1
|
Maphosa S, Steyn M, Lebre PH, Gokul JK, Convey P, Marais E, Maggs-Kölling G, Cowan DA. Rhizosphere bacterial communities of Namib Desert plant species: Evidence of specialised plant-microbe associations. Microbiol Res 2025; 293:128076. [PMID: 39884152 DOI: 10.1016/j.micres.2025.128076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Rhizosphere microbial communities are intimately associated with plant root surfaces. The rhizosphere microbiome is recruited from the surrounding soil and is known to impact positively on the plant host via enhanced resistance to pathogens, increased nutrient availability, growth stimulation and increased resistance to desiccation. Desert ecosystems harbour a diversity of perennial and annual plant species, generally exhibiting considerable physiological adaptation to the low-water environment. In this study, we explored the rhizosphere bacterial microbiomes associated with selected desert plant species. The rhizosphere bacterial communities of 11 plant species from the central Namib Desert were assessed using 16S rRNA gene-dependent phylogenetic analyses. The rhizosphere microbial community of each host plant species was compared with control soils collected from their immediate vicinity, and with those of all other host plants. Rhizosphere and control soil bacterial communities differed significantly and were influenced by both location and plant species. Rhizosphere-associated genera included 67 known plant growth-promoting taxa, including Rhizobium, Bacillus, Microvirga, Kocuria and Paenibacillus. Other than Kocuria, these genera constituted the 'core' rhizosphere bacterial microbiome, defined as being present in > 90 % of the rhizosphere communities. Nine of the 11 desert plant species harboured varying numbers and proportions of species-specific microbial taxa. Predictive analyses of functional pathways linked to rhizosphere microbial taxa showed that these were significantly enriched in the biosynthesis or degradation of a variety of substances such as sugars, secondary metabolites, phenolic compounds and antimicrobials. Overall, our data suggest that plant species in the Namib Desert recruit unique taxa to their rhizosphere bacterial microbiomes that may contribute to their resilience in this extreme environment.
Collapse
Affiliation(s)
- Silindile Maphosa
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Mégan Steyn
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Jarishma K Gokul
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa; Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter Convey
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom; Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa.
| |
Collapse
|
2
|
Sauma-Sánchez T, Alcorta J, Tamayo-Leiva J, Díez B, Bezuidenhout H, Cowan DA, Ramond JB. Functional redundancy buffers the effect of poly-extreme environmental conditions on southern African dryland soil microbial communities. FEMS Microbiol Ecol 2024; 100:fiae157. [PMID: 39568064 PMCID: PMC11636270 DOI: 10.1093/femsec/fiae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/09/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Drylands' poly-extreme conditions limit edaphic microbial diversity and functionality. Furthermore, climate change exacerbates soil desiccation and salinity in most drylands. To better understand the potential effects of these changes on dryland microbial communities, we evaluated their taxonomic and functional diversities in two Southern African dryland soils with contrasting aridity and salinity. Fungal community structure was significantly influenced by aridity and salinity, while Bacteria and Archaea only by salinity. Deterministic homogeneous selection was significantly more important for bacterial and archaeal communities' assembly in hyperarid and saline soils when compared to those from arid soils. This suggests that niche partitioning drives bacterial and archaeal communities' assembly under the most extreme conditions. Conversely, stochastic dispersal limitations drove the assembly of fungal communities. Hyperarid and saline soil communities exhibited similar potential functional capacities, demonstrating a disconnect between microbial structure and function. Structure variations could be functionally compensated by different taxa with similar functions, as implied by the high levels of functional redundancy. Consequently, while environmental selective pressures shape the dryland microbial community assembly and structures, they do not influence their potential functionality. This suggests that they are functionally stable and that they could be functional even under harsher conditions, such as those expected with climate change.
Collapse
Affiliation(s)
- Tomás Sauma-Sánchez
- Extreme Ecosystem Microbiomics & Ecogenomics (E²ME) Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jaime Alcorta
- Microbial Ecology of Extreme Systems Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8331150, Chile
| | - Javier Tamayo-Leiva
- Microbial Ecology of Extreme Systems Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR), Santiago 8370449, Chile
| | - Beatriz Díez
- Microbial Ecology of Extreme Systems Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR), Santiago 8370449, Chile
| | - Hugo Bezuidenhout
- Scientific Services Kimberley, South African National Parks, Kimberley 8306, South Africa
- Applied Behavioural Ecology & Ecosystem Research Unit, UNISA, P/Bag X6, Florida 1710, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, P/Bag X20, Pretoria 0028, South Africa
| | - Jean-Baptiste Ramond
- Extreme Ecosystem Microbiomics & Ecogenomics (E²ME) Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, P/Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
3
|
Kidron GJ, Kronenfeld R, Xiao B, Starinsky A, McKay CP, Or D. Vapor flux induced by temperature gradient is responsible for providing liquid water to hypoliths. Sci Rep 2024; 14:23140. [PMID: 39366992 PMCID: PMC11452694 DOI: 10.1038/s41598-024-73555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Commonly comprised of cyanobacteria, algae, bacteria and fungi, hypolithic communities inhabit the underside of cobblestones and pebbles in diverse desert biomes. Notwithstanding their abundance and widespread geographic distribution and their growth in the driest regions on Earth, the source of water supporting these communities remains puzzling. Adding to the puzzle is the presence of cyanobacteria that require liquid water for net photosynthesis. Here we report results from six-year monitoring in the Negev Desert (with average annual precipitation of ~ 90 mm) during which periodical measurements of the water content of cobblestone undersides were carried out. We show that while no effective wetting took place following direct rain, dew or fog, high vapor flux, induced by a sharp temperature gradient, took place from the wet subsurface soil after rain, resulting in wet-dry cycles and wetting of the cobblestone undersides. Up to 12 wet-dry cycles were recorded following a single rain event, which resulted in vapor condensation on the undersides of the cobblestones, with the daily wet phase lasting for several hours during daylight. This 'concealed mechanism' expands the distribution of photoautotrophic organisms into hostile regions where the abiotic conditions limit their growth, and provides the driving force for important evolutionary processes not yet fully explored.
Collapse
Affiliation(s)
- Giora J Kidron
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram Campus, Jerusalem, 91904, Israel.
| | - Rafael Kronenfeld
- Meteorological unit, Israel Meteorological Service, Kibbutz Sede Boqer, 84993, Israel
| | - Bo Xiao
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Abraham Starinsky
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram Campus, Jerusalem, 91904, Israel
| | - Christopher P McKay
- Space Science Division, Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, USA
| | - Dani Or
- Department of Environmental Systems Science, Swiss Federal Institute of Technology ETH, Universitätstrasse 16, Zürich, CH-8092, Switzerland.
- Desert Research Institute, Division of Hydrologic Sciences, 2215 Raggio Parkway, Reno, NV, 89512, USA.
| |
Collapse
|
4
|
Bosch J, Lebre PH, Marais E, Maggs‐Kölling G, Cowan DA. Kinetics and pathways of sub-lithic microbial community (hypolithon) development. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13290. [PMID: 38923208 PMCID: PMC11194044 DOI: 10.1111/1758-2229.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
Type I hypolithons are microbial communities dominated by Cyanobacteria. They adhere to the underside of semi-translucent rocks in desert pavements, providing them with a refuge from the harsh abiotic stresses found on the desert soil surface. Despite their crucial role in soil nutrient cycling, our understanding of their growth rates and community development pathways remains limited. This study aimed to quantify the dynamics of hypolithon formation in the pavements of the Namib Desert. We established replicate arrays of sterile rock tiles with varying light transmission in two areas of the Namib Desert, each with different annual precipitation regimes. These were sampled annually over 7 years, and the samples were analysed using eDNA extraction and 16S rRNA gene amplicon sequencing. Our findings revealed that in the zone with higher precipitation, hypolithon formation became evident in semi-translucent rocks 3 years after the arrays were set up. This coincided with a Cyanobacterial 'bloom' in the adherent microbial community in the third year. In contrast, no visible hypolithon formation was observed at the array set up in the hyper-arid zone. This study provides the first quantitative evidence of the kinetics of hypolithon development in hot desert environments, suggesting that development rates are strongly influenced by precipitation regimes.
Collapse
Affiliation(s)
- Jason Bosch
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
- Institute of Microbiology of the Czech Academy of SciencesCzech Academy of SciencesPrahaCzech Republic
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | | | | | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
5
|
León-Sobrino C, Ramond JB, Coclet C, Kapitango RM, Maggs-Kölling G, Cowan D. Temporal dynamics of microbial transcription in wetted hyperarid desert soils. FEMS Microbiol Ecol 2024; 100:fiae009. [PMID: 38299778 PMCID: PMC10913055 DOI: 10.1093/femsec/fiae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024] Open
Abstract
Rainfall is rare in hyperarid deserts but, when it occurs, it triggers large biological responses essential for the long-term maintenance of the ecosystem. In drylands, microbes play major roles in nutrient cycling, but their responses to short-lived opportunity windows are poorly understood. Due to its ephemeral nature, mRNA is ideally suited to study microbiome dynamics upon abrupt changes in the environment. We analyzed microbial community transcriptomes after simulated rainfall in a Namib Desert soil over 7 days. Using total mRNA from dry and watered plots we infer short-term functional responses in the microbiome. A rapid two-phase cycle of activation and return to basal state was completed in a short period. Motility systems activated immediately, whereas competition-toxicity increased in parallel to predator taxa and the drying of soils. Carbon fixation systems were downregulated, and reactivated upon return to a near-dry state. The chaperone HSP20 was markedly regulated by watering across all major bacteria, suggesting a particularly important role in adaptation to desiccated ecosystems. We show that transcriptomes provide consistent and high resolution information on microbiome processes in a low-biomass environment, revealing shared patterns across taxa. We propose a structured dispersal-predation dynamic as a central driver of desert microbial responses to rainfall.
Collapse
Affiliation(s)
- Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- Extreme Ecosystem Microbiomics and Ecogenomics (E²ME) Lab., Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clément Coclet
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| | | | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| |
Collapse
|
6
|
Dong L, Li MX, Li S, Yue LX, Ali M, Han JR, Lian WH, Hu CJ, Lin ZL, Shi GY, Wang PD, Gao SM, Lian ZH, She TT, Wei QC, Deng QQ, Hu Q, Xiong JL, Liu YH, Li L, Abdelshafy OA, Li WJ. Aridity drives the variability of desert soil microbiomes across north-western China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168048. [PMID: 37890638 DOI: 10.1016/j.scitotenv.2023.168048] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/23/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Dryland covers >35 % of the terrestrial surface and the global extent of dryland increases due to the forecasted increase in aridity driven by climate change. Due to the climate change-driven aridity ecosystems, deserts provide one of the most hostile environments for microbial life and survival. Therefore, a detailed study was carried out to explore the deserts with different aridity levels (exposed to severe climate change) influence on microbial (bacteria, fungi, and protist) diversity patterns, assembly processes, and co-occurrence. The results revealed that the aridity (semi-arid, arid, and hyper-arid) patterns caused distinct changes in environmental heterogeneity in desert ecosystems. Similarly, microbial diversities were also reduced with increasing the aridity pattern, and it was found that environmental heterogeneity is highly involved in affecting microbial diversities under different ecological niches. Interestingly, it was found that certain microbes, including bacterial (Firmicutes), fungal (Sordariomycetes), and protistan (Ciliophora) abundance increased with increasing aridity levels, indicating that these microbes might possess the capability to tolerate the environmental stress conditions. Moreover, microbial community turnover analysis revealed that bacterial diversities followed homogenous selection, whereas fungi and protists were mostly driven by the dispersal limitation pattern. Co-occurrence network analysis showed that hyper-arid and arid conditions tightened the bacterial and fungal communities and had more positive associations compared to protistan. In conclusion, multiple lines of evidence were provided to shed light on the habitat specialization impact on microbial (bacteria, fungi, and protists) communities and composition under different desert ecosystems.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mei-Xiang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ling-Xiang Yue
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Guo-Yuan Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Pan-Deng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Shao-Ming Gao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ting-Ting She
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Qi-Chuang Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Jia-Liang Xiong
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Osama Abdalla Abdelshafy
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
7
|
Coleine C, Delgado-Baquerizo M, DiRuggiero J, Guirado E, Harfouche AL, Perez-Fernandez C, Singh BK, Selbmann L, Egidi E. Dryland microbiomes reveal community adaptations to desertification and climate change. THE ISME JOURNAL 2024; 18:wrae056. [PMID: 38552152 PMCID: PMC11031246 DOI: 10.1093/ismejo/wrae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Drylands account for 45% of the Earth's land area, supporting ~40% of the global population. These regions support some of the most extreme environments on Earth, characterized by extreme temperatures, low and variable rainfall, and low soil fertility. In these biomes, microorganisms provide vital ecosystem services and have evolved distinctive adaptation strategies to endure and flourish in the extreme. However, dryland microbiomes and the ecosystem services they provide are under threat due to intensifying desertification and climate change. In this review, we provide a synthesis of our current understanding of microbial life in drylands, emphasizing the remarkable diversity and adaptations of these communities. We then discuss anthropogenic threats, including the influence of climate change on dryland microbiomes and outline current knowledge gaps. Finally, we propose research priorities to address those gaps and safeguard the sustainability of these fragile biomes.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, E-41012, Spain
| | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Emilio Guirado
- Multidisciplinary Institute for Environment Studies “Ramón Margalef”, Universidad de Alicante, Alicante E-03071, Spain
| | - Antoine L Harfouche
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo 01100, Italy
| | | | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith 2750, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2750, Australia
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), Genoa 16128, Italy
| | - Eleonora Egidi
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith 2750, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2750, Australia
| |
Collapse
|
8
|
Li S, Lian WH, Han JR, Ali M, Lin ZL, Liu YH, Li L, Zhang DY, Jiang XZ, Li WJ, Dong L. Capturing the microbial dark matter in desert soils using culturomics-based metagenomics and high-resolution analysis. NPJ Biofilms Microbiomes 2023; 9:67. [PMID: 37736746 PMCID: PMC10516943 DOI: 10.1038/s41522-023-00439-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Deserts occupy one-third of the Earth's terrestrial surface and represent a potentially significant reservoir of microbial biodiversity, yet the majority of desert microorganisms remain uncharacterized and are seen as "microbial dark matter". Here, we introduce a multi-omics strategy, culturomics-based metagenomics (CBM) that integrates large-scale cultivation, full-length 16S rRNA gene amplicon, and shotgun metagenomic sequencing. The results showed that CBM captured a significant amount of taxonomic and functional diversity missed in direct sequencing by increasing the recovery of amplicon sequence variants (ASVs) and high/medium-quality metagenome-assembled genomes (MAGs). Importantly, CBM allowed the post hoc recovery of microbes of interest (e.g., novel or specific taxa), even those with extremely low abundance in the culture. Furthermore, strain-level analyses based on CBM and direct sequencing revealed that the desert soils harbored a considerable number of novel bacterial candidates (1941, 51.4%), of which 1095 (from CBM) were culturable. However, CBM would not exactly reflect the relative abundance of true microbial composition and functional pathways in the in situ environment, and its use coupled with direct metagenomic sequencing could provide greater insight into desert microbiomes. Overall, this study exemplifies the CBM strategy with high-resolution is an ideal way to deeply explore the untapped novel bacterial resources in desert soils, and substantially expands our knowledge on the microbial dark matter hidden in the vast expanse of deserts.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
- School of Life Science, Jiaying University, Meizhou, 514015, China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Dong-Ya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, 510700, China
| | - Xian-Zhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, 510700, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China.
| |
Collapse
|
9
|
Cowan DA, Cary SC, DiRuggiero J, Eckardt F, Ferrari B, Hopkins DW, Lebre PH, Maggs-Kölling G, Pointing SB, Ramond JB, Tribbia D, Warren-Rhodes K. 'Follow the Water': Microbial Water Acquisition in Desert Soils. Microorganisms 2023; 11:1670. [PMID: 37512843 PMCID: PMC10386458 DOI: 10.3390/microorganisms11071670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions. It, therefore, follows that other, less obvious sources of water may sustain the microbial cellular and community functionality in desert soil niches. Such sources include a range of precipitation and condensation processes, including rainfall, snow, dew, fog, and nocturnal distillation, all of which may vary quantitatively depending on the location and geomorphological characteristics of the desert ecosystem. Other more obscure sources of bioavailable water may include groundwater-derived water vapour, hydrated minerals, and metabolic hydro-genesis. Here, we explore the possible sources of bioavailable water in the context of microbial survival and function in xeric desert soils. With global climate change projected to have profound effects on both hot and cold deserts, we also explore the potential impacts of climate-induced changes in water availability on soil microbiomes in these extreme environments.
Collapse
Affiliation(s)
- Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - S Craig Cary
- School of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand
| | - Jocelyne DiRuggiero
- Departments of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Frank Eckardt
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7701, South Africa
| | - Belinda Ferrari
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - David W Hopkins
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | | | - Stephen B Pointing
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Departamento Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dana Tribbia
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
10
|
Wu MH, Li T, Zhang GS, Wu FS, Chen T, Zhang BL, Wu XK, Liu GX, Zhang KC, Zhang W. Seasonal Variation of Hypolithic Microbiomes in the Gobi Desert : Seasonal Variation of Hypolithic Microbiomes in the Gobi Desert. MICROBIAL ECOLOGY 2023; 85:1382-1395. [PMID: 35583685 DOI: 10.1007/s00248-022-02043-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/12/2022] [Indexed: 05/10/2023]
Abstract
Understanding how microbial communities adapt to environmental stresses is critical for interpreting ecological patterns and microbial diversity. In the case of the Gobi Desert, little is known on the environmental factors that explain hypolithic colonization under quartz stones. By analyzing nine hypolithic communities across an arid gradient and the effects of the season of the year in the Hexi Corridor of this desert, we found a significant decrease in hypolithic colonization rates (from 47.24 to 15.73%) with the increasing drought gradient and found two distinct communities in Hot and Cold samples, which survived or proliferated after a hot or a cold period. While Cold communities showed a greater species diversity and a predominance of Cyanobacteria, Hot communities showed a predominance of members of the Proteobacteria and the Firmicutes. In comparison, Cold communities also possessed stronger functions in the photosynthesis and carbon metabolism. Based on the findings of this study, we proposed that the hypolithic communities of the Hexi Corridor of the Gobi Desert might follow a seasonal developmental cycle in which temperature play an important role. Thus after a critical thermal threshold is crossed, heterotrophic microorganisms predominate in the hot period, while Cyanobacteria predominate in the cold period.
Collapse
Affiliation(s)
- Ming-Hui Wu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Gao-Sen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Fa-Si Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu, 736200, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Bing-Lin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Xiu-Kun Wu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Guang-Xiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Ke-Cun Zhang
- Research Station of Gobi Desert Ecology and Environment in Dunhuang of Gansu Province, Dunhuang, Gansu, 736200, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
11
|
Soil fungal diversity and assembly along a xeric stress gradient in the central Namib Desert. Fungal Biol 2023; 127:997-1003. [PMID: 37024159 DOI: 10.1016/j.funbio.2023.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
The Namib Desert of south-western Africa is one of the oldest deserts in the world and possesses unique geographical, biological and climatic features. While research through the last decade has generated a comprehensive survey of the prokaryotic communities in Namib Desert soils, little is yet known about the diversity and function of edaphic fungal communities, and even less of their responses to aridity. In this study, we have characterized soil fungal community diversity across the longitudinal xeric gradient across the Namib desert (for convenience, divided into the western fog zone, the central low-rainfall zone and the eastern high-rainfall zone), using internal transcribed sequence (ITS) metabarcoding. Ascomycota, Basidiomycota and Chytridiomycota consistently dominated the Namib Desert edaphic fungal communities and a core mycobiome composed of only 15 taxa, dominated by members of the class Dothideomycetes (Ascomycota), was identified. However, fungal community structures were significantly different in the fog, low-rainfall and high-rainfall zones. Furthermore, Namib Desert gravel plain fungal community assembly was driven by both deterministic and stochastic processes; the latter dominating in the all three xeric zones. We also present data that suggest that the inland limit of fog penetration represents an ecological barrier to fungal dispersal across the Namib Desert.
Collapse
|
12
|
Busse L, Tisza M, DiRuggiero J. Viruses Ubiquity and Diversity in Atacama Desert Endolithic Communities. Viruses 2022; 14:1983. [PMID: 36146789 PMCID: PMC9500819 DOI: 10.3390/v14091983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses are key players in the environment, and recent metagenomic studies have revealed their diversity and genetic complexity. Despite progress in understanding the ecology of viruses in extreme environments, viruses' dynamics and functional roles in dryland ecosystems, which cover about 45% of the Earth's land surfaces, remain largely unexplored. This study characterizes virus sequences in the metagenomes of endolithic (within rock) microbial communities ubiquitously found in hyper-arid deserts. Taxonomic classification and network construction revealed the presence of novel and diverse viruses in communities inhabiting calcite, gypsum, and ignimbrite rocks. Viral genome maps show a high level of protein diversity within and across endolithic communities and the presence of virus-encoded auxiliary metabolic genes. Phage-host relationships were predicted by matching tRNA, CRISPR spacer, and protein sequences in the viral and microbial metagenomes. Primary producers and heterotrophic bacteria were found to be putative hosts to some viruses. Intriguingly, viral diversity was not correlated with microbial diversity across rock substrates.
Collapse
Affiliation(s)
- Leora Busse
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mike Tisza
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Cowan DA, Lebre PH, Amon C, Becker RW, Boga HI, Boulangé A, Chiyaka TL, Coetzee T, de Jager PC, Dikinya O, Eckardt F, Greve M, Harris MA, Hopkins DW, Houngnandan HB, Houngnandan P, Jordaan K, Kaimoyo E, Kambura AK, Kamgan-Nkuekam G, Makhalanyane TP, Maggs-Kölling G, Marais E, Mondlane H, Nghalipo E, Olivier BW, Ortiz M, Pertierra LR, Ramond JB, Seely M, Sithole-Niang I, Valverde A, Varliero G, Vikram S, Wall DH, Zeze A. Biogeographical survey of soil microbiomes across sub-Saharan Africa: structure, drivers, and predicted climate-driven changes. MICROBIOME 2022; 10:131. [PMID: 35996183 PMCID: PMC9396824 DOI: 10.1186/s40168-022-01297-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/15/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Top-soil microbiomes make a vital contribution to the Earth's ecology and harbor an extraordinarily high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such as the African continent. While several recent studies have documented patterns in global soil microbial ecology, these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of other regions where there is low data coverage. This is the case for sub-Saharan Africa, where the number of regional microbial studies is very low in comparison to other continents. RESULTS The aim of this study was to conduct an extensive biogeographical survey of sub-Saharan Africa's top-soil microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. In this study, we sampled 810 sample sites across 9 sub-Saharan African countries and used taxonomic barcoding to profile the microbial ecology of these regions. Our results showed that the sub-Saharan nations included in the study harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted from the same sites, we demonstrated that the top-soil microbiome is shaped by a broad range of environmental factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also developed a model to predict how soil microbial biodiversity in sub-Saharan Africa might be affected by future climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will benefit from the increase in annual precipitation. CONCLUSION This study represents the most extensive biogeographical survey of sub-Saharan top-soil microbiomes to date. Importantly, this study has allowed us to identify countries in sub-Saharan Africa that might be particularly vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of many economies in the region on rain-fed agriculture, this study provides crucial information to support conservation efforts in the countries that will be most heavily impacted by climate change. Video Abstract.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - P H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Cer Amon
- Institut National Polytechnique Houphouet-Boigny, Cote d'Ivoire, Yamoussoukro, South Africa
| | - R W Becker
- Biodiversity Research Centre, Department of Agriculture and Natural Resources Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - H I Boga
- Taita Taveta University, Voi, Kenya
| | - A Boulangé
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
- UMR InterTryp, CIRAD-IRD, 34398, Montpellier, France
| | - T L Chiyaka
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - T Coetzee
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - P C de Jager
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - O Dikinya
- Department of Environmental Science, University of Botswana, Gaborone, Botswana
| | - F Eckardt
- Department of Geography, University of Cape Town, Cape Town, South Africa
| | - M Greve
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - M A Harris
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - D W Hopkins
- Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - H B Houngnandan
- Université Nationale d'Agriculture, Porto-Novo, Benin (Laboratoire de Microbiologie Des Sols Et d'Ecologie Microbienne), Porto-Novo, Benin
| | - P Houngnandan
- Université Nationale d'Agriculture, Porto-Novo, Benin (Laboratoire de Microbiologie Des Sols Et d'Ecologie Microbienne), Porto-Novo, Benin
| | - K Jordaan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Departamento de Genética Molecular Y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Kaimoyo
- University of Zambia, Lusaka, Zambia
| | | | - G Kamgan-Nkuekam
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - T P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - E Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - H Mondlane
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - E Nghalipo
- Biodiversity Research Centre, Department of Agriculture and Natural Resources Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - B W Olivier
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - M Ortiz
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - L R Pertierra
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - J-B Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Departamento de Genética Molecular Y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Seely
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - I Sithole-Niang
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - A Valverde
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - G Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - S Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - D H Wall
- Department of Biology, Colorado State University, Fort Collins, USA
| | - A Zeze
- Institut National Polytechnique Houphouet-Boigny, Cote d'Ivoire, Yamoussoukro, South Africa
| |
Collapse
|
14
|
Abstract
The emerging understanding of microbial trace gas chemotrophy as a metabolic strategy to support energy and carbon acquisition for microbial survival and growth has significant implications in the search for past, and even extant, life beyond Earth. The use of trace gases, including hydrogen and carbon monoxide as substrates for microbial oxidation, potentially offers a viable strategy with which to support life on planetary bodies that possess a suitable atmospheric composition, such as Mars and Titan. Here, we discuss the current state of knowledge of this process and explore its potential in the field of astrobiological exploration.
Collapse
Affiliation(s)
- Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Address correspondence to: Don A. Cowan, Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Building NW2, Room 3-12, Hatfield Campus, Lynnwood Road, Pretoria 0002, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, Australian Centre for Astrobiology, UNSW Sydney, Randwick, Australia
| | | |
Collapse
|
15
|
Hwang Y, Schulze-Makuch D, Arens FL, Saenz JS, Adam PS, Sager C, Bornemann TLV, Zhao W, Zhang Y, Airo A, Schloter M, Probst AJ. Leave no stone unturned: individually adapted xerotolerant Thaumarchaeota sheltered below the boulders of the Atacama Desert hyperarid core. MICROBIOME 2021; 9:234. [PMID: 34836555 PMCID: PMC8627038 DOI: 10.1186/s40168-021-01177-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The hyperarid core of the Atacama Desert is an extremely harsh environment thought to be colonized by only a few heterotrophic bacterial species. Current concepts for understanding this extreme ecosystem are mainly based on the diversity of these few species, yet a substantial area of the Atacama Desert hyperarid topsoil is covered by expansive boulder accumulations, whose underlying microbiomes have not been investigated so far. With the hypothesis that these sheltered soils harbor uniquely adapted microbiomes, we compared metagenomes and geochemistry between soils below and beside boulders across three distantly located boulder accumulations in the Atacama Desert hyperarid core. RESULTS Genome-resolved metagenomics of eleven samples revealed substantially different microbial communities in soils below and beside boulders, despite the presence of shared species. Archaea were found in significantly higher relative abundance below the boulders across all samples within distances of up to 205 km. These key taxa belong to a novel genus of ammonia-oxidizing Thaumarchaeota, Candidatus Nitrosodeserticola. We resolved eight mid-to-high quality genomes of this genus and used comparative genomics to analyze its pangenome and site-specific adaptations. Ca. Nitrosodeserticola genomes contain genes for ammonia oxidation, the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation pathway, and acetate utilization indicating a chemolithoautotrophic and mixotrophic lifestyle. They also possess the capacity for tolerating extreme environmental conditions as highlighted by the presence of genes against oxidative stress and DNA damage. Site-specific adaptations of the genomes included the presence of additional genes for heavy metal transporters, multiple types of ATP synthases, and divergent genes for aquaporins. CONCLUSION We provide the first genomic characterization of hyperarid soil microbiomes below the boulders in the Atacama Desert, and report abundant and highly adapted Thaumarchaeaota with ammonia oxidation and carbon fixation potential. Ca. Nitrosodeserticola genomes provide the first metabolic and physiological insight into a thaumarchaeal lineage found in globally distributed terrestrial habitats characterized by various environmental stresses. We consequently expand not only the known genetic repertoire of Thaumarchaeota but also the diversity and microbiome functioning in hyperarid ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yunha Hwang
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany.
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), 14473, Potsdam, Germany.
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Stechlin, Germany.
- School of the Environment, Washington State University, Pullman, WA, 99164, USA.
| | - Felix L Arens
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Johan S Saenz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, 85758, Oberschleißheim, Germany
| | - Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Christof Sager
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alessandro Airo
- Astrobiology Group, Center for Astronomy & Astrophysics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, 85758, Oberschleißheim, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 , Essen, Germany.
| |
Collapse
|
16
|
Bosch J, Varliero G, Hallsworth JE, Dallas TD, Hopkins D, Frey B, Kong W, Lebre P, Makhalanyane TP, Cowan DA. Microbial anhydrobiosis. Environ Microbiol 2021; 23:6377-6390. [PMID: 34347349 DOI: 10.1111/1462-2920.15699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022]
Abstract
The loss of cellular water (desiccation) and the resulting low cytosolic water activity are major stress factors for life. Numerous prokaryotic and eukaryotic taxa have evolved molecular and physiological adaptions to periods of low water availability or water-limited environments that occur across the terrestrial Earth. The changes within cells during the processes of desiccation and rehydration, from the activation (and inactivation) of biosynthetic pathways to the accumulation of compatible solutes, have been studied in considerable detail. However, relatively little is known on the metabolic status of organisms in the desiccated state; that is, in the sometimes extended periods between the drying and rewetting phases. During these periods, which can extend beyond decades and which we term 'anhydrobiosis', organismal survival could be dependent on a continued supply of energy to maintain the basal metabolic processes necessary for critical functions such as macromolecular repair. Here, we review the state of knowledge relating to the function of microorganisms during the anhydrobiotic state, highlighting substantial gaps in our understanding of qualitative and quantitative aspects of molecular and biochemical processes in desiccated cells.
Collapse
Affiliation(s)
- Jason Bosch
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Gilda Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | | | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Pedro Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
17
|
Gwizdala M, Lebre PH, Maggs-Kölling G, Marais E, Cowan DA, Krüger TPJ. Sub-lithic photosynthesis in hot desert habitats. Environ Microbiol 2021; 23:3867-3880. [PMID: 33817951 DOI: 10.1111/1462-2920.15505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/03/2021] [Indexed: 11/26/2022]
Abstract
In hyper-arid soil environments, photosynthetic microorganisms are largely restricted to hypolithic (sub-lithic) habitats: i.e., on the ventral surfaces of translucent pebbles in desert pavements. Here, we combined fluorometric, spectroscopic, biochemical and metagenomic approaches to investigate in situ the light transmission properties of quartz stones in the Namib Desert, and assess the photosynthetic activity of the underlying hypolithic cyanobacterial biofilms. Quartz pebbles greatly reduced the total photon flux to the ventral surface biofilms and filtered out primarily the short wavelength portion of the solar spectrum. Chlorophylls d and f were not detected in biofilm pigment extracts; however, hypolithic cyanobacterial communities showed some evidence of adaptation to sub-lithic conditions, including the prevalence of genes encoding Helical Carotenoid Proteins, which are associated with desiccation stress. Under water-saturated conditions, hypolithic communities showed no evidence of light stress, even when the quartz stones were exposed to full midday sunlight. This initial study creates a foundation for future in-situ and laboratory exploration of various adaptation mechanisms employed by photosynthetic organisms forming hypolithic microbial communities.
Collapse
Affiliation(s)
- Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.,Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | | | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.,Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| |
Collapse
|
18
|
Coleine C, Biagioli F, de Vera JP, Onofri S, Selbmann L. Endolithic microbial composition in Helliwell Hills, a newly investigated Mars-like area in Antarctica. Environ Microbiol 2021; 23:4002-4016. [PMID: 33538384 DOI: 10.1111/1462-2920.15419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
The diversity and composition of Antarctic cryptoendolithic microbial communities in the Mars-analogue site of Helliwell Hills (Northern Victoria Land, Continental Antarctica) are investigated, for the first time, applying both culture-dependent and high-throughput sequencing approaches. The study includes all the domains of the tree of life: Eukaryotes, Bacteria and Archaea to give a complete overview of biodiversity and community structure. Furthermore, to explore the geographic distribution of endoliths throughout the Victoria Land (Continental Antarctica), we compared the fungal and bacterial community composition and structure of endolithically colonized rocks, collected in >30 sites in 10 years of Italian Antarctic Expeditions. Compared with the fungi and other eukaryotes, the prokaryotic communities were richer in species, more diverse and highly heterogeneous. Despite the diverse community compositions, shared populations were found and were dominant in all sites. Local diversification was observed and included prokaryotes as members of Alphaproteobacteria and Crenarchaeota (Archaea), the last detected for the first time in these cryptoendolithic communities. Few eukaryotes, namely lichen-forming fungal species as Lecidella grenii, were detected in Helliwell Hills only. These findings suggest that geographic distance and isolation in these remote areas may promote the establishment of peculiar locally diversified microorganisms.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Federico Biagioli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jean Pierre de Vera
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|
19
|
Osborne P, Hall LJ, Kronfeld-Schor N, Thybert D, Haerty W. A rather dry subject; investigating the study of arid-associated microbial communities. ENVIRONMENTAL MICROBIOME 2020; 15:20. [PMID: 33902728 PMCID: PMC8067391 DOI: 10.1186/s40793-020-00367-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
Almost one third of Earth's land surface is arid, with deserts alone covering more than 46 million square kilometres. Nearly 2.1 billion people inhabit deserts or drylands and these regions are also home to a great diversity of plant and animal species including many that are unique to them. Aridity is a multifaceted environmental stress combining a lack of water with limited food availability and typically extremes of temperature, impacting animal species across the planet from polar cold valleys, to Andean deserts and the Sahara. These harsh environments are also home to diverse microbial communities, demonstrating the ability of bacteria, fungi and archaea to settle and live in some of the toughest locations known. We now understand that these microbial ecosystems i.e. microbiotas, the sum total of microbial life across and within an environment, interact across both the environment, and the macroscopic organisms residing in these arid environments. Although multiple studies have explored these microbial communities in different arid environments, few studies have examined the microbiota of animals which are themselves arid-adapted. Here we aim to review the interactions between arid environments and the microbial communities which inhabit them, covering hot and cold deserts, the challenges these environments pose and some issues arising from limitations in the field. We also consider the work carried out on arid-adapted animal microbiotas, to investigate if any shared patterns or trends exist, whether between organisms or between the animals and the wider arid environment microbial communities. We determine if there are any patterns across studies potentially demonstrating a general impact of aridity on animal-associated microbiomes or benefits from aridity-adapted microbiomes for animals. In the context of increasing desertification and climate change it is important to understand the connections between the three pillars of microbiome, host genome and environment.
Collapse
Affiliation(s)
- Peter Osborne
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK.
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany
| | | | - David Thybert
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| |
Collapse
|
20
|
Guerra CA, Heintz-Buschart A, Sikorski J, Chatzinotas A, Guerrero-Ramírez N, Cesarz S, Beaumelle L, Rillig MC, Maestre FT, Delgado-Baquerizo M, Buscot F, Overmann J, Patoine G, Phillips HRP, Winter M, Wubet T, Küsel K, Bardgett RD, Cameron EK, Cowan D, Grebenc T, Marín C, Orgiazzi A, Singh BK, Wall DH, Eisenhauer N. Blind spots in global soil biodiversity and ecosystem function research. Nat Commun 2020; 11:3870. [PMID: 32747621 PMCID: PMC7400591 DOI: 10.1038/s41467-020-17688-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Soils harbor a substantial fraction of the world's biodiversity, contributing to many crucial ecosystem functions. It is thus essential to identify general macroecological patterns related to the distribution and functioning of soil organisms to support their conservation and consideration by governance. These macroecological analyses need to represent the diversity of environmental conditions that can be found worldwide. Here we identify and characterize existing environmental gaps in soil taxa and ecosystem functioning data across soil macroecological studies and 17,186 sampling sites across the globe. These data gaps include important spatial, environmental, taxonomic, and functional gaps, and an almost complete absence of temporally explicit data. We also identify the limitations of soil macroecological studies to explore general patterns in soil biodiversity-ecosystem functioning relationships, with only 0.3% of all sampling sites having both information about biodiversity and function, although with different taxonomic groups and functions at each site. Based on this information, we provide clear priorities to support and expand soil macroecological research.
Collapse
Affiliation(s)
- Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. .,Institute of Biology, Martin Luther University Halle Wittenberg, Am Kirchtor 1, 06108, Halle(Saale), Germany.
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, 06108, Halle(Saale), Germany
| | - Johannes Sikorski
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Nathaly Guerrero-Ramírez
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Léa Beaumelle
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, 14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195, Berlin, Germany
| | - Fernando T Maestre
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, 28933, Spain.,Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Manuel Delgado-Baquerizo
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, 28933, Spain
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, 06108, Halle(Saale), Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Guillaume Patoine
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Helen R P Phillips
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Braunschweig, Germany
| | - Kirsten Küsel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Straße 159, 07743, Jena, Germany
| | - Richard D Bardgett
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Erin K Cameron
- Department of Environmental Science, Saint Mary's University, Halifax, NS, Canada
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Tine Grebenc
- Slovenian Forestry Institute, Večna pot 2, SI-1000, Ljubljana, Slovenia
| | - César Marín
- Instituto de Ciencias Agronómicas y Veterinarias, Universidad de O'Higgins, Rancagua, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | | | - Brajesh K Singh
- Hawkesbury Institute for the environment, Western Sydney University, Penrith, NSW, 2751, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Diana H Wall
- School of Global Environmental Sustainability and Department of Biology, Colorado State University, Fort Collins, CO, 80523-1036, USA
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|