1
|
Xiong D, Li Z, Qi W, Wang S, Huang J, Zhang N, Zhang Z, Huang L. Archaeal replicative primase mediates DNA double-strand break repair. Nucleic Acids Res 2025; 53:gkaf322. [PMID: 40272359 PMCID: PMC12019639 DOI: 10.1093/nar/gkaf322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Archaea, often thriving in extreme habitats, are believed to have evolved efficient DNA repair pathways to cope with constant insults to their genomes. However, how these organisms repair DNA double-strand breaks (DSBs), the most lethal DNA lesions, remains unclear. Here, we show that replicative primase consisting of the catalytic subunit PriS and the noncatalytic subunits PriL and PriX from the hyperthermophilic archaeon Saccharolobus islandicus is involved in DSB repair. We show that the overproduction or knockdown of PriL increases or decreases, respectively, the rate of survival and mutation frequency of S. islandicus cells following treatment with a DNA damaging agent. The increase in mutation is attributed primarily to an increase in small insertions or deletions. Further, overproduction of PriL enhances the repair of CRISPR-generated DSBs in vivo. These results are consistent with the extraordinary ability of PriSL to promote annealing between DNA strands sharing microhomology in addition to the activity of the heterodimer in terminal transfer and primer extension. The primase-mediated DSB repair is cell-cycle dependent since PriL is barely detectable during the S/G2 transition. Our data demonstrate that replicative primase is involved in DSB repair through microhomology-mediated end joining in Archaea.
Collapse
Affiliation(s)
- Daijiang Xiong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhimeng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou 511458, China
| | - Wen Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Shaoying Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Junkai Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou 511458, China
| | - Ningning Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou 511458, China
| |
Collapse
|
2
|
Yang P, Zhang S, Hu D, Li X, Guo Y, Guo H, Zhang L, Ding X. Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System. Int J Mol Sci 2024; 25:12544. [PMID: 39684256 DOI: 10.3390/ijms252312544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
The CRISPR-Cas system functions as an adaptive immune mechanism in archaea and bacteria, providing defense against the invasion of foreign nucleic acids. Most CRISPR-Cas systems are classified into class 1 or class 2, with further subdivision into several subtypes. The primary distinction between class 1 and class 2 systems lies in the assembly of their effector modules. In class 1 systems, the effector complex consists of multiple proteins with distinct functions, whereas in class 2 systems, the effector is associated with a single protein. Class 1 systems account for approximately 90% of the CRISPR-Cas repertoire and are categorized into three types (type I, type IV, and type III) and 12 subtypes. To date, various CRISPR-Cas systems have been widely employed in the field of genetic engineering as essential tools and techniques for genome editing. Type I CRISPR-Cas systems remain a valuable resource for developing sophisticated application tools. This review provides a comprehensive review of the characteristics, mechanisms of action, and applications of class 1 type I CRISPR-Cas systems, as well as transposon-associated systems, offering effective approaches and insights for future research on the mechanisms of action, as well as the subsequent development and application of type I CRISPR-Cas systems.
Collapse
Affiliation(s)
- Peihong Yang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuai Zhang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Debao Hu
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xin Li
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Yiwen Guo
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Hong Guo
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Linlin Zhang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiangbin Ding
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| |
Collapse
|
3
|
Hu T, Ji Q, Ke X, Zhou H, Zhang S, Ma S, Yu C, Ju W, Lu M, Lin Y, Ou Y, Zhou Y, Xiao Y, Xu C, Hu C. Repurposing Type I-A CRISPR-Cas3 for a robust diagnosis of human papillomavirus (HPV). Commun Biol 2024; 7:858. [PMID: 39003402 PMCID: PMC11246428 DOI: 10.1038/s42003-024-06537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
R-loop-triggered collateral single-stranded DNA (ssDNA) nuclease activity within Class 1 Type I CRISPR-Cas systems holds immense potential for nucleic acid detection. However, the hyperactive ssDNase activity of Cas3 introduces unwanted noise and false-positive results. In this study, we identified a novel Type I-A Cas3 variant derived from Thermococcus siculi, which remains in an auto-inhibited state until it is triggered by Cascade complex and R-loop formation. This Type I-A CRISPR-Cas3 system not only exhibits an expanded protospacer adjacent motif (PAM) recognition capability but also demonstrates remarkable intolerance towards mismatched sequences. Furthermore, it exhibits dual activation modes-responding to both DNA and RNA targets. The culmination of our research efforts has led to the development of the Hyper-Active-Verification Establishment (HAVE, ). This innovation enables swift and precise human papillomavirus (HPV) diagnosis in clinical samples, providing a robust molecular diagnostic tool based on the Type I-A CRISPR-Cas3 system. Our findings contribute to understanding type I-A CRISPR-Cas3 system regulation and facilitate the creation of advanced diagnostic solutions with broad clinical applicability.
Collapse
Affiliation(s)
- Tao Hu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, 310052, China
| | - Quanquan Ji
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xinxin Ke
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, 310052, China
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Senfeng Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shengsheng Ma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Chenlin Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjun Ju
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yangjing Ou
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yingsi Zhou
- HuidaGene Therapeutics Inc., Shanghai, China.
| | - Yibei Xiao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chunlong Xu
- Lingang Laboratory, Shanghai, China.
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
4
|
Liu Z, Liu J, Yang Z, Zhu L, Zhu Z, Huang H, Jiang L. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes. Biotechnol Adv 2023; 68:108241. [PMID: 37633620 DOI: 10.1016/j.biotechadv.2023.108241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing in various prokaryotes. However, the perturbation of DNA homeostasis and the inherent toxicity of Cas9/12a proteins could easily lead to cell death, which led to the development of endogenous CRISPR-Cas systems. Programming the widespread endogenous CRISPR-Cas systems for in situ genome editing represents a promising tool in prokaryotes, especially in genetically intractable species. Here, this review briefly summarizes the advances of endogenous CRISPR-Cas-mediated genome editing, covering aspects of establishing and optimizing the genetic tools. In particular, this review presents the application of different types of endogenous CRISPR-Cas tools for strain engineering, including genome editing and genetic regulation. Notably, this review also provides a detailed discussion of the transposon-associated CRISPR-Cas systems, and the programmable RNA-guided transposition using endogenous CRISPR-Cas systems to enable editing of microbial communities for understanding and control. Therefore, they will be a powerful tool for targeted genetic manipulation. Overall, this review will not only facilitate the development of standard genetic manipulation tools for non-model prokaryotes but will also enable more non-model prokaryotes to be genetically tractable.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Fast Track Diagnostic Tools for Clinical Management of Sepsis: Paradigm Shift from Conventional to Advanced Methods. Diagnostics (Basel) 2023; 13:diagnostics13020277. [PMID: 36673087 PMCID: PMC9857847 DOI: 10.3390/diagnostics13020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is one of the deadliest disorders in the new century due to specific limitations in early and differential diagnosis. Moreover, antimicrobial resistance (AMR) is becoming the dominant threat to human health globally. The only way to encounter the spread and emergence of AMR is through the active detection and identification of the pathogen along with the quantification of resistance. For better management of such disease, there is an essential requirement to approach many suitable diagnostic techniques for the proper administration of antibiotics and elimination of these infectious diseases. The current method employed for the diagnosis of sepsis relies on the conventional culture of blood suspected infection. However, this method is more time consuming and generates results that are false negative in the case of antibiotic pretreated samples as well as slow-growing microbes. In comparison to the conventional method, modern methods are capable of analyzing blood samples, obtaining accurate results from the suspicious patient of sepsis, and giving all the necessary information to identify the pathogens as well as AMR in a short period. The present review is intended to highlight the culture shift from conventional to modern and advanced technologies including their limitations for the proper and prompt diagnosing of bloodstream infections and AMR detection.
Collapse
|
6
|
Hu C, Ni D, Nam KH, Majumdar S, McLean J, Stahlberg H, Terns MP, Ke A. Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools. Mol Cell 2022; 82:2754-2768.e5. [PMID: 35835111 PMCID: PMC9357151 DOI: 10.1016/j.molcel.2022.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022]
Abstract
Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degradation. Contrary to this model, here, we show that type I-A Cascade and Cas3 function as an integral effector complex. We provide four cryoelectron microscopy (cryo-EM) snapshots of the Pyrococcus furiosus (Pfu) type I-A effector complex in different stages of DNA recognition and degradation. The HD nuclease of Cas3 is autoinhibited inside the effector complex. It is only allosterically activated upon full R-loop formation, when the entire targeted region has been validated by the RNA guide. The mechanistic insights inspired us to convert Pfu Cascade-Cas3 into a high-sensitivity, low-background, and temperature-activated nucleic acid detection tool. Moreover, Pfu CRISPR-Cas3 shows robust bi-directional deletion-editing activity in human cells, which could find usage in allele-specific inactivation of disease-causing mutations.
Collapse
Affiliation(s)
- Chunyi Hu
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, Institute of Physics, Faculty of Basic Sciences, Swiss Federal Institute of Technology (EPFL), Cubotron, Route de la Sorge, 1015 Lausanne, Switzerland; Department of Fundamental Biology, Faculty of Biology and Medicine, University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Sonali Majumdar
- Department of Biochemistry and Molecular Biology, Department of Genetics, and Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Justin McLean
- Department of Biochemistry and Molecular Biology, Department of Genetics, and Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, Faculty of Basic Sciences, Swiss Federal Institute of Technology (EPFL), Cubotron, Route de la Sorge, 1015 Lausanne, Switzerland; Department of Fundamental Biology, Faculty of Biology and Medicine, University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, Department of Genetics, and Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Hu C, Ke A. Reconstitution and biochemical characterization of the RNA-guided helicase-nuclease protein Cas3 from type I-A CRISPR–Cas system. Methods Enzymol 2022; 673:405-424. [DOI: 10.1016/bs.mie.2022.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Görücü Yilmaz S. Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. EXCLI JOURNAL 2021; 20:19-45. [PMID: 33510590 PMCID: PMC7838830 DOI: 10.17179/excli2020-3070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Genome editing technologies include techniques used for desired genetic modifications and allow the insertion, modification or deletion of specific DNA fragments. Recent advances in genome biology offer unprecedented promise for interdisciplinary collaboration and applications in gene editing. New genome editing technologies enable specific and efficient genome modifications. The sources that inspire these modifications and already exist in the genome are DNA degradation enzymes and DNA repair pathways. Six of these recent technologies are the clustered regularly interspaced short palindromic repeats (CRISPR), leveraging endogenous ADAR for programmable editing of RNA (LEAPER), recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing (RESTORE), chemistry-based artificial restriction DNA cutter (ARCUT), single homology arm donor mediated intron-targeting integration (SATI), RNA editing for specific C-to-U exchange (RESCUE). These technologies are widely used from various biomedical researches to clinics, agriculture, and allow you to rearrange genomic sequences, create cell lines and animal models to solve human diseases. This review emphasizes the characteristics, superiority, limitations, also whether each technology can be used in different biological systems and the potential application of these systems in the treatment of several human diseases.
Collapse
Affiliation(s)
- Senay Görücü Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey 27310
| |
Collapse
|
9
|
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules 2020; 10:E1523. [PMID: 33172134 PMCID: PMC7694759 DOI: 10.3390/biom10111523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.
Collapse
|
10
|
Lin J, Fuglsang A, Kjeldsen AL, Sun K, Bhoobalan-Chitty Y, Peng X. DNA targeting by subtype I-D CRISPR-Cas shows type I and type III features. Nucleic Acids Res 2020; 48:10470-10478. [PMID: 32960267 PMCID: PMC7544194 DOI: 10.1093/nar/gkaa749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Prokaryotic CRISPR-Cas immune systems are classified into six types based on their effector complexes which cleave dsDNA specifically (types I, II and V), ssRNA exclusively (type VI) or both ssRNA via a ruler mechanism and ssDNA unspecifically (type III). To date, no specific cleavage of ssDNA target has been reported for CRISPR-Cas. Here, we demonstrate dual dsDNA and ssDNA cleavage activities of a subtype I-D system which carries a type III Cas10-like large subunit, Cas10d. In addition to a specific dsDNA cleavage activity dependent on the HD domain of Cas10d, the helicase Cas3' and a compatible protospacer adjacent motif (PAM), the subtype I-D effector complex can cleave ssDNA that is complementary in sequence to the crRNA. Significantly, the ssDNA cleavage sites occur at 6-nt intervals and the cleavage is catalysed by the backbone subunit Csc2 (Cas7), similar to the periodic cleavage of ssRNA by the backbone subunit of type III effectors. The typical type I cleavage of dsDNA combined with the exceptional 6-nt spaced cleavage of ssDNA and the presence of a type III like large subunit provide strong evidence for the subtype I-D system being an evolutionary intermediate between type I and type III CRISPR-Cas systems.
Collapse
Affiliation(s)
- Jinzhong Lin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Anders Fuglsang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Anders Lynge Kjeldsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kaiyan Sun
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yuvaraj Bhoobalan-Chitty
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Xu Peng
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
CRISPR-Cas adaptive immune systems in Sulfolobales: genetic studies and molecular mechanisms. SCIENCE CHINA-LIFE SCIENCES 2020; 64:678-696. [DOI: 10.1007/s11427-020-1745-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
|
12
|
Nimkar S, Anand B. Cas3/I-C mediated target DNA recognition and cleavage during CRISPR interference are independent of the composition and architecture of Cascade surveillance complex. Nucleic Acids Res 2020; 48:2486-2501. [PMID: 31980818 PMCID: PMC7049708 DOI: 10.1093/nar/gkz1218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/17/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
In type I CRISPR-Cas system, Cas3—a nuclease cum helicase—in cooperation with Cascade surveillance complex cleaves the target DNA. Unlike the Cascade/I-E, which is composed of five subunits, the Cascade/I-C is made of only three subunits lacking the CRISPR RNA processing enzyme Cas6, whose role is assumed by Cas5. How these differences in the composition and organization of Cascade subunits in type I-C influence the Cas3/I-C binding and its target cleavage mechanism is poorly understood. Here, we show that Cas3/I-C is intrinsically a single-strand specific promiscuous nuclease. Apart from the helicase domain, a constellation of highly conserved residues—which are unique to type I-C—located in the uncharacterized C-terminal domain appears to influence the nuclease activity. Recruited by Cascade/I-C, the HD nuclease of Cas3/I-C nicks the single-stranded region of the non-target strand and positions the helicase motor. Powered by ATP, the helicase motor reels in the target DNA, until it encounters the roadblock en route, which stimulates the HD nuclease. Remarkably, we show that Cas3/I-C supplants Cas3/I-E for CRISPR interference in type I-E in vivo, suggesting that the target cleavage mechanism is evolutionarily conserved between type I-C and type I-E despite the architectural difference exhibited by Cascade/I-C and Cascade/I-E.
Collapse
Affiliation(s)
- Siddharth Nimkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - B Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
13
|
Foster K, Grüschow S, Bailey S, White MF, Terns MP. Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity. Nucleic Acids Res 2020; 48:4418-4434. [PMID: 32198888 PMCID: PMC7192623 DOI: 10.1093/nar/gkaa176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Type III CRISPR-Cas prokaryotic immune systems provide anti-viral and anti-plasmid immunity via a dual mechanism of RNA and DNA destruction. Upon target RNA interaction, Type III crRNP effector complexes become activated to cleave both target RNA (via Cas7) and target DNA (via Cas10). Moreover, trans-acting endoribonucleases, Csx1 or Csm6, can promote the Type III immune response by destroying both invader and host RNAs. Here, we characterize how the RNase and DNase activities associated with Type III-B immunity in Pyrococcus furiosus (Pfu) are regulated by target RNA features and second messenger signaling events. In vivo mutational analyses reveal that either the DNase activity of Cas10 or the RNase activity of Csx1 can effectively direct successful anti-plasmid immunity. Biochemical analyses confirmed that the Cas10 Palm domains convert ATP into cyclic oligoadenylate (cOA) compounds that activate the ribonuclease activity of Pfu Csx1. Furthermore, we show that the HEPN domain of the adenosine-specific endoribonuclease, Pfu Csx1, degrades cOA signaling molecules to provide an auto-inhibitory off-switch of Csx1 activation. Activation of both the DNase and cOA generation activities require target RNA binding and recognition of distinct target RNA 3' protospacer flanking sequences. Our results highlight the complex regulatory mechanisms controlling Type III CRISPR immunity.
Collapse
Affiliation(s)
- Kawanda Foster
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Michael P Terns
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Abstract
RNA is produced from the majority of human genomic sequences, although only a relatively small portion of these transcripts has known functions. Diverse RNA species interact with RNA, DNA, proteins, lipids, and metabolites to form intricate molecular networks. In this review, we attempt to delineate diverse RNA functions by interaction types between RNA and other macromolecules. Through such interactions RNAs participate in essentially every major molecular function and process, including information flow and storage, environment sensing, signal transduction, and gene regulation at transcriptional and posttranscriptional levels. Through such interactions, RNAs promote or inhibit diverse biological processes, and act as catalyzer or quencher to modulate the pace of these progresses. Alterations and personal variations of these interactions are mechanistically coupled with disease etiology and phenotypical variations for clinical use.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, USA
| |
Collapse
|
15
|
Grainy J, Garrett S, Graveley BR, P Terns M. CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2. Nucleic Acids Res 2019; 47:7518-7531. [PMID: 31219587 PMCID: PMC6698737 DOI: 10.1093/nar/gkz548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Acquiring foreign spacer DNA into the CRISPR locus is an essential primary step of the CRISPR-Cas pathway in prokaryotes for developing host immunity to mobile genetic elements. Here, we investigate spacer integration in vitro using proteins from Pyrococcus furiosus and demonstrate that Cas1 and Cas2 are sufficient to accurately integrate spacers into a minimal CRISPR locus. Using high-throughput sequencing, we identified high frequency spacer integration occurring at the same CRISPR repeat border sites utilized in vivo, as well as at several non-CRISPR plasmid sequences which share features with repeats. Analysis of non-CRISPR integration sites revealed that Cas1 and Cas2 are directed to catalyze full-site spacer integration at specific DNA stretches where guanines and/or cytosines are 30 base pairs apart and the intervening sequence harbors several positionally conserved bases. Moreover, assaying a series of CRISPR repeat mutations, followed by sequencing of the integration products, revealed that the specificity of integration is primarily directed by sequences at the leader-repeat junction as well as an adenine-rich sequence block in the mid-repeat. Together, our results indicate that P. furiosus Cas1 and Cas2 recognize multiple sequence features distributed over a 30 base pair DNA region for accurate spacer integration at the CRISPR repeat.
Collapse
Affiliation(s)
- Julie Grainy
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Sandra Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Michael P Terns
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
Sahel DK, Mittal A, Chitkara D. CRISPR/Cas System for Genome Editing: Progress and Prospects as a Therapeutic Tool. J Pharmacol Exp Ther 2019; 370:725-735. [PMID: 31122933 DOI: 10.1124/jpet.119.257287] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/20/2019] [Indexed: 03/08/2025] Open
Abstract
CRISPR was first observed in 1987 in bacteria and archaea and was later confirmed as part of bacterial adaptive immunity against the attacking phage. The CRISPR/Cas restriction system involves a restriction endonuclease enzyme guided by a hybrid strand of RNA consisting of CRISPR RNA and trans-activating RNA, which results in gene knockout or knockin followed by nonhomologous end joining and homology-directed repair. Owing to its efficiency, specificity, and reproducibility, the CRISPR/Cas restriction system was said to be a breakthrough in the field of biotechnology. Apart from its application in biotechnology, CRISPR/Cas has been explored for its therapeutic potential in several diseases including cancer, Alzheimer's disease, sickle cell disease, Duchenne muscular dystrophy, neurologic disorders, etc., wherein CRISPR/Cas components such as Cas9/single guide RNA (sgRNA) ribonucleoprotein, sgRNA/mRNA, and plasmid were delivered. However, limitations including immunogenicity, low transfection, limited payload, instability, and off-target binding pose hurdles in its therapeutic use. Nonviral vectors (including cationic polymers, lipids, etc.), classically used as carriers for therapeutic genes, were used to deliver CRISPR/Cas components and showed interesting results. Herein, we discuss the CRISPR/Cas system and its brief history and classification, followed by its therapeutic applications using current nonviral delivery strategies.
Collapse
Affiliation(s)
- Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Vidya Vihar, Pilani, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Vidya Vihar, Pilani, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Vidya Vihar, Pilani, Rajasthan, India
| |
Collapse
|