-75590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
The mechanism of the difference in bacterial community composition caused by environmental factors in the underground coal mine is unclear. In order to reveal the influence of coal mining activities on the characteristics of bacterial community structure in coal seam, 16S rRNA gene amplicon sequencing technology was used to determine the species abundance, biodiversity, and gene abundance of bacterial community in a coal mine in Shanxi Province, and the environmental factors such as metal elements, non-metal elements, pH value, and gas concentration of coal samples were determined. The results showed that environmental factors and bacterial communities had obvious regional characteristics. Mining activities greatly affected the α diversity of bacterial communities, mining working face > main airway > roadway roof > unexposed coal seam > tunneling roadway. The bacterial community composition of each sample point is also very different. The main airway, roadway roof, and unexposed coal seam are dominated by Actinobacteria while the mining working face and tunneling roadway are dominated by Proteobacteria. Among the gene abundances of metabolic pathways in each site, Citrate cycle had the greatest difference, followed by glycine, serine and threonine metabolism, and oxidative phosphorylation and methane metabolism had little difference. RDA analysis showed that the environmental factors affecting the bacterial community were mainly cadmium, oxygen, hydrogen, and gas content. CCA analysis divided the bacterial community into three categories. Degradation functional bacteria are located in mining working face, bacteria that tolerate poor environments are located in main airway and tunneling roadway, and human pathogens are mostly located in roadway roof and unexposed coal seam. The research results would provide support for realizing green and safe mining in coal mines.
Collapse
Affiliation(s)
- Runjie Zhang
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lianman Xu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Da Tian
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Linlin Du
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Fengshuo Yang
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
4
|
Belkin P, Nechaeva Y, Blinov S, Vaganov S, Perevoshchikov R, Plotnikova E. Sediment microbial communities of a technogenic saline-alkaline reservoir. Heliyon 2024; 10:e33640. [PMID: 39071596 PMCID: PMC11283119 DOI: 10.1016/j.heliyon.2024.e33640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Various natural saline and alkaline habitats have recently been widely investigated, but knowledge of anthropogenic habitats with more complex environmental conditions is still lacking. This research looks at the structure of microbial communities in 18 bottom sediment samples from a technogenic water body with saline and alkaline composition. The core samples were collected from 2 columns in the western and eastern parts of an artificial water body at the Verkhnekamskoe Salt Deposit (Russia). The microbial community structure was studied using high-throughput 16S rRNA gene sequencing. The bottom sediment composition (salinity, pH, and toxic element content) varies greatly with depth and laterally throughout the study area. The study found a considerable difference in bacterial community diversity between the 2 columns, but no considerable difference was found between the communities at various depths of the studied layers. Proteobacteria, Firmicutes, and Actinobacteria, which are common in both natural and artificial saline and alkaline environments, make up the majority of the bacteria found in the samples. Studies have shown that salinity and total alkalinity are the key factors influencing the formation of microbial communities. Ralstonia and Pseudomonas were the two most common genera in the sediment samples. These two genera are known for having high metabolic flexibility, which means they can survive in extreme environments and use a variety of carbon compounds as energy sources. The study also found that Ralstonia is indicator bacteria in samples with the highest concentrations of toxic elements compared to the other samples. A relatively high microbial diversity was discovered in the studied anthropogenic water reservoir despite the extreme alkaline and saline conditions, but it is considerably lower than that found in natural, less alkaline habitats. This research offers insight into the mechanisms behind microbial community formation in complex anthropogenic environments and covers key factors in microbial community distribution.
Collapse
Affiliation(s)
- Pavel Belkin
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Yulia Nechaeva
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Аcademy of Sciences, 614081, Goleva st. 13, Perm, Russia
| | - Sergey Blinov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Sergey Vaganov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Roman Perevoshchikov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Elena Plotnikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Аcademy of Sciences, 614081, Goleva st. 13, Perm, Russia
| |
Collapse
|
5
|
Kipnyargis A, Kenya E, Khamis F, Mwirichia R. Spatiotemporal structure and composition of the microbial communities in hypersaline Lake Magadi, Kenya. F1000Res 2024; 13:11. [PMID: 39534657 PMCID: PMC11555362 DOI: 10.12688/f1000research.134465.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Soda lakes are habitats characterized by haloalkaline conditions also known to host unique microbial communities. The water chemistry changes with seasons due to evaporative concentration or floods from the surrounding grounds. However, it is not yet clear if the change in physiochemical changes influences the spatiotemporal diversity and structure of microbial communities in these ecosystems. Methods Using 16S rRNA gene amplicon sequencing, we investigated the diversity and structure of microbial communities in water and brine samples taken from Lake Magadi between June and September 2018. Additionally, physicochemical parameters were also analyzed for every sampling site. Additionally, physicochemical parameters were also analyzed for every sampling site. Results The abundant bacterial phyla were Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Verrumicrobia, Deinococcus-Thermus, Spirochaetes, and Chloroflexi. The Archaeal diversity was represented by phyla Euryachaeota, Crenarchaeota, Euryarchaeota, and Thaumarchaeota. The dominant bacterial species were: Euhalothece sp. (10.3%), Rhodobaca sp. (9.6%), Idiomarina sp. (5.8%), Rhodothermus sp. (3.0%), Roseinatronobacter sp. (2.4%), Nocardioides sp. (2.3%), Gracilimonas sp. (2.2%), and Halomonas sp. (2%). The dominant archaeal species included Halorubrum sp. (18.3%), Salinarchaeum sp. (5.3%), and Haloterrigena sp. (1.3%). The composition of bacteria was higher than that of archaea, while their richness and diversity varied widely across the sampling seasons. The α-diversity indices showed that high diversity was recorded in August, followed by September, June, and July in that order. The findings demonstrated that temperature, pH, P+, K+, NO3 -, and total dissolved solids (TDS) contributed majorly to the diversity observed in the microbial community. Multivariate analysis revealed significant spatial and temporal effects on β-diversity and salinity and alkalinity were the major drivers of microbial composition in Lake Magadi. Conclusions We provide insights into the relationships between microbial structure and geochemistry across various sampling sites in Lake Magadi.
Collapse
Affiliation(s)
- Alex Kipnyargis
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Eucharia Kenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Fathiya Khamis
- Arthropod Pathology, International Centre of Insect Physiology and Ecology, Nairobi, Nairobi County, Kenya
| | - Romano Mwirichia
- Department of Biological Sciences, University of Embu, Embu, Kenya
| |
Collapse
|
6
|
Liu X, Zhong L, Yang R, Wang H, Liu X, Xue W, Yang H, Shen Y, Li J, Sun Z. Modifying soil bacterial communities in saline mudflats with organic acids and substrates. Front Microbiol 2024; 15:1392441. [PMID: 38706968 PMCID: PMC11066327 DOI: 10.3389/fmicb.2024.1392441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Aims The high salinity of soil, nutrient scarcity, and poor aggregate structure limit the exploitation and utilization of coastal mudflat resources and the sustainable development of saline soil agriculture. In this paper, the effects of applying exogenous organic acids combined with biological substrate on the composition and diversity of soil bacterial community were studied in moderately saline mudflats in Jiangsu Province. Methods A combination of three exogenous organic acids (humic acid, fulvic acid, and citric acid) and four biological substrates (cottonseed hull, cow manure, grass charcoal, and pine needle) was set up set up on a coastal saline mudflat planted with a salt-tolerant forage grass, sweet sorghum. A total of 120 kg ha-1 of organic acids and 5,000 kg ha-1 of substrates were used, plus two treatments, CK without application of organic acids and substrates and CK0 in bare ground, for a total of 14 treatments. Results No significant difference was found in the alpha diversity of soil bacterial community among all treatments (p ≥ 0.05), with the fulvic acid composite pine needle (FPN) treatment showing the largest increase in each index. The beta diversity differed significantly (p < 0.05) among all treatments, and the difference between citric acid-grass charcoal (CGC) and CK treatments was greater than that of other treatments. All treatments were effective in increasing the number of bacterial ASVs and affecting the structural composition of the community. Citric acid-cow manure (CCM), FPN, and CGC treatments were found to be beneficial for increasing the relative abundance of Proteobacteria, Chloroflexi, and Actinobacteria, respectively. By contrast, all treatments triggered a decrease in the relative abundance of Acidobacteria. Conclusion Among the 12 different combinations of exogenous organic acid composite biomass substrates applied to the coastal beach, the CGC treatment was more conducive to increasing the relative abundance of the salt-tolerant bacteria Proteobacteria, Chloroflexi and Actinobacteria, and improving the community structure of soil bacteria. The FPN treatment was more conducive to increase the species diversity of the soil bacterial community and adjust the species composition of the bacterial community.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Liang Zhong
- School of Life Science, Nanjing University, Nanjing, China
| | - Ruixue Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Huiyan Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xinbao Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Wei Xue
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - He Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yixin Shen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jianlong Li
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
- School of Life Science, Nanjing University, Nanjing, China
| | - Zhengguo Sun
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
- Nanjing University (Suzhou) High and New Technology Research Institute, Suzhou, China
| |
Collapse
|
7
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
8
|
Xie L, Yu S, Lu X, Liu S, Tang Y, Lu H. Different Responses of Bacteria and Archaea to Environmental Variables in Brines of the Mahai Potash Mine, Qinghai-Tibet Plateau. Microorganisms 2023; 11:2002. [PMID: 37630563 PMCID: PMC10458105 DOI: 10.3390/microorganisms11082002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Salt mines feature both autochthonous and allochthonous microbial communities introduced by industrialization. It is important to generate the information on the diversity of the microbial communities present in the salt mines and how they are shaped by the environment representing ecological diversification. Brine from Mahai potash mine (Qianghai, China), an extreme hypersaline environment, is used to produce potash salts for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. In this study, using high-throughput 16S rRNA gene amplicon sequencing and estimation of physicochemical variables, we examined brine samples collected from locations with the gradient of industrial activity intensity and discrete hydrochemical compositions in the Mahai potash mine. Our findings revealed a highly diverse bacterial community, mainly composed of Pseudomonadota in the hypersaline brines from the industrial area, whereas in the natural brine collected from the upstream Mahai salt lake, most of the 16S rRNA gene reads were assigned to Bacteroidota. Halobacteria and halophilic methanogens dominated archaeal populations. Furthermore, we discovered that in the Mahai potash mining area, bacterial communities tended to respond to anthropogenic influences. In contrast, archaeal diversity and compositions were primarily shaped by the chemical properties of the hypersaline brines. Conspicuously, distinct methanogenic communities were discovered in sets of samples with varying ionic compositions, indicating their strong sensitivity to the brine hydrochemical alterations. Our findings provide the first taxonomic snapshot of microbial communities from the Mahai potash mine and reveal the different responses of bacteria and archaea to environmental variations in this high-altitude aquatic ecosystem.
Collapse
Affiliation(s)
- Linglu Xie
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Shan Yu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| | - Xindi Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Siwei Liu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Yukai Tang
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Hailong Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| |
Collapse
|
9
|
Cheffi M, Belmabrouk S, Karray F, Hentati D, Bru-Adan V, Godon JJ, Sayadi S, Chamkha M. Study of microbial communities and environmental parameters of seawater collected from three Tunisian fishing harbors in Kerkennah Islands: Statistical analysis of the temporal and spatial dynamics. MARINE POLLUTION BULLETIN 2022; 185:114350. [PMID: 36435018 DOI: 10.1016/j.marpolbul.2022.114350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Surface seawater, collected from three fishing harbors during different seasons of the years 2015, 2016 and 2017, were assessed for physico-chemical analyses. Results showed that seawater was mainly polluted by hydrocarbons and some heavy metals. Microbial communities' composition and abundance in the studied harbors were performed using molecular approaches. SSCP analysis indicated the presence of Bacteria, Archaea and Eucarya, with dominance of the bacterial domain. Illumina Miseq analysis revealed that the majority of the sequences were affiliated with Bacteria whereas Archaea were detected at low relative abundance. The bacterial community, dominated by Proteobacteria, Bacteroidetes, Planctomycetes, Cyanobacteria, Firmicutes, Actinobacteria and Chloroflexi phyla, are known to be involved in a variety of biodegradation/biotransformation processes including hydrocarbons degradation and heavy metals resistance. The main objectives of this study are to assess, for the first time, the organic/inorganic pollution in surface seawater of Kerkennah Islands harbors, and to explore the potential of next generation marine microbiome monitoring to achieve the planning coastal managing strategies worldwide.
Collapse
Affiliation(s)
- Meriam Cheffi
- Laboratory of Environmental Bioprocesses LMI COSYS-Med, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Sabrine Belmabrouk
- Research Institute of Sciences and Engineering, University of Sharjah, United Arab Emirates
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses LMI COSYS-Med, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Dorra Hentati
- Laboratory of Environmental Bioprocesses LMI COSYS-Med, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | | | | | - Sami Sayadi
- Center of Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses LMI COSYS-Med, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
10
|
Tu D, Ke J, Luo Y, Hong T, Sun S, Han J, Chen S. Microbial community structure and shift pattern of industry brine after a long-term static storage in closed tank. Front Microbiol 2022; 13:975271. [PMID: 36118215 PMCID: PMC9478951 DOI: 10.3389/fmicb.2022.975271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Brine from Dingyuan Salt Mine (Anhui, China), an athalassohaline hypersaline environment formed in the early tertiary Oligocene, is used to produce table salt for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. Here, we employed cultivation and high-throughput sequencing strategies to uncover the microbial community and its shift after a long-term storage in the brine collected from Dingyuan Salt Mine. High-throughput sequencing showed (1) in the fresh brine (2021), Cyanobium_stocktickerPCC-6307 spp. (8.46%), Aeromonas spp. (6.91%) and Pseudomonas spp. (4.71%) are the dominant species in bacteria while Natronomonas spp. (18.89%), Halapricum spp. (13.73%), and Halomicrobium spp. (12.35%) in archaea; (2) after a 3-year-storage, Salinibacter spp. (30.01%) and Alcanivorax spp. (14.96%) surpassed Cyanobium_stocktickerPCC-6307 spp. (8.46%) becoming the dominant species in bacteria; Natronomonas spp. are still the dominant species, while Halorientalis spp. (14.80%) outnumbered Halapricum spp. becoming the dominant species in archaea; (3) Alcanivorax spp. and Halorientalis spp. two hydrocarbons degrading microorganisms were enriched in the brine containing hydrocarbons. Cultivation using hypersaline nutrient medium (20% NaCl) combined with high-throughput 16S rRNA gene sequencing showed that (1) the biomass significantly increased while the species diversity sharply declined after a 3-year-storage; (2) Halorubrum spp. scarcely detected from the environment total stocktickerDNA were flourishing after cultivation using AS-168 or NOM medium; (3) twelve possible new species were revealed based on almost full-length 16S rRNA gene sequence similarity search. This study generally uncovered the microbial community and the dominant halophiles in this inland athalassohaline salt mine, and provided a new insight on the shift pattern of dominant halophiles during a long-term storage, which illustrated the shaping of microorganisms in the unique environment, and the adaptation of microbe to the specific environment.
Collapse
Affiliation(s)
- Demei Tu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Siqi Sun
- Anhui Jiaotianxiang Biological Technology Co., Ltd., Xuancheng, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Mapping Archaeal Diversity in Soda Lakes by Coupling 16S rRNA PCR-DGGE Analysis with Remote Sensing and GIS Technology. FERMENTATION 2022. [DOI: 10.3390/fermentation8080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The haloarchaeal diversity of four hypersaline alkaline lakes from the Wadi El-Natrun depression (Northern Egypt) was investigated using culture-independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rRNA gene phylotypes, which was combined with remote sensing and geographic information system (GIS) data to highlight the distribution pattern of the microbial diversity in water and sediment samples. The majority of archaeal sequences identified in all four lakes belonged to the phyla Euryarchaeota and Crenarchaeota. Sediment samples from Beida Lake and water samples from El-Hamra Lake showed the highest levels of archaeal diversity. Sequence similarities ≥ 95% were found between six of the acquired clones and uncultured Halorhabdus, Euryarchaeota, and archaeon clones. In addition, two clones shared a high level of sequence similarity (97%) with unclassified archaea, while other nine clones exhibited 96% to 99% sequence similarity with uncultured archaeon clones, and only one clone showed 97% identity with an uncultured Crenarchaeota. Likewise, 7 DGGE bands presented a sequence similarity of 90 to 98% to Halogranum sp., Halalkalicoccus tibetensis, Halalkalicoccus jeotgali, uncultured Halorubrum, Halobacteriaceae sp., or uncultured haloarchaeon. In conclusion, while the variety of alkaliphilic haloarchaea in the examined soda lakes was restricted, the possibility of uncovering novel species for biotechnological applications from these extreme habitats remains promising.
Collapse
|
12
|
Wang Y, Bao G. Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai-Tibet Plateau. Sci Rep 2022; 12:3365. [PMID: 35233041 PMCID: PMC8888737 DOI: 10.1038/s41598-022-07311-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
The composition of microbial communities varies considerably across ecological environments, particularly in extreme environments, where unique microorganisms are typically used as the indicators of environmental conditions. However, the ecological reasons for the differences in microbial communities remain largely unknown. Herein, we analyzed taxonomic and functional community profiles via high-throughput sequencing to determine the alkaline saline soil bacterial and archaeal communities in the Qarhan Salt Lake area in the Qinghai-Tibet Plateau. The results showed that Betaproteobacteria (Proteobacteria) and Halobacteria (Euryarchaeota) were the most abundant in the soils of this area, which are common in high salinity environments. Accordingly, microbes that can adapt to local extremes typically have unique metabolic pathways and functions, such as chemoheterotrophy, aerobic chemoheterotrophy, nitrogen fixation, ureolysis, nitrate reduction, fermentation, dark hydrogen oxidation, and methanogenesis. Methanogenesis pathways include hydrogenotrophic methanogenesis, CO2 reduction with H2, and formate methanogenesis. Thus, prokaryotic microorganisms in high salinity environments are indispensable in nitrogen and carbon cycling via particular metabolic pathways.
Collapse
Affiliation(s)
- Yaqiong Wang
- School of Ecology, Environment and Resources, Qinghai Minzu University, Bayi Road, Xining, 810007, Qinghai, China.
- Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Xining, 810007, China.
- Qinghai Provincial Biotechnology and Analytical Test Key Laboratory, Tibetan Plateau Juema Research Centre, Xining, 810007, China.
| | - Guoyuan Bao
- School of Ecology, Environment and Resources, Qinghai Minzu University, Bayi Road, Xining, 810007, Qinghai, China
| |
Collapse
|
13
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
14
|
Cui HL, Dyall-Smith ML. Cultivation of halophilic archaea (class Halobacteria) from thalassohaline and athalassohaline environments. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:243-251. [PMID: 37073340 PMCID: PMC10077297 DOI: 10.1007/s42995-020-00087-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 05/03/2023]
Abstract
As a group, the halophilic archaea (class Halobacteria) are the most salt-requiring and salt-resistant microorganisms within the domain Archaea. Halophilic archaea flourish in thalassohaline and athalassohaline environments and require over 100-150 g/L NaCl for growth and structural stability. Natural hypersaline environments vary in salt concentration, chemical composition and pH, and occur in climates ranging from tropical to polar and even under-sea. Accordingly, their resident haloarchaeal species vary enormously, as do their individual population compositions and community structures. These diverse halophilic archaeal strains are precious resources for theoretical and applied research but assessing their taxonomic and metabolic novelty and diversity in natural environments has been technically difficult up until recently. Environmental DNA-based high-throughput sequencing technology has now matured sufficiently to allow inexpensive recovery of massive amounts of sequence data, revealing the distribution and community composition of halophilic archaea in different hypersaline environments. While cultivation of haloarchaea is slow and tedious, and only recovers a fraction of the natural diversity, it is the conventional means of describing new species, and provides strains for detailed study. As of the end of May 2020, the class Halobacteria contains 71 genera and 275 species, 49.8% of which were first isolated from the marine salt environment and 50.2% from the inland salt environment, indicating that both thalassohaline and athalassohaline environments contain diverse halophilic archaea. However, there remain taxa that have not yet been isolated in pure culture, such as the nanohaloarchaea, which are widespread in the salt environment and may be one of the hot spots in the field of halophilic archaea research in the future. In this review, we focus on the cultivation strategies that have been used to isolate extremely halophilic archaea and point out some of the pitfalls and challenges. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00087-3.
Collapse
Affiliation(s)
- Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Mike L. Dyall-Smith
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010 Australia
- Computational Biology Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
15
|
Production of Poly(3-Hydroxybutyrate) by Haloarcula, Halorubrum, and Natrinema Haloarchaeal Genera Using Starch as a Carbon Source. ACTA ACUST UNITED AC 2021; 2021:8888712. [PMID: 33574733 PMCID: PMC7860971 DOI: 10.1155/2021/8888712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
Microbial production of bioplastics, derived from poly(3-hydroxybutyrate) (PHB), have provided a promising alternative towards plastic pollution. Compared to other extremophiles, halophilic archaea are considered as cell factories for PHB production by using renewable, inexpensive carbon sources, thus decreasing the fermentation cost. This study is aimed at screening 33 halophilic archaea isolated from three enrichment cultures from Tunisian hypersaline lake, Chott El Jerid, using starch as the sole carbon source by Nile Red/Sudan Black staining and further confirmed by PCR amplification of phaC and phaE polymerase genes. 14 isolates have been recognized as positive candidates for PHA production and detected during both seasons. The identification of these strains through 16S rRNA gene analyses showed their affiliation to Halorubrum, Natrinema, and Haloarcula genera. Among them, three PHB-producing strains, CEJ34-14, CEJ5-14, and CEJ48-10, related to Halorubrum chaoviator, Natrinema pallidum, and Haloarcula tradensis were found to be the best ones reaching values of 9.25, 7.11, and 1.42% of cell dry weight (CDW), respectively. Our findings highlighted that Halorubrum, Natrinema, and Haloarcula genera were promising candidates for PHB production using soluble starch as a carbon source under high salinity (250 g L−1 NaCl).
Collapse
|
16
|
Zhu D, Shen G, Wang Z, Han R, Long Q, Gao X, Xing J, Li Y, Wang R. Distinctive distributions of halophilic Archaea across hypersaline environments within the Qaidam Basin of China. Arch Microbiol 2021; 203:2029-2042. [PMID: 33554274 DOI: 10.1007/s00203-020-02181-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/12/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
Halophilic Archaea are widely distributed globally in hypersaline environments. However, little is known of how dominant halophilic archaeal genera are distributed across environments and how they may co-associate across ecosystems. Here, the archaeal community composition and diversity from hypersaline environments (> 300 g/L salinity; total of 33 samples) in the Qaidam Basin of China were investigated using high-throughput Illumina sequencing of 16S rRNA genes. The archaeal communities (total of 3,419 OTUs) were dominated by the class Halobacteria (31.7-99.6% relative abundances) within the phylum Euryarchaeota (90.8-99.9%). Five predominant taxa, including Halorubrum, Halobacterium, Halopenitus, Methanothrix, and Halomicrobium, were observed across most samples. However, several distinct genera were associated with individual samples and were inconsistently distributed across samples, which contrast with previous studies of hypersaline archaeal communities. Additionally, co-occurrence network analysis indicated that five network clusters were present and potentially reflective of interspecies interactions among the environments, including three clusters (clusters II, III, and IV) comprising halophilic archaeal taxa within the Halobacteriaceae and Haloferacaceae families. In addition, two other clusters (clusters I and V) were identified that comprised methanogens. Finally, salinity comprising ionic concentrations (in the order of Na+ > Ca2+ > Mg2+) and pH were most correlated with taxonomic distributions across sample sites.
Collapse
Affiliation(s)
- Derui Zhu
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Guoping Shen
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Zhibo Wang
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Rui Han
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Qifu Long
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Xiang Gao
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Jiangwa Xing
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Yongzhen Li
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Rong Wang
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
17
|
Kahla O, Melliti Ben Garali S, Karray F, Ben Abdallah M, Kallel N, Mhiri N, Zaghden H, Barhoumi B, Pringault O, Quéméneur M, Tedetti M, Sayadi S, Sakka Hlaili A. Efficiency of benthic diatom-associated bacteria in the removal of benzo(a)pyrene and fluoranthene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141399. [PMID: 32866829 DOI: 10.1016/j.scitotenv.2020.141399] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
We investigated the efficiency of a benthic diatom-associated bacteria in removing benzo(a)pyrene (BaP) and fluoranthene (Flt). The diatom, isolated from a PAH-contaminated sediment of the Bizerte Lagoon (Tunisia), was exposed in axenic and non-axenic cultures to PAHs over 7 days. The diversity of the associated bacteria, both attached (AB) and free-living bacteria (FB), was analyzed by the 16S rRNA amplicon sequencing. The diatom, which maintained continuous growth under PAH treatments, was able to accumulate BaP and Flt, with different efficiencies between axenic and non-axenic cultures. Biodegradation, which constituted the main process for PAH elimination, was enhanced in the presence of bacteria, indicating the co-metabolic synergy of microalgae and associated bacteria in removing BaP and Flt. Diatom and bacteria showed different capacities in the degradation of BaP and Flt. Nitzschia sp. harbored bacterial communities with a distinct composition between attached and free-living bacteria. The AB fraction exhibited higher diversity and abundance relative to FB, while the FB fraction contained genera with the known ability of PAH degradation, such as Marivita, Erythrobacter, and Alcaligenes. Moreover, strains of Staphylococcus and Micrococcus, isolated from the FB community, showed the capacity to grow in the presence of crude oil. These results suggest that a "benthic Nitzschia sp.-associated hydrocarbon-degrading bacteria" consortium can be applied in the bioremediation of PAH-contaminated sites.
Collapse
Affiliation(s)
- Oumayma Kahla
- Laboratoire of Phytoplanctonology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia; University El Manar of Tunis, Faculty of Sciences of Tunis, Laboratory of Environmental Sciences, Biology and Physiology of Aquatic Organisms LR18ES41, Tunis, Tunisia
| | - Sondes Melliti Ben Garali
- Laboratoire of Phytoplanctonology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia; University El Manar of Tunis, Faculty of Sciences of Tunis, Laboratory of Environmental Sciences, Biology and Physiology of Aquatic Organisms LR18ES41, Tunis, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Najwa Kallel
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Hatem Zaghden
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Olivier Pringault
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Marianne Quéméneur
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Marc Tedetti
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Asma Sakka Hlaili
- Laboratoire of Phytoplanctonology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia; University El Manar of Tunis, Faculty of Sciences of Tunis, Laboratory of Environmental Sciences, Biology and Physiology of Aquatic Organisms LR18ES41, Tunis, Tunisia.
| |
Collapse
|
18
|
Askri R, Erable B, Etcheverry L, Saadaoui S, Neifar M, Cherif A, Chouchane H. Allochthonous and Autochthonous Halothermotolerant Bioanodes From Hypersaline Sediment and Textile Wastewater: A Promising Microbial Electrochemical Process for Energy Recovery Coupled With Real Textile Wastewater Treatment. Front Bioeng Biotechnol 2020; 8:609446. [PMID: 33392172 PMCID: PMC7773924 DOI: 10.3389/fbioe.2020.609446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
The textile and clothing industry is the first manufacture sector in Tunisia in terms of employment and number of enterprises. It generates large volumes of textile dyeing wastewater (TDWW) containing high concentrations of saline, alkaline, and recalcitrant pollutants that could fuel tenacious and resilient electrochemically active microorganisms in bioanodes of bioelectrochemical systems. In this study, a designed hybrid bacterial halothermotolerant bioanode incorporating indigenous and exogenous bacteria from both hypersaline sediment of Chott El Djerid (HSCE) and TDWW is proposed for simultaneous treatment of real TDWW and anodic current generation under high salinity. For the proposed halothermotolerant bioanodes, electrical current production, chemical oxygen demand (COD) removal efficiency, and bacterial community dynamics were monitored. All the experiments of halothermotolerant bioanode formation have been conducted on 6 cm2 carbon felt electrodes polarized at -0.1 V/SCE and inoculated with 80% of TDWW and 20% of HSCE for 17 days at 45°C. A reproducible current production of about 12.5 ± 0.2 A/m2 and a total of 91 ± 3% of COD removal efficiency were experimentally validated. Metagenomic analysis demonstrated significant differences in bacterial diversity mainly at species level between anodic biofilms incorporating allochthonous and autochthonous bacteria and anodic biofilm containing only autochthonous bacteria as a control. Therefore, we concluded that these results provide for the first time a new noteworthy alternative for achieving treatment and recover energy, in the form of a high electric current, from real saline TDWW.
Collapse
Affiliation(s)
- Refka Askri
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia.,Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Luc Etcheverry
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Sirine Saadaoui
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Mohamed Neifar
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
19
|
Ayadi H, Frikha-Dammak D, Fakhfakh J, Chamkha M, Hassairi I, Allouche N, Sayadi S, Maalej S. The saltern-derived Paludifilum halophilum DSM 102817 T is a new high-yield ectoines producer in minimal medium and under salt stress conditions. 3 Biotech 2020; 10:533. [PMID: 33214980 DOI: 10.1007/s13205-020-02512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
In the present study, the growth conditions and accumulation of ectoines (ectoine and hydroxyectoine) by Paludifilum halophilum DSM 102817T under salt stress conditions have been investigated. The productivity assay of this strain for ectoines revealed that the highest cellular content was reached in the minimal glucose sea water medium (SW-15) within 15% salinity. The addition of 0.1% (w/v) aspartic acid to the medium allowed an average of four times higher biomass production, and a dry mycelial biomass of 1.76 g L-1 was obtained after 6 days of growth in shake flasks at 40 °C and 200 rpm. Among the inorganic cations supplemented to the glucose SW-15 medium, the addition of 1 mM Fe2+ yielded the highest amount of mycelial biomass (3.45 g L-1) and total ectoines content (119 mg g-1), resulting in about 410 mg L-1 of products at the end of exponential growth phase. After 1 h of incubation in an osmotic downshock solution containing 2% NaCl, 70% of this content was released by the mycelium, and recovering cells maintained a high survival, with a maximal growth rate (µ max) of about 93% of the control population exposed to 15% NaCl. During growth at optimal salinity and temperature (15% NaCl and 40 °C), P. halophilum developed a compact and circular pellets that were easy to separate by simple decantation from both fermentation media and after hypoosmotic shock. Overall, the ectoines excreting P. halophilum could be a promising resource for ectoines production in a commercially valuable culture medium and at a large-scale fermentation process.
Collapse
Affiliation(s)
- Houda Ayadi
- Laboratoire de Biodiversité Marine et Environment (LR18ES/30), Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Donyez Frikha-Dammak
- Laboratoire de Biodiversité Marine et Environment (LR18ES/30), Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Jawhar Fakhfakh
- Laboratore de Chimie Organique (LR17ES/08), Unité des Substances Naturelles, Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratore des Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Ilem Hassairi
- Unité de Valorisation des résultats de la Recherche, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Noureddine Allouche
- Laboratore de Chimie Organique (LR17ES/08), Unité des Substances Naturelles, Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Sami Maalej
- Laboratoire de Biodiversité Marine et Environment (LR18ES/30), Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| |
Collapse
|
20
|
Karray F, Gargouri M, Chebaane A, Mhiri N, Mliki A, Sayadi S. Climatic Aridity Gradient Modulates the Diversity of the Rhizosphere and Endosphere Bacterial Microbiomes of Opuntia ficus-indica. Front Microbiol 2020; 11:1622. [PMID: 32849335 PMCID: PMC7401614 DOI: 10.3389/fmicb.2020.01622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Recent microbiome research has shown that soil fertility, plant-associated microbiome, and crop production can be affected by abiotic environmental parameters. The effect of aridity gradient on rhizosphere-soil (rhizosphere) and endosphere-root (endosphere) prokaryotic structure and diversity associated with cacti remain poorly investigated and understood. In the current study, next-generation sequencing approaches were used to characterize the diversity and composition of bacteria and archaea associated with the rhizosphere and endosphere of Opuntia ficus-indica spineless cacti in four bioclimatic zones (humid, semi-arid, upper-arid, and lower-arid) in Tunisia. Our findings showed that bacterial and archaeal cactus microbiomes changed in inside and outside roots and along the aridity gradient. Plant compartment and aridity gradient were the influencing factors on the differentiation of microbial communities in rhizosphere and endosphere samples. The co-occurrence correlations between increased and decreased OTUs in rhizosphere and endosphere samples and soil parameters were determined according to the aridity gradient. Blastococcus, Geodermatophilus, Pseudonocardia, Promicromonospora, and Sphingomonas were identified as prevailing hubs and were considered as specific biomarkers taxa, which could play a crucial role on the aridity stress. Overall, our findings highlighted the prominence of the climatic aridity gradient on the equilibrium and diversity of microbial community composition in the rhizosphere and endosphere of cactus.
Collapse
Affiliation(s)
- Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Asma Chebaane
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Isolation and diversity of sediment bacteria in the hypersaline aiding lake, China. PLoS One 2020; 15:e0236006. [PMID: 32649724 PMCID: PMC7351256 DOI: 10.1371/journal.pone.0236006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Halophiles are relatively unexplored as potential sources of novel species.
However, little is known about the culturable bacterial diversity thrive in
hypersaline lakes. In this work, a total of 343 bacteria from sediment samples
of Aiding Lake, China, were isolated using nine different media supplemented
with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria
recovered from the different media varied, indicating the need to optimize the
isolation conditions. The results showed an unexpected level of bacterial
diversity, with four phyla (Actinobacteria,
Firmicutes, Proteobacteria, and
Rhodothermaeota), fourteen orders
(Actinopolysporales, Alteromonadales,
Bacillales, Balneolales,
Chromatiales, Glycomycetales,
Jiangellales, Micrococcales,
Micromonosporales, Oceanospirillales,
Pseudonocardiales, Rhizobiales,
Streptomycetales, and
Streptosporangiales), including 17 families, 43 genera
(including two novel genera), and 71 species (including four novel species). The
predominant phyla included Actinobacteria and Firmicutes and the predominant
genera included Actinopolyspora,
Gracilibacillus, Halomonas,
Nocardiopsis, and Streptomyces. To our
knowledge, this is the first time that members of phylum
Rhodothermaeota were identified in sediment samples from a
salt lake.
Collapse
|
22
|
An evaluation of the core bacterial communities associated with hypersaline environments in the Qaidam Basin, China. Arch Microbiol 2020; 202:2093-2103. [PMID: 32488562 DOI: 10.1007/s00203-020-01927-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
Hypersaline lakes and saltern areas are important industrial and biodiversity resources in the Qaidam Basin of China that reside at > 2600 m asl. Most hypersaline environments in this area are characterized by saturated salinity (~ 300 g/L salinity), nearly neutral pH, intense ultraviolet radiation, and extremely variable temperature fluctuations. The core bacterial communities associated with these stressful environments have nevertheless remained uninvestigated. 16S rRNA gene Illumina sequencing analyses revealed that the bacterial communities were dominated by core lineages including the Proteobacteria (39.4-64.6%) and the Firmicutes (17.0-42.7%). However, the relative abundances of common lineages, and especially the five most abundant taxa of Pseudomonas, Lactococcus, Anoxybacillus, Acinetobacter, and Brevundimonas, were highly variable across communities and closely associated with hypersaline characteristics in the samples. Network analysis revealed the presence of co-occurrence high relative abundance taxa (cluster I) that were highly correlated across all hypersaline samples. Additionally, temperature, total organic carbon, K+, and Mg2+ correlated highest with taxonomic distributions across communities. These results highlight the potential mechanisms that could underlie survival and adaptation to these extreme hypersaline ecosystems.
Collapse
|